
Chapter 3
Particle swarm optimization

3.1 Biological background

The tendency to form swarms appears in many different organisms, for in-
stance (some species of) birds and fish. Swarming behavior offers several ad-
vantages, for example protection from predators: An animal near the centre of
a swarm is unlikely to be captured by a predator. Furthermore, the members
of a swarm may confuse predators through coordinated movements, such as
rapid division into subgroups. Furthermore, because of the large concentra-
tion of individuals in a swarm, the risk of injury to a predator, should it attack,
can be much larger than when it is attacking a single animal. On the other
hand, it is not entirely evident that swarming is always beneficial: Once a
predator has discovered a swarm, at least it knows where the prey is located.
However, by aggregating, the prey effectively presents the predator with a
needle-in-haystack problem and the benefits of doing so are apparently signif-
icant, since swarming behavior is so prevalent in nature. Swarms are formed
also for other reasons than protection from predators. For example, swarm-
ing plays a role in efficient repeoduction: It is easier to find a mate in a large
group. However, also in this case, there are both benefits and drawbacks, since
competition obviously increases as well.

Swarming is also a prerequisite for cooperation that, in turn, plays a crucial
role in, for example, the foraging (food gathering) of several species, particu-
larly ants, bees, and termites, but also in other organisms such as birds. Here,
the principle is that many eyes are more likely to find food than a single pair
of eyes.

The search efficiency provided by swarming is what underlies particle swarm
optimization (PSO) algorithms. Before introducing PSO in detail, however, we
shall briefly consider a model for swarming in biological organisms.

115

Chapter 3: Particle swarm optimization 116

3.1.1 A model of swarming

In many instances of swarming in animals, there is no apparent leader that
the other members of the swarm follow. Thus, the swarm must be a result of
local interactions only, and an interesting question follows: how can a coher-
ent swarm result from such interactions? This issue has been addressed by
Reynolds [3], who introduced a model for numerical simulation of the swarm-
ing of bird-like objects (or boids as they were called), which we will consider
next.

In the description of PSO below, the ith member of a swarm, referred to as a
particle, will be denoted pi. Thus, in order to keep a unified notation through-
out the chapter, we shall use the symbol pi also for the boids considered in this
section. Let S, defined as,

S = {pi, i = 1, . . . , N}. (3.1)

denote a swarm of N boids. In this model, the boids can only perceive nearby
swarm mates. Thus, for each boid i, a visibility sphere Vi is introduced, de-
fined as

Vi = {pj : ‖xj − xi‖ < r, j 6= i}, (3.2)

where r is a global constant, i.e. a property of the swarm. In each time step
of the simulation, the positions xi and velocities vi of the boids are updated
using standard Euler integration, i.e.

x
′

i = xi + vi∆t, i = 1, . . . , N, (3.3)

v
′

i = vi + ai∆t, i = 1, . . . , N, (3.4)

where vi denotes the velocity of boid i, ai its acceleration, and ∆t is the time
step. Each boid is influenced by three different movement tendencies (or steers)
that together determine its acceleration, namely cohesion, alignment, and
separation. Cohesion represents the tendency of any given boid to stay near
the centre of the swarm. Let ρi denote the centre of density of the boids within
the visibility sphere of boid i, i.e.

ρi =
∑

pj∈Vi

xj

ki

, (3.5)

where ki is the number of boids in Vi. The steering vector representing cohe-
sion is defined as

ci =
1

T 2
(ρi − xi) , (3.6)

where T is a time constant, introduced in order to give ci the correct dimen-
sion (acceleration). If ki = 0, i.e. if no boids are within the visibility sphere of
boid i, then ci = 0. Alignment, by contrast, is the tendency of boids to align

c© Mattias Wahde, 2007

Chapter 3: Particle swarm optimization 117

Figure 3.1: A two-dimensional example of steering vectors: The upper left panel shows the
positions and velocities of a swarm of boids. The circle indicates the visibility sphere of the
gray particle located at its centre. The steering components c, l, and s are shown as arrows in
the middle, right and lower left panels, respectively. The lower right panel shows the resulting
acceleration vector a.

their velocities with those of their nearby swarm mates. Thus, the alignment
steering vector is defined as

li =
1

T

∑

pj∈Vi

vj

ki

. (3.7)

As in the case of cohesion, if ki = 0, then li = 0. Separation, finally, is needed
in order to avoid collision with nearby boids, and the corresponding steering
vector is obtained as

si =
1

T 2

∑

pj∈Vi

(xi − xj). (3.8)

If ki = 0, then si = 0. Finally, combining the steering vectors, the acceleration
of boid i is obtained as

ai = Ccci + Clli + Cssi, (3.9)

where the constants Cc, Cl and Cs (∈ [0, 1]) measure the relative impact of the
three steering vectors. An example of steering vectors in a boids simulation is
shown in Fig. 3.1.

c© Mattias Wahde, 2007

Chapter 3: Particle swarm optimization 118

A crucial factor in simulations based on this model is the initialization; If
the initial speed of the boids is too large, the swarm will break apart. Thus,
commonly, swarms are instead initialized with vi = 0, i = 1, . . . , N . Further-
more, each boid should (at initialization) be within the visibility sphere of at
least one other boid.

The simple model presented above leads, in fact, to very realistic swarm
behavior, and the algorithm has (with some modifications) been used both in
computer games and in movies (e.g. Jurassic Park).

3.2 Algorithm

Particle swarm optimization (PSO) [1] is based on the properties of swarms.
As is the case with EAs, PSO algorithms (of which there are several versions,
as we shall see) attempts to capture those aspects of swarming that are im-
portant in optimization, namely the search efficiency attributable to a swarm.
Essentially, in PSO, each particle 1 is associated both with a position and a ve-
locity in the search space, as well as a method for determining the changes in
velocity depending on the performance of the particle itself and that of other
particles. Thus, a clear difference, compared to EAs, is the introduction of
a velocity in the search space. A basic PSO algorithm is described in Algo-
rithm 3.1. The first step is initialization of the positions xi and the velocities vi

of each particle pi, i = 1, . . . , N . The appropriate number of particles will vary
from problem to problem, but is typically smaller than the number of individ-
uals used in EAs. Common values of N are 20 − 40. Positions are normally
initialized randomly, using uniform sampling in a given range [xmin, xmax], i.e.

xi,j = xmin + r (xmax − xmin) , i = 1, . . . , N, j = 1, . . . , n (3.10)

where xi,j denotes the jth component of the position of particle pi and r is a
uniform random number in the range [0, 1]. N denotes the size of the swarm,
corresponding to the population size in an EA, and n is the dimensionality of
the problem (the number of variables). Velocities are normally also initialized
randomly, according to

vi,j = α
xmin + r (xmax − xmin)

∆t
, i = 1, . . . , N, j = 1, . . . , n (3.11)

where vi,j denotes the jth component of the velocity of particle pi. α is a con-
stant in the range]0, 1], and ∆t is the time step length which, for simplicity,
commonly is set to 1. Restricting velocities so as to avoid uncontrollable diver-
gence of the swarm is a crucial part of PSOs, which will be further discussed
later in this chapter.

1As mentioned earlier in the chapter, in PSO the candidate solutions, corresponding to
individuals in EAs, are referred to as particles.

c© Mattias Wahde, 2007

Chapter 3: Particle swarm optimization 119

1. Initialize positions and velocities of the particles pi:

1.1. xi,j = xmin + r (xmax − xmin) , i = 1, . . . , N, j = 1, . . . , n

1.2. vi,j = α
xmin+r(xmax−xmin)

∆t
, i = 1, . . . , N, j = 1, . . . , n

2. Evaluate each particle in the swarm: xi → f(xi), i = 1, . . . , N.

3. Update the best position of each particle, and the global best position.
Thus, for all particles pi i = 1, . . . , N :

3.1. if f(xi) < f(xpb
i) then x

pb
i ← xi.

3.2. if f(xi) < f(xsb) then x
sb ← xi.

4. Update particle velocities and positions:

4.1. vi,j ← vi,j + c1q

(

x
pb

i,j
−xi,j

∆t

)

+ c2r

(

xsb
j
−xi,j

∆t

)

, i = 1, . . . , N, j = 1, . . . , n

4.2. xi,j ← xi,j + vi,j∆t, i = 1, . . . , N, j = 1, . . . , n.

5. Return to step 2, unless the termination criterion has been reached.

Algorithm 3.1: Basic particle swarm optimization. N denotes the number of particles in the
swarm, and n denotes the dimensionality (number of variables) of the problem under study. It
has been assumed that the goal is to minimize the objective function f(x). See the main text
for a complete description of the algorithm.

Once initialization has been completed, the next step is to evaluate the per-
formance of each particle. As in an EA, the detailed nature of the evaluation
depends, of course, on the problem at hand. Also, the sign of the inequalities
in Algorithm 3.1 depends on whether the goal is to maximize or minimize the
value of the objective function (here, minimization has been assumed). In the
simple case of function minimization, the function value f(x) can serve as the
performance measure.

Next, the velocities and positions of all particles should be updated. As
the aim is to reach optimal values of the objective function, the procedure for
determining velocities should, of course, keep track of the performance of the
particles thus far. In fact, two such measures are stored and used in PSO,

namely (1) the best position x
pb
i so far, of particle i, and (2) the best perfor-

mance x
sb so far, of any particle in the swarm. Thus, after the evaluation of a

particle pi, the two performance tests described in step 3 in Algorithm 3.1 are
carried out. The first test is straightforward and simply consists of comparing
the performance of particle pi with its previous best performance. The second
test, however, can be carried out in different ways, depending on whether the

c© Mattias Wahde, 2007

Chapter 3: Particle swarm optimization 120

best performance of any particle in the swarm is taken to refer to the current swarm
or all particles considered thus far, and also depending on whether the compar-
ison includes all particles of the swarm or only particles in a neighbourhood (a
concept that will be further discussed below) of particle pi. In Algorithm 3.1
it is assumed that the comparison in Step 3.2 involves the whole swarm, and
that the best-ever position is used as the benchmark. Thus, in this case, after
the first evaluation of all particles, x

sb is set to the best position thus found.
x

sb is then stored, and is updated only when the condition in Step 3.2 of the
algorithm is fulfilled.

Given the current values of x
pb
i and x

sb, the velocity of particle pi is then
updated according to

vi,j ← vi,j + c1q





x
pb
i,j − xi,j

∆t



+ c2r

(

xsb
j − xi,j

∆t

)

, j = 1, . . . , n, (3.12)

where q and r are uniform random numbers in [0, 1], and c1 and c2 are con-
stants, typically both set to 2, so that the mean of the two factors c1q and c2r

is equal to 1. The factor proportional to c1 is sometimes referred to as the
cognitive component and the factor proportional to c2 the social component.
The cognitive component measures the degree of self-confidence of a parti-
cle, i.e. the degree to which it trusts its own previous performance as a guide
towards obtaining better results. Similarly, the social component measures a
particle’s trust in the ability of the other swarm members to find better solu-
tions. Next, the position of particle pi is updated as

xi,j ← xi,j + vi,j∆t, j = 1, . . . , n. (3.13)

This completes the first iteration. Steps 2, 3, and 4 of Algorithm 3.1 are then
repeated until a satisfactory solution has been found.

3.3 Properties of PSO

As in the case of EAs, there exists many variations on the theme provided
by the basic PSO described in Algorithm 3.1, some of which will now be de-
scribed.

3.3.1 Best-in-swarm vs. best-ever

A crucial component in PSO is the concept of the best-of-swarm performance,
i.e. x

sb as introduced in Algorithm 3.1 above. The first modification we will
consider concerns the scope of the comparison with respect to the iterations
carried out during optimization. In Algorithm 3.1, we determined x

sb as the

c© Mattias Wahde, 2007

Chapter 3: Particle swarm optimization 121

Figure 3.2: Particle neighbourhoods in PSO, shown for the case N = 8. Left panel: a fully
connected neighbourhood. Right panel: a neighbourhood with restricted connectivity.

best-ever position x
sb,e of any particle of the swarm. An alternative approach

is to consider only the best position x
sb,c in the current swarm, i.e. among the

N particles forming the current iteration. Note that, apart from the determina-
tion of the best-in-swarm position, all other steps are identical to those of Al-
gorithm 3.1. In terms of computer programming, the only difference between
the two methods is the single line of code needed to reset the best-of-swarm in
each iteration.

3.3.2 Neighbourhood topologies

In the boids model presented at the beginning of this chapter, a visibility sphere
was associated with each boid, and only those boids that happened to be inside
this sphere influenced the acceleration of the boid under consideration. A sim-
ilar idea (albeit with an important difference, see below) has been introduced
in connection with PSO, namely the concept of neighbourhoods..

Let x
sb, n
i denote the best particle (i.e. the one associated with the lowest

value of the objective function), among the neighbours of particle i. In Al-
gorithm 3.1, the neighbourhood included all particles in the swarm, so that

x
sb, n
i = x

sb (independent of i). Such a neighbourhood is shown in the left panel
of Fig. 3.2, where the discs represent the particles and the lines emanating from
any disc determine the neighbours of the particle in question.

However, there are many alternatives to the fully connected neighbour-
hood. Another example is shown in the right panel of the figure, in which
each particle is only connected to its nearest neighbours on either side. Ob-
viously, intermediate cases can be defined as well, in which each particle is
connected to the K nearest neighbours on each side.

Note that, unlike the visibility spheres introduced in connection with boids
(see Subsect. 3.1.1), the topological constructs shown in Fig. 3.2 are defined in
an abstract space different from the n-dimensional search space; two neigh-

c© Mattias Wahde, 2007

Chapter 3: Particle swarm optimization 122

20 40 60 80 100

-200

-100

100

200

Figure 3.3: Typical trajectory of a single particle, integrated (in one dimension) over 100 time
steps, using Eq. (3.12), with c1 = c2 = 1.5, xpb = 2, xsb = 2.5, ∆t = 1. The integration was
started at x = 1, v = 0.

bours linked together as neighbours may be located at very different places in
the search space. Furthermore, the neighbourhood structure normally remains
fixed throughout optimization whereas, of course, the positions xi in the search
space vary with every iteration, according to Eqs. (3.12) and (3.13).

The definition of neighbourhood structures with restricted connectivity in
PSO serves the same purpose as the various procedures introduced for the
prevention of premature convergence in EAs.

3.3.3 Maintaining coherence

The choice of the parameters c1 and c2 has a strong influence on the trajectories
of particles in the swarm. As noted above, a common choice is to take c1 = c2 =
2, in which case equal weight is given to the cognitive and social parts of the
velocity equation (Eq. (3.12)). Other choices are possible as well. However, the
sum of c1 and c2 should be upper bounded by 4, i.e.

c1 + c2 ≤ 4. (3.14)

One can prove (after removing the stochastic components, i.e the random num-
bers q and r in Eq. (3.12)) that the trajectories will remain bounded only if
c1 + c2 ≤ 4.

However, even if c1 + c2 ≤ 4, the trajectories of particles moving under the
influence of Algorithm 3.1 will, in fact, diverge eventually, due to the influence
of stochastic variables q and r. An example is shown in Fig. 3.3, in which the
position of a single particle is integrated with c1 = c2 = 1.5. As is evident from
the figure, even though c1 + c2 < 4, the trajectory eventually diverges.

Thus, in practice, the divergence of particle trajectories must somehow be
controlled. The simplest way of doing so is to introduce a limit on particle

c© Mattias Wahde, 2007

Chapter 3: Particle swarm optimization 123

velocities. Typically, velocities are restricted such that

|vi,j| < vmax =
(xmax − xmin)

∆t
, j = 1, . . . , n. (3.15)

Thus if, after an update using Eq. (3.12), vi,j > vmax, then vi,j is simply set equal
to vmax. Similarly if vi,j < −vmax, vi,j is set equal to −vmax.

This, however, is not the only way to maintain swarm coherence. In fact,
in the literature on PSO, there exists several studies concerning the use of con-
striction coefficients that modify the velocity equation (Eq. (3.12)), the position
equation (Eq. (3.13)), or both equations. As an example, consider the modified
rule

vi,j ← χ



vi,j + c1q





x
pb
i,j − xi,j

∆t



+ c2r

(

xsb
j − xi,j

∆t

)



 , j = 1, . . . , n. (3.16)

It can be shown that the trajectories obtained using Eq. (3.16) do not diverge if
χ is taken as

χ =
2ξ

|2− ξ +
√

ξ2 − 4ξ| , (3.17)

where (note!) ξ ≡ c1 + c2 > 4.

3.3.4 Inertia weight

As a further modification of Algorithm 3.1 one may introduce a parameter that
determines the relative influence of previous velocities on the current velocity
of a particle. Consider the modified velocity equation

vi,j ← wvi,j + c1q





x
pb
i,j − xi,j

∆t



+ c2r

(

xsb
j − xi,j

∆t

)

, j = 1, . . . , n. (3.18)

Here, w is referred to as the inertia weight. If w > 1, the particle favors explo-
ration over exploitation, i.e. it assigns relatively less significance to the cogni-
tive and social components than if w < 1, in which case the particle is more
attracted towards the current best positions. As in the case of EAs, exploration
plays a more important role than exploitation in the early stages of optimiza-
tion, and vice versa towards the end. Thus, a common strategy is to start
with a value larger than 1 (w = 1.4, say), and then reduce w by a constant
factor β ∈]0, 1[(typically very close to 1) in each iteration, until w reaches a
lower bound (typically around 0.3-0.4). In fact, the use of an inertia weight is
so common to warrant its inclusion in a standard PSO algorithm. Thus, here,
we define the standard PSO algorithm as Algorithm 3.1, but with step 4.1 de-
fined by Eq. (3.18). Note that the standard algorithm, shown in Algorithm 3.2,
uses the best-so-far position in the entire swarm (i.e. with full connectivity) in
the determination of the social component of the velocity change, as well as a
maximum velocity (rather than a constriction coefficient).

c© Mattias Wahde, 2007

Chapter 3: Particle swarm optimization 124

1. Initialize positions and velocities of the particles pi:

1.1. xi,j = xmin + r (xmax − xmin) , (random), i = 1, . . . , N, j = 1, . . . , n

1.2. vi,j = α
xmin+r(xmax−xmin)

∆t
, i = 1, . . . , N, j = 1, . . . , n

2. Evaluate each particle in the swarm: xi → f(xi), i = 1, . . . , N.

3. Update the best position of each particle, and the global best position.
Thus, for all particles pi i = 1, . . . , N :

3.1. if f(xi) < f(xpb
i) then x

pb
i ← xi.

3.2. if f(xi) < f(xsb) then x
sb ← xi.

4. Update particle velocities and positions:

4.1. vi,j ← wvi,j+c1q

(

x
pb

i,j
−xi,j

∆t

)

+c2r

(

xsb
j
−xi,j

∆t

)

, i = 1, . . . , N, j = 1, . . . , n

4.2. Restrict velocities, such that |vi,j| < vmax.

4.3. xi,j ← xi,j + vi,j∆t, i = 1, . . . , N, j = 1, . . . , n.

5. Return to step 2, unless the termination criterion has been reached.

Algorithm 3.2: A standard particle swarm optimization algorithm. Note the introduction
of the inertia weight, and the explicit restriction of particle velocities. As in Algorithm 3.1, it
has been assumed that the best-ever position is used in step 3.2, and that the neighbourhood of
any particle includes all other particles.

3.3.5 Elite particle

Another slight modification is the introduction of an elite particle, that is, a
particle that is placed exactly at the best position. Thus, if p1 is chosen as the
elite particle, one would have

x1 = x
sb. (3.19)

Thus, the position of the elite particle is only updated if a new best-so-far po-
sition is encountered (by one of the other particles).

3.3.6 Craziness operator

The final PSO component that will be considered here is the so called craziness
operator. This operator, which is typically applied with a given probability pcr,
sets the velocity of the particle pi in question to a uniform random value within
the allowed range. Thus, if craziness is applied, the velocity of the particle

c© Mattias Wahde, 2007

Chapter 3: Particle swarm optimization 125

changes according to

vi,j = −vmax + 2rvmax, (3.20)

where r is a random number in [0, 1]. The craziness operator, which in some
way serves the same function as mutations in an EA, can be said to have a
biological motivation: In flocks of birds one can observe that, from time to
time, one bird suddently shoots off in a seemingly random direction (only to
re-enter the swarm shortly thereafter).

3.4 Discrete versions

In the PSO algorithms presented above, it is assumed that the variables xj

take values in a subset of R
n. However, with only slight modifications, PSO

can also be used in connection with integer programming problems, where
the variables take integer values. Here, two discrete PSO algorithms will be
considered. The first method considered, which is based on variable trunca-
tion, can be applied to any integer programming problem, whereas the second
method (binary PSO) is applicable to problems in which the variables take bi-
nary values, i.e. xj ∈ {0, 1}.

3.4.1 Variable truncation

The variable truncation PSO algorithm is very straightforward: At initializa-
tion, random positions are generated as usual, but are then truncated (compo-
nent by component) to their nearest integer values. The determination of new
velocities and positions is then carried out exactly as in the continuous version.
Once new positions have been obtained, each component of the position vec-
tor is truncated to the nearest integer value, and the objective function is com-
puted. Moreover, since the internal workings of the algorithm are identical to
the standard (continuous) PSO, the discussion above concerning specialized
operators and parameter settings is valid in the discrete case as well.

3.4.2 Binary PSO

In certain cases of integer programming, it is necessary to restrict the parti-
cle positions to a given subset of Z

n. One such case is binary programming,
where the components xj of the particle positions are restricted to {0, 1}. Note
that a restriction on velocities does not imply a similar restriction on parti-
cle positions. Thus, a dedicated restriction mechanism for particle positions
is needed. One such mechanism, introduced by Kennedy and Eberhart [2] is
shown in Algorithm 3.3. Here, the variables vi,j are updated as usual, but

c© Mattias Wahde, 2007

Chapter 3: Particle swarm optimization 126

1. Initialize positions and velocities of the particles pi:

1.1. xi,j ∈ {0, 1}, (random), i = 1, . . . , N, j = 1, . . . , n

1.2. vi,j = α
xmin+r(xmax−xmin)

∆t
, i = 1, . . . , N, j = 1, . . . , n

2. Evaluate each particle in the swarm: xi → f(xi), i = 1, . . . , N.

3. Update the best position of each particle, and the global best position.
Thus, for all particles pi i = 1, . . . , N :

3.1. if f(xi) < f(xpb
i) then x

pb
i ← xi.

3.2. if f(xi) < f(xsb) then x
sb ← xi.

4. Update particle velocities and positions:

4.1. vi,j ← wvi,j+c1q

(

x
pb

i,j
−xi,j

∆t

)

+c2r

(

xsb
j
−xi,j

∆t

)

, i = 1, . . . , N, j = 1, . . . , n

4.2. Restrict velocities, such that |vi,j| < vmax(≈ 4).

4.3. Compute σ(vi,j) = 1

1+e−vi,j
, i = 1, . . . , N, j = 1, . . . , n

4.4. Generate a uniform random number r ∈ [0, 1] and update xi,j as

xi,j ←
{

0 if r > σ(vi,j)
1 otherwise

5. Return to step 2, unless the termination criterion has been reached.

Algorithm 3.3: Binary particle swarm optimization. The main difference compared to Algo-
rithm 3.1 is the interpretation of the velocities. As in Algorithm 3.1, it has been assumed that
the best-ever position is used in step 3.2, and that the neighbourhood of any particle includes
all other particles.

their interpretation is different: instead of directly modifying positions as in
Eq. (3.13), the vi,j are passed through a squashing function σ, given by

σ(vi,j) =
1

1 + e−vi,j
, (3.21)

to generate the probability of setting xi,j equal to 1. Thus, with this modifi-
cation, the positions are restricted to the desired set {0, 1}. As for the variable
truncation PSO algorithm, the discussion concerning special operators and pa-
rameter settings in Sect. 3.3 is still mostly valid. One exception, however, is
the truncation of velocities. In binary PSO, explicit truncation of velocities is
used (rather than a constriction coefficient), such that the vi,j are typically re-
stricted to the range |vi,j| < vmax, where vmax ≈ 4, in order to avoid situations
in which the probability of setting xi,j to any particular value (0 or 1) becomes

c© Mattias Wahde, 2007

Chapter 3: Particle swarm optimization 127

too high. With |vi,j| restricted to 4 or less, there is always a probability of at
least σ(vmax) = 0.018 of modifying the value of any position component xi,j for
a particle pi.

Some problems, such as e.g. decision-making problems involving a se-
quence of yes-or-no decisions fall naturally into the category of binary pro-
gramming, where binary PSO is directly applicable. Moreover, continuous
optimization problems can also be solved using binary PSO, simply by em-
ploying a binary encoding scheme for the continuous variables, much as in a
standard GA (see Chapter 2, p. 48).

c© Mattias Wahde, 2007

Chapter 3: Particle swarm optimization 128

c© Mattias Wahde, 2007

Bibliography

[1] Kennedy, J. and Eberhart, R.C. Particle swarm optimization, In: Proc. of the
IEEE International Conference on Neural Networks, Man, and Cybernet-
ics, pp. 1942-1948, 1995

[2] Kennedy, J. and Eberhart, R.C. A discrete binary version of the particle swarm
algorithm, In: Proc. of the 1997 Conference on Systems, Man, and Cyber-
netics, pp. 4104-4109, 1997

[3] Reynolds, C.W. Flocks, herds, and schools: A distributed behavioral model,
Computer Graphics, 21, pp. 25-34, 1987

129

Chapter 3: Particle swarm optimization 130

c© Mattias Wahde, 2007

