
INTRODUCTION TO NEURAL NETWORKS

MATTIAS WAHDE

Department of Applied Mechanics
CHALMERS UNIVERSITY OF TECHNOLOGY
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Sweden
Telephone: +46 (0)31–772 1000



Contents

1 Introduction 1
1.1 Biological background . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Artificial neural networks . . . . . . . . . . . . . . . . . . . . . . 3

2 Backpropagation 13
2.1 Single–layer networks and the delta rule . . . . . . . . . . . . . . 13

2.1.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Multi–layer networks and backpropagation . . . . . . . . . . . . 18

2.2.1 Output neurons . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Hidden neurons . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Improving backprogagation using a momentum term . . 22
2.2.4 Varying the learning rate . . . . . . . . . . . . . . . . . . 22

2.3 Applications of backpropagation . . . . . . . . . . . . . . . . . . 26
2.3.1 Using backpropagation . . . . . . . . . . . . . . . . . . . 26
2.3.2 Function approximation . . . . . . . . . . . . . . . . . . . 27
2.3.3 Time series prediction . . . . . . . . . . . . . . . . . . . . 28
2.3.4 Image recognition . . . . . . . . . . . . . . . . . . . . . . 31
2.3.5 Automatic recognition of Kanji signs . . . . . . . . . . . . 33

3 Neural memories 37
3.1 Feedforward memories . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Linear memories . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.2 Memories with threshold . . . . . . . . . . . . . . . . . . 40

3.2 Hopfield memories . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.1 The Hopfield algorithm . . . . . . . . . . . . . . . . . . . 42
3.2.2 Interpretation of the Hopfield network . . . . . . . . . . 44

i



CONTENTS ii

c© Mattias Wahde, 2007



CONTENTS iii

c© Mattias Wahde, 2007



Chapter 1
Introduction

The study of artificial neural networks, whose history goes back to the early
1940s, is to a great extent inspired by biological considerations. Therefore, it is
suitable to begin this chapter with a very brief introduction to biological neural
networks.

1.1 Biological background

The elementary computational unit of a neural network is the neuron, which
consists, essentially, of a cell body and wires connecting the neuron to other
neurons. A schematic picture of a biological neuron is shown in Fig. 1.1.
Starting from the cell body, a long filament known as the axon extends toward
other neurons. This is the output wire of the neuron.

At some distance away from the cell body, the axon splits up in a delta
of smaller wires which end on synapses that form the connections with other

Dendrites

Cell body
Axon

Figure 1.1: A schematic illustration of a neuron.

1



CHAPTER 1. INTRODUCTION 2

-80

-60

-40

0

20

40

-20

Potential (mV)

2 milliseconds

Figure 1.2: A typical neural spike.

neurons.

Input signals are received through the dendrites, which are connected to
the axons of many other neurons via synapses. The transmission through the
synapses is chemical for most neurons: transmitter substances are released on
the axonal side of the synapse and diffuse toward the dendritic side, making
the connection.

The signal transmission within a neuron, however, is electrical. When a
neuron fires a spike, an electric potential propagates (with speeds of up to 100
m/s) along the axon, as shown in Fig. 1.2. The details of this process will not
be considered here.

The synapses between neurons can be either excitatory or inhibitory. An ex-
citatory synapse increases the propensity of the target neuron to fire, whereas
an inhibitory synapse does the opposite. A neuron operates in a binary fash-
ion: either it fires or it does not.

A typical animal brain consists of a very large number of neurons: a rat has
of the order of 1010 neurons in its brain, and the human brain contains around
1012 neurons, and 1014 − 1015 synapses. Thus, each neuron is, on average,
connected to hundreds of other neurons.

In addition, there are both short–range and long–range connections, as well
as many feedback loops, making the brain an exceedingly complex structure,
which is very far from being understood at this time.

As indicated in Fig. 1.2, the firing frequency of the neurons is not very high
compared to the clock frequencies of digital computers. After each spike, a
neuron needs a period of recovery or relaxation (known as the refractory pe-
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Figure 1.3: The McCulloch–Pitts neuron is shown in the left panel. The signal flow is from
left to right. The right panel shows the simplified notation which is normally used.

riod) during which it is unable to fire, thus limiting the firing frequency to 1
kHz or less. This can be compared with the clock frequencies of a few GHz –
more than a million times faster – of modern computers. How, then, can the
brain perform such complex operations as it does given that it is, relatively
speaking, rather slow? The answer lies in the massively parallel architecture
of the brain, which allows it to carry out many operations per cycle.1 In fact,
even the brain of an insect generally performs many more operations per sec-
ond than a computer.

1.2 Artificial neural networks

In order to distinguish them from biological neural networks (i.e. brains), the
networks that are simulated in computers or implemented in computer hard-
ware are usually called artificial neural networks or ANN for short.

A simple model of a single neuron, formulated by McCulloch and Pitts in
the 1940s, is shown in the left panel of Fig. 1.3. The McCulloch–Pitts (MCP)
neuron consists of a number of input connections, corresponding to the den-
drites in the biological neuron, a summing device and a threshold device, cor-
responding to the cell body of the neuron which takes the decision of whether
to fire, and an output connection which corresponds to the axon of the biolog-
ical neuron.

The summing device sums up the influences of the input connections. The
strength of a connection is represented by a number, known as the connection
weight. A connection weight can be either positive (excitatory) or negative (in-
hibitory). In addition to the external inputs, one usually defines an additional

1The analogy with digital computers should not be taken too far. The brain does not have
the equivalent of a single central processor which updates all the neurons synchronously. In-
stead, it operates in a decentralized, asynchronous way.

c© Mattias Wahde, 2007
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Figure 1.4: An MCP neuron firing (see example 1.1).

constant input known as the bias term (b), which measures the propensity of
the neuron to fire in the absence of an external input. The output of the sum-
ming device becomes

s =
n
∑

j=1

wjxj + b, (1.1)

where n is the number of neurons, wj are the connection weights, and xj the
input signals. In order to simplify the notation, the bias term is often written
w0x0, where w0 = b and x0 is always equal to 1. With this notation, the output
from the summing device can be written

s =
n
∑

j=0

wjxj . (1.2)

The output obtained from the summing device is passed through the thresh-
old device which, in the case of the MCP neuron, is a hard limiter , i.e. its out-
put takes the value 0 if the input is below the threshold (T ), and 1 if it is above
the threshold. Thus the output (y) of the MCP neuron satisfies the equation

y = σ(s) ≡ σ





n
∑

j=0

wjxj



 , (1.3)

where σ = 0 if s < T , and 1 otherwise.
In most cases, the simplified notation shown in the right panel of Fig. 1.3 is

used for representing neurons, rather than the complete notation shown in the
left panel.

c© Mattias Wahde, 2007
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Example 1.1 If it is assumed that the input signals to an MCP neuron are also
generated by similar neurons, they take the values 0 or 1. As they are fed
to the summing device, they are multiplied by the corresponding connection
weights. An MCP neuron is shown in Fig. 1.4. Here two of the inputs are on
(=1) and two are off (=0). The signals are summed as follows

s =
4
∑

j=0

wjxj = 0.7 × 1 + 0.5 × 1 − 0.3 × 0 + 0.4 × 0 − 0.2 × 1 = 1.0, (1.4)

and are then passed through the threshold causing, in this case, the neuron to
fire:

y = σ(s) = 1, (1.5)

since s > T = 0.5.

The information in an ANN is stored in the connection weights between the
different neurons in the network. Thus, the computation (i.e. the functional-
ity) of the network cannot be separated from its architecture. If the architecture
changes by, for example, the addition or deletion of some neurons, the com-
putation carried out by the network changes as well. Learning in ANNs is the
process of determining and setting the weights connecting the neurons in the
network so as to make the network perform as desired. Some of the learning
algorithms for ANNs will be considered later in this book.

For now, let us examine a simple neural network, namely the one shown
in the left panel of Fig. 1.5. The input signals are received by the network
through the small squares to the left in the figure. Allowing only binary input
signals (0 or 1) there are 4 possible input combinations to this simple network:
00, 01, 10, and 11. The corresponding output signals are, in order: 0, 0, 0, and
1. Thus, the network encodes the Boolean AND function. The AND function
an other Boolean functions are usually represented in tabular form, using so
called truth tables. The truth table for the AND function takes the following
form

c© Mattias Wahde, 2007
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Figure 1.5: An MCP neuron that implements the Boolean AND function.

x1 x2 y
0 0 0
0 1 0
1 0 0
1 1 1

This network belongs to a class of networks known as layered feedfor-
ward networks (FFNNs), which are characterized by their particular structure
in which the neurons are organized in separate layers without any intra–layer
connections, and by the directionality – from input to output, without feed-
back connections – of the signal flow in the network. The network in Fig. 1.5 is
a one-layer network. At a first glance one might say that it contains two layers
of neurons. However, the input layer, represented by squares in Fig. 1.5, only
serves to distribute the input; it does not perform any computation. The units
in such a layer are called input elements to distinguish them from neurons,
which perform a computation of the kind introduced in Eq. (1.3). Single–layer
networks are rather limited in the computations they can perform, and below
we shall also consider multi–layer ANNs.

So far, we have only considered neurons which give a binary output. In
some cases a graded response, taking any value between 0 and 1, can be useful.
Such a response can easily be obtained by changing the thresholding function
σ a bit. The most common choice of graded response function2 is the sigmoid,
defined by

σ(z) =
1

1 + e−cz
, (1.6)

2The response function is sometimes called the activation function or the squashing func-
tion.

c© Mattias Wahde, 2007
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Figure 1.6: A sigmoid with c = 3.

where c is a constant parameter that determines the slope of the transition
between the two limiting values 0 (as z approaches −∞) and 1 (as z approaches
plus +∞). As c → ∞, the sigmoid turns into a hard limiter with threshold
0. The sigmoid with c = 3 is shown in Fig. 1.6. Another graded response
function, with output in the interval [−1, 1] rather than [0, 1] is provided by the
hyperbolic tangent function.

How can a graded response be reconciled with the fact that biological neu-
rons give a binary response to their input signals? The simplest answer is to
note that there is no need for a reconciliation; biological neural networks form
the background for ANNs, but one does not have to follow biology exactly.
In fact, even with the binary response, the MCP neuron is only a very crude
approximation of a biological neuron. However, the graded response can be
motivated biologically by a slight modification of the interpretation of the out-
put of a neuron. Instead of considering the output to represent individual
spikes, we interpret the output of the neuron as the average firing frequency
in an interval of time, containing sufficiently many spikes to form an accurate
average. This is illustrated in Fig. 1.7: the uppermost part of the figure shows
a neuron firing with a varying frequency, the time average of which is listed in
the lower graph.

The layered feedforward architecture is not the only possible architecture
for ANNs. A feedforward network cannot remember previously encountered

c© Mattias Wahde, 2007
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Figure 1.7: A spike train from a neuron (upper graph) and the corresponding graded re-
sponse.

input signals, and thus has no dynamic short–term memory. It does, of course,
have a static long–term memory provided by the learning procedure and en-
coded in its connection weights. However, it will always give the same output
for any given input, regardless of the signals that preceded that input. Recur-
rent neural networks (RNNs), on the other hand, have feedback connections
providing the network with a limited short–term memory. The response of
such a network depends not only on the connection weights, but also on the
previous input signals. Recurrent neural networks need not be layered at all.
In Chapter 3 we shall consider a type of fully connected, non–layered ANNs
which can be used as neural memories. An FFNN is shown in the left panel
of Fig. 1.8 and an RNN is shown in the right panel of the same figure. For
the FFNN, the output y of a neuron is simply computed as in Eq. (1.3), using
e.g. the sigmoid function defined in Eq. (1.6). Thus, using the signals from the
input elements, the outputs from the first layer of neurons are computed, and
are then used as inputs to the next layer etc. For the RNN, the computation
of the output is carried out in a different way. It is common to apply RNNs
e.g. for steering autonomous robots, which operate in continuous (rather than
discrete) time. In such cases, the RNN must also be capable of delivering con-
tinuous signals. Thus, for an RNN operating in continuous time, the output of
neuron i in the network is given by

τiẋi(t) + xi(t) = σ





n
∑

j=1

wijxj(t) +
nin
∑

j=1

win
ij Ij(t) + bi



 , i = 1, . . . , n (1.7)

where wij are the weights connecting neurons to each other, win
ij are weights

c© Mattias Wahde, 2007



CHAPTER 1. INTRODUCTION 9

Figure 1.8: A layered neural network (left) and a recurrent neural network. The signal flow
is from left to right, except for the recurrent connections in the right panel.

connecting input j to neuron i, bi are the bias terms, τi are time constants, n is
the number of neurons, and nin is the number of input elements.

In practice, when integrating the network equations for a continuous-time
RNN, a discretization procedure is applied so that

τi

xi(t + ∆t) − xi(t)

∆t
+ xi(t) = σ





n
∑

j=1

wijxj(t) +
nin
∑

j=1

win
ijIj(t) + bi



 , (1.8)

from which the equation for x(t + ∆t)

xi(t + ∆t) = xi(t) +
∆t

τi



−xi(t) + σ





n
∑

j=1

wijxj(t) +
nin
∑

j=1

win
ijIj(t) + bi







 (1.9)

easily can be obtained. For numerical stability, the integration time step ∆t
should be much smaller (by a factor 10, say) than the smallest time constant
τmin in the network.

Neural networks have many advantages. With the aid of learning algo-
rithms, they are able to form their own representation of the data in the inner
(hidden) layers of the network, most often in a manner not provided explic-
itly by the user. Their non–linear computing elements allow them to represent
very complex, non–linear mappings. The distributed nature of the compu-
tation in ANNs makes them fault tolerant; In a large network, the failure of
one or a few neurons does not degrade the performance of the network catas-
trophically. This graceful degradation is important, particularly in hardware
implementations of ANNs, which can be made very robust. The distributed
computation may, however, also be a disadvantage, at least from the point of
view of a human observer. Neural networks are often very difficult to inter-
pret, and must in some cases be used as black boxes, delivering correct output
to any input by carrying out computations in ways that are not easily accessi-
ble to the user.

c© Mattias Wahde, 2007
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Figure 1.9: Networks for Problem 1.1.
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Figure 1.10: Network for Problem 1.3.

Problems

1.1 Compute the output signals of the two networks in Fig. 1.9. Assume a lin-
ear response function.

1.2 Design (by hand) a neural network with two input elements (x1 and x2)
and one output neuron y, with the following input–output characteristics:
x1 = 0, x2 = 0 → y = 1, x1 = 0, x2 = 1 → y = 1, x1 = 1, x2 = 0 → y = 0,
x1 = 1, x2 = 1 → y = 0. For the response function of the neuron, use a hard
limiter, i.e. a step function, with threshold T = 0.

1.3 Find the output of the network in Fig. 1.10. For the response function, use
the sigmoid defined in Eq.(1.6), with c = 3.

c© Mattias Wahde, 2007



CHAPTER 1. INTRODUCTION 11

Answers to exercises

1.1 -0.25 (left network) and -1.3 (right network).
1.2 For example, w1 = −1, w2 = 0, b = 0.5 (There are other solutions).
1.3 y = 0.9254.

c© Mattias Wahde, 2007
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Chapter 2
Backpropagation

There exists several different methods for training neural networks, i.e. for
setting the connection weights of the network so as to make it perform the
desired computation. In this chapter we shall introduce a method, known as
backpropagation for training multilayer FFNNs. This method belongs to a
class of learning methods known as supervised learning methods, which are
characterized by the presence of a teacher who provides the network with in-
formation about its performance, thus providing it with the means to make
improvements. In order to introduce the concepts needed for the discussion
on backpropagation, we shall first consider learning in simple single–layer
ANNs.

2.1 Single–layer networks and the delta rule

Consider a very simple ANN consisting of only one neuron, and n input el-
ements as shown in Fig. 2.1. The neuron receives the signals from the input
elements and produces an output according to

y = σ(
n
∑

j=1

wjxj + b) ≡ σ(
n
∑

j=0

wjxj), (2.1)

where σ is the response function, and b is the bias term. To simplify the discus-
sion, let us assume a linear activation function, i.e. σ(s) = s, so that the output
from the neuron is simply given by

y =
n
∑

j=0

wjxj . (2.2)

Now, assume also that there is a set of training data consisting of M input–
output pairs. Thus, for each member of the training set, the input signals, as

13
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Figure 2.1: A single–neuron network with n input elements.

well as the desired output signal, are given. The task of the learning method
is to set the weights wj in such a way as to approximate the desired output
signals as closely as possible; in other words to minimize the deviation, over
the whole training set, between the desired output and the output from the
network. The desired output, denoted o(m), m = 1, . . . , M , is known for each
configuration of input signals in the training data set. The input signals are

denoted x(m) = (x
(m)
1 , x

(m)
2 , . . . , x(m)

n ), m = 1, . . . , M . Thus, we can form the
error e(m), defined as o(m)−y(m), where y(m) is the actual output of the network
when presented with the input x(m). Using Eq. (2.2), the error can be written
as

e(m) = o(m) −
n
∑

j=0

wjx
(m)
j . (2.3)

Given the errors e(m) for each member of the training data set, the total squared
error, denoted E, is computed as

E =
1

2

M
∑

m=1

(e(m))2 =
1

2

M
∑

m=1

(o(m) −
n
∑

j=0

wjx
(m)
j )2. (2.4)

The factor 1
2

is introduced to simplify the expressions for the weight modifica-
tions derived below. For any given training set, the only variables in Eq. (2.4)
are the weights wj. Expanding the sum, we note that there are three kinds of
terms: those that are constant, those that are linear in the wj, and those that are
quadratic in the wj . Collecting terms, we can therefore write the expression for

c© Mattias Wahde, 2007
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Q

P

Figure 2.2: The error surface for a single–neuron network with n = 1.

E as a quadratic form in wj:

E = A +
n
∑

j=0

Bjwj +
n
∑

j=0

n
∑

k=0

Cjkwjwk, (2.5)

where A = 1
2

∑M
m=1(o

(m))2, Bj = −∑M
m=1 o(m)x

(m)
j , and Cjk = 1

2

∑M
m=1 x

(m)
j x

(m)
k .

The surface described by Eq. (2.5) is an n–dimensional paraboloid in weight
space. The case n = 1 is shown in Fig. 2.2. Thus, there exists a set of weights
for which E has a unique (global) minimum, denoted P in the figure. How can
this minimum be reached? Imagine that the weights (in a case with n = 1) are
such that the network is located at point Q in the figure. Since the existence of a
unique minimum is known, a sensible strategy to reach point P is to determine
in which direction the surface is steepest (downhill) at point Q, and then move
in this direction.

The direction of steepest descent at point Q is simply given by the negative
of the gradient of the surface, i.e.

−∇wE = −(
∂E

∂w0
, . . . ,

∂E

∂wn

). (2.6)

In order for the weights to converge toward the global minimum P , they

c© Mattias Wahde, 2007
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should, after each evaluation of the training set, be changed according to

wj → wj + ∆wj , 0 = 1, . . . , n, (2.7)

where

∆wj = −η
∂E

∂wj

, j = 0, . . . , n, (2.8)

where η is the learning rate parameter. The procedure of following the nega-
tive of the gradient of the error surface toward the global minimum is known
as gradient descent. Using the form of the total error E as given in Eq. (2.4),
the expression for the components of the gradient of E can be simplified:

∂E

∂wj

=
1

2

∂

∂wj

M
∑

m=1

(e(m))2 =
M
∑

m=1

e(m) ∂e(m)

∂wj

=

=
M
∑

m=1

e(m)
∂(o(m) −∑n

j′=0 wj′x
(m)
j′ )

∂wj

= −
M
∑

m=1

e(m)x
(m)
j =

= −
M
∑

m=1

(o(m) − y(m))x
(m)
j . (2.9)

The rule for the change in the weights can now be written

∆wj = −η
∂E

∂wj

= η
M
∑

m=1

(o(m) − y(m))x
(m)
j . (2.10)

This rule is known as the delta rule or the Widrow–Hoff rule in honor of its
discoverers.

If the training set is large, the computation of the weight modifications is
rather time–consuming, and the convergence toward the global minimum be-
comes slow. In order to speed up the convergence, one normally carries out
what is known as stochastic gradient descent, in which an approximate er-
ror surface is formed by considering just one input–output pair, selected at
random from the training set. The rule for weight modification in stochastic
gradient descent takes the form

∆wj = η(o(m) − y(m))x
(m)
j , m ∈ [1, M ]. (2.11)

Thus, in stochastic gradient descent, a random permutation of the training
data set is formed (in order to make sure that all patterns are tested), and the
weights are updated according to Eq. (2.11) for every input–output pair. A
pass through the entire data set is known as an epoch. When a training epoch
is completed, i.e. when all patterns have been considered, a new random per-
mutation of the training data set is formed, and the process is repeated again,
etc.

c© Mattias Wahde, 2007
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Figure 2.3: A single–neuron network with two input elements.

x1 x2 o
0 0 low
1 0 high
0 1 high
1 1 low

Table 2.1: A set of input–output pairs. The low and high notation for the outputs simply
indicate that the exact values are not important for the particular example discussed in the
text.

2.1.1 Limitations

The rule for updating weights defined by Eq. (2.11) is neat and useful. How-
ever, there are limits on the representational powers of single–layer networks.
As an example, consider a case in which the input–output pairs in Table 2.1 are
given. The output signals are listed as low and high rather than as numerical
values. This is so, because the exact values are not important to the example
we will discuss. The numerical values could be low = 0.1 and high = 0.9, or low
= 0.49 and high = 0.51. Now, consider the case of a single–layer network with
two input elements and one neuron, as shown in Fig. 2.3. The output values
produced by the network for each of the four input output pairs are

y(1) = w0 for x1 = 0, x2 = 0, (2.12)

y(2) = w0 + w1 for x1 = 1, x2 = 0, (2.13)

y(3) = w0 + w2 for x1 = 0, x2 = 1, (2.14)

y(4) = w0 + w1 + w2 for x1 = 1, x2 = 1. (2.15)

Now, let us set a value of a separator α which distinguishes low output from
high output. For instance, for both of the {low, high} sets above, α = 0.5 would
be an acceptable separator. Introducing β = α−w0 it is easy to see that, in order
to reproduce the desired output data in Table 2.1, the output of the network
would have to satisfy the equations

0 < β, (2.16)
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Figure 2.4: A multi–layer neural network. The biases are not shown.

w1 > β, (2.17)

w2 > β, (2.18)

w1 + w2 < β. (2.19)

Clearly, the last equation cannot be satisfied if the two equations immediately
above it are satisfied, and vice versa. Thus, the single–layer network is unable
to form a representation of the data set in Table 2.1. For the case in which the
low values are set to 0, and the high values set to 1, the data set in Table 2.1
is known as the Boolean exclusive or or the XOR function, and is just one of
many Boolean functions that cannot be represented by single–layer networks.
It is easy to see that a change in the response function σ(s) = s to any other
monotonous function would not help either.

2.2 Multi–layer networks and backpropagation

We have just seen that there are limits to what a single–layer neural network
can accomplish, and we will now consider multi–layer networks, which have
considerably higher computational power. A network consisting of one layer
of input elements and two layers of neurons is shown in Fig. 2.4. The middle
layer is also called a hidden layer. A multi–layer neural network may have
more than one hidden layer but, for simplicity, we shall only consider the case
of a network with a single hidden layer in the derivation below.

However, regardless of the number of hidden layers, multi–layer networks
with linear activation functions will not do; In the case of a linear two–layer
neural network of the kind shown in Fig. 2.4, the output yH of the hidden
layer can be written yH = wI→Hx, where wI→H is a constant matrix. The
output from the network, for which we henceforth use the notation yO is thus
given by yO = wH→OyH = wH→OwI→Hx ≡ wx, where w = wH→OwI→H .
Thus, a multi–layer linear network can be reduced to a single–layer network.
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This does not apply, however, if the activation function σ is non–linear, which
we will assume is the case in the derivation below.

We shall now derive a learning rule for multi–layer neural networks. Con-
sider again the network shown in Fig. 2.4. It is assumed that there is a train-
ing data set for which the desired output vector o(m), m = 1, . . . , M is known
for each input vector x(m). For any input vector x = x(m), the corresponding
output vector can be computed and an error signal e(m) whose components

el = e
(m)
l are defined as

el = ol − yO
l , (2.20)

can be computed for each neuron l, l = 1, . . . , n(O), where n(O) is the number of
neurons in the output layer. In Eq. (2.20), the term ol denotes the lth component
of the desired output vector o = o(m), and in most of the equations that will
follow in this section, the index m that enumerates the input–output pairs will
be dropped, in order to minimize (for clarity) the number of indices on the
variables.

Thus, for an output neuron, the corresponding error signal can easily be
computed. But what about the neurons in the hidden layer(s)? For these neu-
rons, no simple error signal can be formed, since it is not obvious how to re-
ward (or punish) a hidden neuron for a result that appears in the output layer.
We are therefore faced with a credit assignment problem for the neurons in
the hidden layer(s).

2.2.1 Output neurons

To begin with, however, let us deal with output neurons. Given the error signal
for each neuron j, the total error can be defined as

E (m) =
1

2

n(O)
∑

l=1

(e
(m)
l )2. (2.21)

This equation yields the error for one input–output pair, with index m. The
mean square error over the whole training set can be computed as

E =
1

M

M
∑

m=1

E (m). (2.22)

However, just as in the case of the single–layer neural network, we will use
stochastic gradient descent, and thus update the weights of the network after
each input signal. For a neuron i in the output layer, the partial derivative of
the error E ≡ E (m) with respect to the weight wH→O

ij , connecting neuron j in
the hidden layer to neuron i (see Fig. 2.5), can be written

∂E
∂wH→O

ij

=
∂

∂wH→O
ij





1

2

n(O)
∑

l=1

e2
l



 = ei

∂ei

∂wH→O
ij

=
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Figure 2.5: The notation used in the derivation of the backpropagation rule, here shown for
the case n(I) = 3, n(H) = 3, n(O) = 2. wH→O

ij is the weight connecting neuron j in the hidden

layer to neuron i in the output layer. Similarly, wI→H
ij connects input element j to neuron i

in the hidden layer. For clarity, only a few connections have been drawn in the figure.

= ei

∂

∂wH→O
ij



oi − σ





n(H)
∑

s=0

wH→O
is yH

s







 =

= −eiσ
′





n(H)
∑

s=0

wH→O
is yH

s





∂
(

∑n(H)

s=0 wH→O
is yH

s

)

∂wH→O
ij

=

= −eiσ
′yH

j , (2.23)

where, in the last step, the argument of the derivative of the response func-
tion σ was not displayed. In analogy with the delta rule, Eq.(2.10), the weight
modifications for the output neurons are now given by

∆wH→O
ij = −η

∂E
∂wH→O

ij

= ηδiy
H
j , (2.24)

where δi = eiσ
′ is the local gradient. Thus, with the exception of the factor σ′,

which was equal to 1 in the derivation of the delta rule, the result is the same
as that given by Eq. (2.11).

2.2.2 Hidden neurons

Consider now a neuron in the hidden layer in Fig. 2.4 or Fig. 2.5, with output
signal yH

i . Since this neuron is connected to all the neurons in the output layer,
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via the connection weights wH→O
ij , it will give a contribution to the error of all

those neurons. Formally, we can also in this case write the weight modification
rule as

∆wI→H
ij = −η

∂E
∂wI→H

ij

. (2.25)

For this expression to be useful, we must compute the partial derivative of E
with respect to wI→H

ij . Proceeding in a way similar to that used for the output
neurons considered above, we get

∂E
∂wI→H

ij

=
∂E
∂yH

i

∂yH
i

∂wI→H
ij

=
∂E
∂yH

i

∂

∂wI→H
ij

σ





n(I)
∑

p=0

wI→H
ip yI

p



 =

=
∂E
∂yH

i

σ′





n(I)
∑

p=0

wI→H
ip yI

p



 yI
j , (2.26)

where, for the two–layer network, yI
p is the output of the elements in the input

layer, i.e. yI
p = xp. Continuing the calculation, we get

∂E
∂yH

i

=
∂

∂yH
i





1

2

n(O)
∑

l=1

e2
l



 =
n(O)
∑

l=1

el

∂el

∂yH
i

=
n(O)
∑

l=1

el

∂(ol − yO
l )

∂yH
i

=

= −
n(O)
∑

l=1

el

∂

∂yH
i

σ





n(H)
∑

s=0

wH→O
ls yH

s



 =

= −
n(O)
∑

l=1

elσ
′





n(H)
∑

s=0

wH→O
ls yH

s



wH→O
li =

= −
n(O)
∑

l=1

δlw
H→O
li , (2.27)

where, in the final step, δl is defined as in Eq. (2.24). Combining Eqs. (2.25),
(2.26), and (2.27), the weight modification can be written

∆wI→H
ij = ηκiy

I
j , (2.28)

where

κi = σ′





n(I)
∑

p=0

wI→H
ip yI

p





n(O)
∑

l=1

δlw
H→O
li . (2.29)

From Eq. (2.28) it is clear that the expression for the weight modification in the
hidden layer is similar to the corresponding expression for the output layer.
The main difference is that δ is replaced by κ which, in turn, is a weighted sum
of the δ–terms obtained for the output layer.

The weight modification rules defined in Eqs. (2.24) and (2.28) constitute
the backpropagation algorithm. It derives its name from the fact that errors are
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propagated backward in the network; in order to compute the weight change
in the hidden layer, the local gradient δ from the output layer must first be
known.

Note that the modifications ∆wij are computed for all weights in the net-
work before any modifications are actually applied. Thus, in the computation
of the modifications for the weights connecting the input layer to the hidden
layer, the old values are used for the weights wH→O

ij .
In the derivation above, we limited ourselves to the case of two–layer net-

works. It is easy to realize, though, that the formulae for the weight changes
can be used even in cases where there are more than one hidden layer. The
weight modification in the first hidden layer (i.e. the one that follows immedi-
ately after the input elements) would then be computed as ηγiy

I
j , where the γi

are computed using the κi which, in turn, are obtained from the δi.

2.2.3 Improving backprogagation using a momentum term

When the backpropagation algorithm is used, the weights are first initialized
to small, random values. The speed by which learning progresses is dependent
on the value of the learning rate parameter η. If η is chosen too large, the mean
square training error E will not follow the gradient towards the minimum, but
will instead jump around wildly on the error surface. On the other hand, if η is
chosen too small, convergence towards the minimal E will be stable but very
slow. In order to increase the learning rate without causing instabilities, one
may introduce a momentum term, consisting of the weight change in the pre-
vious backpropagation step multiplied by a constant ε, and change the weight
modification rule according to

∆wH→O
ij (t) = ε∆wH→O

ij (t − 1) + ηδiy
(H)
j , (2.30)

and similarly for the weights between the input layer and the hidden layer.

2.2.4 Varying the learning rate

The value of the learning rate parameter η should, of course, be chosen so as
to generate the fastest possible convergence of the algorithm. However, as in-
dicated above, a trade-off between reliable convergence and fast convergence
has to be found. The problem of choosing a value of η is made even more
difficult by the fact that the optimal value of this parameter will not stay con-
stant during a run. Initially, when the weights are randomly assigned, there
are many directions in weight space leading to a reduction in E , so that a large
value of η can be used. As the training progresses, and the error approaches
its minimum, smaller values of η should be used.
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In the literature, several different methods for selecting a functional form
for the variation of η have been suggested. A common choice is to let η vary
with the training epoch (denoted n) according to

η(n) = η0

1 + c
η0

n
T

1 + c
η0

n
T

+ T n2

T 2

. (2.31)

Using this equation, a near-constant η ≈ η0 is obtained for small n. For n >> T ,
η varies as c/n.

The variation method introduced in Eq. (2.31) has the learning rate param-
eter decreasing in a pre-specified way, regardless of E . More complex variation
schemes can be derived, in which the variation in η is determined by the per-
formance of the algorithm. In such schemes η is reduced if ∆E , i.e. the change
in the training error from one training epoch to the next, is consistently posi-
tive (over a few training epochs). Similarly, η is increased if ∆E is consistently
negative. If ∆E oscillates, i.e. if the variation is negative for some epochs and
positive for others, η is left unchanged. Thus, a functional form for the varia-
tion ∆η is given by

∆η =











a if ∆E < 0 consistently;
−bη if ∆E > 0 consistently;
0 otherwise,

(2.32)

where a and b are constants.

Example 2.1 In order to illustrate how the backpropagation algorithm works,
let us apply it to the network shown in Fig. 2.6. Initially, the weights are set as
shown in the figure. The input signal is x1 = 1.0 and x2 = 0.0, and the desired
output signal is o1 = 1.0. The activation function is a sigmoid with c = 1, and
the learning rate parameter η is equal to 1. Let us first compute the error. The
output from the neurons in the hidden layer becomes

yH
1 = σ





2
∑

p=0

wI→H
1p yI

p



 = σ(0.2 × 1.0 + 0.3 × 1.0 − 0.1 × 0) =

= σ(0.5) =
1

1 + e−0.5
= 0.6225, (2.33)

yH
2 = σ





2
∑

p=0

wI→H
2p yI

p



 = σ(−0.2 × 1.0 − 0.2 × 1.0 + 0.1 × 0) =

= σ(−0.4) =
1

1 + e0.4
= 0.4013. (2.34)
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Figure 2.6: The neural network considered in Example 2.1.

Similarly, the output of the neuron in the output layer becomes

yO
1 = σ

(

2
∑

s=0

wH→O
1s yH

s

)

= σ(0.2 × 1.0 + 0.5 × 0.6225 + 0.1 × 0.4013) =

= σ(0.5514) = 0.6345. (2.35)

Using Eq. (2.20), the error signal can be computed as

e1 = o1 − yO
1 = 1 − 0.6345 = 0.3655. (2.36)

The derivative of the activation function is given by

σ′

(

2
∑

s=0

wH→O
1s yH

s

)

= σ′(0.5514) = 0.2319. (2.37)

Thus,

δ1 = e1σ
′

(

2
∑

s=0

wH→O
1s yH

s

)

= 0.3655 × 0.2319 = 0.0848. (2.38)

Using Eq. (2.24), the modification of the weight wH→O
10 is obtained as

∆wH→O
10 = ηδ1y

H
0 = 1 × 0.0848 × 1 = 0.0848. (2.39)
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Using the same procedure, the change in the other two weights connecting the
hidden layer to the output layer are obtained

∆wH→O
11 = ηδ1y

H
1 = 1 × 0.0848 × 0.6225 = 0.0528, (2.40)

∆wH→O
12 = ηδ1y

H
2 = 1 × 0.0848 × 0.4013 = 0.0340. (2.41)

Proceeding now to the hidden layer, we first compute κ1 as follows

κ1 = σ′





2
∑

p=0

wI→H
1p yI

p





1
∑

l=1

δlw
H→O
l1 =

= σ′(0.5)δ1w
H→O
11 = 0.2350 × 0.0848 × 0.5 = 0.00996. (2.42)

The change in the weight wI→H
10 is now given by

∆wI→H
10 = ηκ1y

I
0 = 1 × 0.00996 × 1 = 0.00996. (2.43)

The modifications to the weights wI→H
11 and wI→H

12 are computed in the same
way, resulting in (check!)

∆wI→H
11 = 0.00996, (2.44)

∆wI→H
12 = 0. (2.45)

Using the same method, κ2 can be obtained, and thereby also the modifications
of the weights entering the second neuron in the hidden layer. The result is
(check!)

∆wI→H
20 = 0.00204, (2.46)

∆wI→H
21 = 0.00204, (2.47)

∆wI→H
22 = 0. (2.48)

With the updated weights, the output of the network becomes, using the same
input signal (x1 = 1, x2 = 0)

yO
1 = 0.6649. (2.49)

Thus, with the new weights, the error is reduced from 0.3655 to

e1 = o1 − yO
1 = 1 − 0.6649 = 0.3351. (2.50)
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2.3 Applications of backpropagation

Feedforward networks consistute the most common architecture for artificial
neural networks, and the use of backpropagation for training feedforward net-
works is widespread. In this section, some examples of applications of back-
propagation will be given. These examples represent only a small fraction of
the possible applications, and you are requested to search for further informa-
tion on the internet. We will start, however, with a brief discussion concerning
the suitability of backpropagation for various problems.

2.3.1 Using backpropagation

The selection of a suitable architecture for an adaptive system is a difficult is-
sue. While no general method can be provided, some guidelines can be given.
First of all, it should be remembered that a neural network often represents a
black-box solution to a problem: the network can be trained to learn almost
any input-output mapping, but the internal representation of the mapping is
often very difficult to analyze, mainly because the computation in neural net-
works is distributed, with each neuron performing only a small part of the
overall computation. The distributed computation is a great advantage in
hardware implementations, where the neural network must be able to provide
correct predictions even if one (or a few) neuron fails.

Neural networks are also usually very good at interpolating between the
input values used for training, and thus to generate correct output even for
previously unseen input values (even in non-linear problems).

In industrial applications, it is often needed to find a model of e.g. a me-
chanical or an electrical system, which can generate the same output as the
actual system for any input. The task of finding such a model is known as sys-
tem identification and is a common application of neural networks. In cases
where an exact physical model exists, it is often better to fit the parameters
of this model rather than using a neural network. However, it is commonly
so that the physical model is too complex for the available parameter-fitting
techniques. In such cases, the use of a neural network is well motivated. Of
course, some systems are so complex that there is no model available at all,
and in such cases a neural network is a natural choice of representation.

It should also be noted that, even though the training of neural network
may be complex, the computation of output from the network (once the train-
ing is completed) is almost instantaneous. This property is often particularly
useful in system identification of complex dynamical systems; even if a phys-
ical model exists, it may be so complex that the computation of output cannot
be performed in real time, thus motivating the use of a neural network instead
of the physical model.
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2.3.2 Function approximation

Feedforward neural networks (FFNNs) are often used for approximating math-
ematical functions. As a specific example, consider the control of exhaust gas
temperature in a car engine. Here, it has been common to use lookup tables
to relate the various variables involved and to provide a good prediction of
the temperature. However, this is a strongly non-linear problem with many
variables involved, and thus the lookup tables must be large to provide a suffi-
ciently fine-grained coverage of the input space. With restrictions on the mem-
ory storage space available, a neural network may provide a more compact
representation of the function.

As an example, we will now consider an abstract example of function ap-
proximation. Consider the function

f(x, y) =
1

2

(

sin
√

2xy + cos
√

3(x2 + y2)
)

(2.51)

in the range {x, y} ∈ [−1, 1]. A training data set containing the values of x and
y, as well as the corresponding value f(x, y) at 441 = 212 different points in
[−1, 1] was generated, as well as a validation set containing 400 = 202 points. A
backpropagation program, applied to a 2-4-1 FFNN, was used for the training.
As both x and y, and the function f(x, y) take values in [−1, 1], tanh(cz) was
used as the activation function.

The training error fell from an initial value of around 0.38 to a final value of
0.03, and the validation error fell from around 0.36 to around 0.03. The training
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Figure 2.8: Training and validation errors for two training cases: the two curves with a
plateau stem from a case with 10 hidden neurons, and the remaining two curves stem from a
case with 4 hidden neurons. In both cases, the validation error was slightly smaller than the
training error.

and validation errors for the first 2,000 epochs are shown in Fig. 2.8. The figure
also shows the training an validation errors for a case with nH = 10 hidden
neurons. As can be seen, the error obtained in the case of nH = 10 initially falls
faster than for the smaller network. Then, however, the error reaches a plateau
before starting to fall again. At the last epoch shown, the larger network has
achieved a slightly smaller error than the network with nH = 4.

An example of the performance of the final 2-4-1 FFNN is shown in Fig. 2.9.
As can be seen, the output from the network (diamonds) at the training points
approximate the function rather well, even though the training could have
been extended further in this particular case.

2.3.3 Time series prediction

Consider a series of values x(i), i = 1, . . . , n. Time series prediction is the
problem of predicting x(j + j+), given a set of N earlier values {x(j− j1), x(j−
j2), . . . , x(j − jN)}, for all relevant values of j. Commonly, the prediction is
based on consecutive earlier values, i.e. j1 = 1, j2 = 2 etc., and the prediction
of concerns the next value in the series i.e. j+ = 0.

Time series prediction appears in many different contexts. Common appli-
cations include prediction of macroeconomic and financial time series, weather
prediction, and earthquake prediction. Feedforward networks can be used for
predicting time series, by using N earlier values of the time series as inputs
to a neural network with a single output, whose desired value is the next ele-
ment of the series. An example of such a network is shown in Fig. 2.10. N is
sometimes referred to as the lookback.

In many cases, an FFNN can perform successful prediction of a time se-
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Figure 2.9: A slice through the surface defined by z = f(x, y), for x = 0.5, y ∈ [−1, 1]. The
solid line shows f(0.5, y), and the diamonds show the output from the 2-4-1 FFNN obtained
after 20,000 training epochs.

Figure 2.10: A feedforward network for time series prediction. For this network, the lookback
N is equal to 3.

ries. However, such networks should not be applied uncritically to all time
series prediction problems: the weights of a trained FFNN constitute a perma-
nent memory that stores a representation of the data set used for the training.
However, such a network has no short-term memory, other than that obtained
from the fact that the input signals represent N consecutive earlier data points.
An example should suffice to illustrate the problem. Consider the time series
shown in Fig. 2.11. In the left panel, a prediction (disk) is made based on a
given lookback (3, in this case). For any given value of the lookback, an FFNN
will be completely oblivious to earlier values, which may lead to problems, as
illustrated in the right panel: here, two different situations are superposed. In
both cases the input values within the lookback window are the same, but the
output that the FFNN is supposed to generate is different in the two cases. Of
course, the lookback can be increased, but that just shifts the problem; a figure
similar to Fig. 2.11 can be drawn for any value of the lookback.
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Figure 2.11: An illustration of the potential problems caused by the lack of dynamic memory
in FFNN. In the left panel, the prediction of an FFNN is shown for a given input, based on
a lookback of 3. In the right panel, two different situations (with different desired network
output) are shown. In both cases, the FFNN would give the same output.

Thus, the lack of a short-term memory may, in some cases, limit the use-
fulness of FFNN for time series prediction. The problem can be mitigated by
the introduction of feedback couplings in the network, i.e. by transforming
the network to an RNN. On the other hand, such a solution renders (ordinary)
backpropagation useless, and also increases the number of parameters avail-
able in the network, thus also increasing the risk of overfitting.

In cases where a mathematical model exists of the system that is to be pre-
dicted, it is often better to use this model than to introduce a neural network.
However, in many applications (e.g. financial and macroeconomic time se-
ries) there exists no accurate mathematical model or, if there is a model, it is
strongly non-linear (earthquake and weather prediction). In such cases, a neu-
ral network may be useful, as it will form its own model of the data set through
the tuning of the network weights. However, the solution obtained from the
neural network should preferably be compared with solutions obtained from
simpler methods, such as e.g. a linear model. In fact, in weather (temperature)
prediction, the best prediction is often to simply assume that the next value
will be equal to the last available data point.

Weather prediction

The data set shown in Fig. 2.12 contains measurements of the annual rainfall
in Fortaleza, Brazil, from 1849 to 1979. As is evident from the figure, there
is a strong variation from year to year in the amount of rainfall. The look-
back was set to 5, and the resulting set was divided into a training set with
100 elements (input-output pairs) and a validation set with 26 elements. The
number of hidden neurons was set to 5 in the backpropagation run. Fig. 2.13
shows the training errors (bottom curve) and validation errors (top curve) ob-
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Figure 2.12: Annual rainfall (cm) in Fortaleza, Brazil, 1849-1979.

tained during the training. As is evident from the figure, overfitting occurs
very quickly for this data set (using the selected FFNN setup and training pa-
rameters). From Fig. 2.13 it is clear that the training should be stopped around
7,000 epochs, at which point the training error is around 0.2. Note that the data
set has been rescaled by first subtracting 400 from each data point, and then di-
viding the result by 2200, giving values in the range [0, 1]. For comparison, the
simple strategy of using the present value as the prediction of the next value
yields (with the same rescaling parameters) an error of 0.20, i.e. the same as
the FFNN. Scaling back to original units, this corresponds to a prediction error
of around 440.0 cm.

Several tests were performed using different number of hidden neurons.
However, no significant improvement could be obtained.

The choice of an optimal number of input elements (i.e. an optimal look-
back) is also a non-trivial problem. However, a lower bound on the lookback
can be obtained: given a certain input {x1, . . . , xN}, an FFNN will always pro-
duce the same output, as illustrated in Fig. 2.11. Thus, if N is chosen too small
there may be several cases with similar input and different desired output. In
this case, a larger lookback should be used.

2.3.4 Image recognition

Image recognition has many applications. A common example is handwritten
digit recognition, which is of importance e.g. for postal services, where the
sorting of letters often is dependent on accurate (and fast) automatic reading
of zip codes. In personal digital assistants (PDAs), recognition of handwritten
letters and digits is also important for the functionality of the PDA.

In security applications, the recognition of facial features plays an essential
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Figure 2.13: Training error (bottom curve) and prediction error (top curve) from a backprop-
agation run using the rainfall data. Note the clear case of overfitting.

Figure 2.14: Examples of kanji signs. From left to right, the signs are tsuki (moon), miru
(to see), wa (peace, harmony), and kawa (river).

role. The decision of whether or not to open a door can be based on the output
from a system for automatic face recognition. Such a system must, however,
be able to cope with variations in facial features such as e.g. small changes in
the viewing angle, different hair cuts, presence or absence of glasses etc. Often,
systems for person identification are not based on facial images but instead on
other unique features of an individual, such as e.g. fingerprints or retina scans.

In all applications described above, it is possible to use FFNN. In realistic
applications, the FFNNs often contain several (more than 2) layers, and are
usually not fully connected. Instead, subnetworks acting as feature detectors
are introduced in the network. The exact procedure for doing so will not be
described here. Instead, a specific example will be presented.
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Figure 2.15: A 256−4−2 FFNN was trained to distinguish between the four kanji signs in
the first row. The resulting FFNN produced the correct output for each kanji sign, including
the 12 noisy versions shown in the bottom three rows.

2.3.5 Automatic recognition of Kanji signs

Some languages, e.g. Japanese, are built up from pictograms (called kanji, in
the case of Japanese). Here, each kanji sign (or combination of kanji signs) car-
ries a specific meaning and a specific pronounciation1. Some examples of Kanji
signs are shown in Fig. 2.14. In tasks involving image recognition, the number
of input elements equals the total number of pixels in the image. Thus, if the
image is nx by ny pixels, the number of input elements will be nxny. The num-
ber of output elements can be chosen in several different ways. For example, a
binary representation can be used, with several neurons that give either 0 or 1
as output. Since the output from neurons is a decimal number rather than an
integer, thresholding is generally used to obtain a binary number as output.
For example, in thresholding, any output signal below a threshold T would be
set to 0, and any output signal above 1 − T would be set to 1.

The binary number thus generated can encode the identity of the output
signal via a lookup table. Alternatively, a single output neuron can be used,
with each output encoded as a specific range within the interval [0, 1].

1Often, however, each kanji sign can be pronounced in several different ways
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An advantage with neural networks is their ability to generalize; An FFNN
trained on a set of input-output pairs, is often able to produce the correct out-
put for other input vectors than those previously encountered. This is illus-
trated in Fig. 2.15: an FFNN was trained to distinguish between the four kanji
signs in shown in the top row. The image resolution was 256 pixels, and the
backpropagation algorithm was applied to a 256− 4− 2 network. The desired
outputs for the different kanji signs were encoded as two-bit binary numbers,
with 00 representing the first kanji sign, 01 the second etc. The network was
then applied to the 12 kanji signs shown in the three bottom rows. In all cases,
the network performed well, identifying the 12 signs with approximately the
same (low) error rate as that obtained when applying the network to the train-
ing data.
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Input Desired output
0.0 0.0 0.027
0.3 0.0 0.343
0.7 0.2 0.807
0.1 0.4 0.302
0.5 0.4 0.672
0.8 0.6 1.080
0.2 0.8 0.551
0.4 0.9 0.794

Table 2.2: Data table for Problem 2.1.

Problems

2.1 Use stochastic gradient descent to find the weights and the bias term of the
single–neuron network (with 2 input elements) that best represents the data in
Table 2.2. For the response function, use σ(x) = x.

2.2 From the derivation above, we know that a one–layer network cannot rep-
resent the XOR function. Assume, anyway, that an attempt is made to repre-
sent this function using a network with one neuron and two input elements.
What are the values of the weights and the bias term that minimize the sum
(over all the input–output pairs) of the squared error?

2.3 Show that the derivative of the response function

σ(x) =
1

1 + e−cz
, (2.52)

satisfies the equation
σ′(x) = c σ(x)(1 − σ(x)). (2.53)

2.4 Perform (by hand) a backpropagation step and determine the new weights
and biases for the network shown in Fig. 2.16, assuming that the desired out-
put signal is equal to 0.5. Set the learning rate parameter η to 0.3. For the
response function, use a sigmoid, Eq. (2.52), with c = 3. Note: show clearly
each step in the calculation.

2.5 Use backpropagation on a 1-nH-1 neural network to approximate the func-
tion f(x) = sin(x)(1 − e−x) on the interval x ∈ [0, 1]. Generate one training
data set and one validation set by sampling the function. Test the backprop-
agation algorithm for various values of nH. Show the training error and the
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Figure 2.16: Network for Problem 2.4.

validation error, as well as the final network, for each nH. Also, for networks
with nH >> 1, investigate the effect of losing one neuron in the middle layer,
by computing (by hand) the output and the error over the training set.

2.6 Collect a time series data set x on the internet (e.g. a macroeconomic or
meteorological data set), containing measurements for at least 100 time steps.
Divide the data set into a training set and a validation set. The latter should
contain at least 20% of the data. Next, compute the RMS error, defined as

√

√

√

√

1

L

∑

i

(o(i) − y(i))2, (2.54)

over both the training data set and the validation data set, assuming that the
simplest possible prediction is made, namely x(i + 1) = x(i). L denotes the
number of predictions, o(i) the desired output, and y(i) the actual output.

Next, design an adequate FFNN, and train it using backpropagation until
the RMS error over both the training data set and the validation data set fall
below the RMS error obtained using simple prediction x(i + 1) = x(i).

Answers to selected exercises

2.1 w1 = 0.99, w2 = 0.40, b = 0.033.
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Chapter 3
Neural memories

To have a memory, i.e. the ability to remember previously encountered things
or situations is an important property of many living systems, and also many
robotic systems, particularly those that go beyond simple reactive behaviors.

While the methods for learning in feedforward networks that were stud-
ied in the previous section do store information in the connection weights of
the respective network, they do not involve the explicit storage and recall of
prespecified patterns. In other words, a network trained by those methods
does not function as an associative memory, i.e. a memory where a cue or a
stimulus leads to recall of a specific stored memory.

We will begin our discussion of neural memories and algorithms for infor-
mation storage by considering linear memories, and will then continue with a
brief description of a class of non–linear recurrent memories known as Hop-
field networks.

3.1 Feedforward memories

In the late 1940s, Donald Hebb introduced a learning method for biological
neural networks known as the Hebb rule, which can be described as follows:
if two neurons fire together (or, in any case, within a very short period of time),
the connection between them will be strengthened. This type of learning has
been observed in the brain, even though the simple Hebb rule cannot account
for all types of learning in biological neural networks. A formalized version of
Hebb’s idea has turned out to be very useful for artificial neural networks as
well, as we shall now see.
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Figure 3.1: A simple linear associative memory. The activation function of the three output
neurons is given by σ(z) = z.

3.1.1 Linear memories

Consider the simple one–layer neural network shown in Fig. 3.1. We wish to
store the vector

r =







0
1
0





 . (3.1)

in this network, in such a way that it is recalled, i.e. appears in the output
neurons, when the network is presented with the cue

c =







1
0
0





 . (3.2)

In the figure, the input pattern is shown on the left side of the network, and
the output pattern on the right side, and our task is to determine the network
weights that will produce this situation. Let us assume that the initial network
weights are all zero, and let us then apply Hebb’s idea. Thus, for neurons that
fire together, the connection weight is strengthened – let us put it equal to 1,
whereas no change occurs in connection weights where the input and output
neurons are not firing together. With this method, only weight w21 will be set to
one, and all other weights will remain equal to zero. Thus, the corresponding
weight matrix W will take the form

W =







0 0 0
1 0 0
0 0 0





 . (3.3)
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Now, if the network is presented with the cue cT = (1, 0, 0), we obtain the
output

Wc =







0 0 0
1 0 0
0 0 0





×







1
0
0





 =







0
1
0





 , (3.4)

i.e. the stored vector r.
We can now formalize the method for memory storage a bit further. Con-

sider a general input vector (cue) c with n components, and a corresponding
output vector r with m components. In accordance with Hebb’s rule, we set
the elements of the memory matrix of a linear memory according to

W = rcT =

















r1c1 r1c2 · · · r1cn

r2c1 r2c2 · · · ...
...

. . .
...

rmc1
. . . rmcn

















. (3.5)

Note that the product in Eq. (3.5) is not a scalar product. Instead, it is known
as the outer product or tensor product between the two vectors r and c and is
also written r⊗c. Now, when the n input neurons of the network are presented
with the input vector r, the m output neurons will give the output

Wc = rcTc = r, (3.6)

provided that the cue vector c has been normalized such that |c| = 1, which
we will assume to be the case from now on.

Normally, of course, several vectors need to be stored, rather than just one.
In this case, the memory matrix M is obtained as the sum of the memory ma-
trices corresponding to the individual vectors that are stored

M =
∑

k

Wk =
∑

k

rkc
T
k , (3.7)

where the index k enumerates the stored patterns. If the memory matrix M is
presented with the cue cj, the output vector is obtained as

o = Mcj =
∑

k

(rkc
T
k )cj =

∑

k

(cT
k cj)rk =

= (cT
j cj)rj +

∑

k 6=j

(cT
k cj)rk = rj +

∑

k 6=j

(cT
k cj)rk. (3.8)

From this equation, it is evident that the memory exhibits perfect recall such
that it gives exactly the stored pattern rj when presented with cj, only if the
cue vectors are orthogonal to each other. If not, there will be some interference
between the different memories. Clearly, demanding perfect recall, one cannot
store more than n distinct memories in a linear memory.
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If the network is presented with a cue that deviates only slightly from one
of the cj-vectors, the output will also deviate only slightly from rj:

M(cj + δcj) = rj + δrj, (3.9)

where δrj = Mδcj , and perfect recall has been assumed.

Example 3.1 Construct a linear memory with the following properties:

c1 = (1, 0, 0)T → r1 = (2, 0, 3)T, (3.10)

c2 = (0, 1, 0)T → r2 = (−2, 4, 1)T, (3.11)

c3 = (0, 0, 1)T → r3 = (0,−2,−3)T. (3.12)

Check that the matrix memory exhibits perfect recall for the three stored pat-
terns. What will be the output vector if the cue is chosen as an approximation
to c1, namely (0.9, 0.1,−0.1)T/|(0.9, 0.1,−0.1)|?

Solution: According to Eq. (3.7), the memory matrix M is given by

M = r1 ⊗ c1 + r2 ⊗ c2 + r3 ⊗ c3 =







2 0 0
0 0 0
3 0 0





+

+







0 -2 0
0 4 0
0 1 0





+







0 0 0
0 0 -2
0 0 -3





 =







2 -2 0
0 4 -2
3 1 -3





 . (3.13)

Using M, we get

Mc1 =







2
0
3





 ≡ r1, Mc2 =







-2
4
1





 ≡ r2, Mc3 =







0
-2
-3





 ≡ r3. (3.14)

Thus, the memory exhibits perfect recall.
Finally, with the cue vector (0.9, 0.1,−0.1)T/|(0.9, 0.1,−0.1)|, the output is

equal to (1.76, 0.66, 3.40)T , a fairly good approximation of the vector r1.

3.1.2 Memories with threshold

In the presentation above, the activation function was linear. In order to reduce
the effects of interference between different stored patterns, a threshold can be
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introduced so that the output of the network is given by

o′ = (o′1, o
′
2, . . . , o

′
m)T = (σ(o1), σ(o2), . . . , σ(om))T , (3.15)

where the vector o = (o1, o2, . . . , om)T is equal to Mc, and the threshold func-
tion is given by

σ(z) =

{

1 if z ≥ T
0 otherwise

, (3.16)

where T is the threshold. Using a threshold function, interference below the
threshold can be eliminated, provided that the allowed values in the output
are 0 or 1. Furthermore, a memory with threshold can exhibit both error cor-
rection (directing the system toward correct recall of a stored pattern rj when
presented with a slightly erroneous cue c′j) and memory completion (recalling
the correct memory even if the signals from one or a few input neurons are ab-
sent), which is really a special case of error correction).

Example 3.2: Construct a memory matrix M that stores the following cue–
recall pairs:

c1 =
1

2
(1, 1, 1, 1)T , r1 = (1, 0)T, (3.17)

c2 = (1, 0, 0, 0)T , r2 = (0, 1)T. (3.18)

Show that, in the absence of threshold, there is some interference between
the two stored memories. Show also that a threshold of 0.75 eliminates the
interference. Using the same threshold, investigate what happens if the net-
work is presented with a slightly incorrect version of the cue vector c2, namely
(0.9, 0.1, 0, 0)T/|0.9, 0.1, 0, 0|. Show also that the network can perform memory
completion on an incomplete version of c1: (1, 0, 1, 1)T/

√
3.

Solution: Forming the memory matrix M using Eq. (3.5) we obtain

M =

(

0.5 0.5 0.5 0.5
1 0 0 0

)

. (3.19)

Applying the cue c1 the output o1 = Mc1 = (1, 0.5)T is obtained, and for the
cue c2, the output becomes o2 = (0.5, 1)T . Hence, the recall is not perfect: some
interference is present. Introducing the threshold T = 0.75, the output signals
become o′

1 = (σ(1), σ(0.5))T = (1, 0)T = r1 and o′
2 = (σ(0.5), σ(1))T = (0, 1)T =

r2.
Presenting the noisy input signal (0.9, 0.1, 0, 0)T/|0.9, 0.1, 0, 0|, the unthresh-

olded output becomes (0.552, 0.994), and after thresholding we obtain the out-
put (0, 1) = r2. Using instead the incomplete version of c1, (1, 0, 1, 1)T/

√
3,
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the unthresholded output is (0.866, 0.577) which, after thresholding, becomes
(1, 0) = r1.

3.2 Hopfield memories

A very important property of biological memories (human or otherwise) is
their ability to perform both error correction and memory completion. The
thresholded neural memories listed above were able to do this, at least to some
extent. However, biological memory is much more complex than a simple
input–output mapping, and there exists other ANN models of memory which
tries to take this into account. One such model is the Hopfield model , which
will now be introduced.

3.2.1 The Hopfield algorithm

We begin the discussion of Hopfield memories (or Hopfield networks – the
two terms will be used interchangeably) by presenting the relevant equations.
Consider a situation where N memory patterns are to be stored in a memory
consisting of n neurons. In the case of a Hopfield memory, the network is
almost fully connected: each neuron is coupled to all other neurons (except
itself). The output of a neuron in a Hopfield network is computed as

yi = σ





n
∑

j=1

mijyj



 , (3.20)

where σ is the response function, and mij are the connection weights (mii ≡
0). The updating rule for such a neuron is similar to the rule for the MCP
neuron (see Chapter 1), except that it uses the output of all other neurons in
the network as its input. Assume now that each pattern is represented by a
vector r with n binary elements. The elements of the memory vector could, for
instance, be chosen from the set {0, 1}, but the equations become more elegant
if instead they are chosen from the set {−1, 1} which we will use here. With
this choice, the function σ must be taken as the signum function, with the
properties

sgn(z) =

{

-1 if z < 0,
1 if z > 0.

(3.21)

In accordance with the Hebb rule, the weights of the network are set according
to

mij =
1

N

N
∑

ν=1

r
(ν)
i r

(ν)
j , mii = 0. (3.22)
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Now, once the patterns have been stored in the Hopfield memory, the recall is
obtained as follows: First, the network is initialized by presenting it with the
cue c (which must also be n–dimensional)

yi(0) = ci, i = 1, . . . , n. (3.23)

Then, the network is updated asynchronously, i.e. one neuron at a time. A
neuron k is chosen at random. Its output is computed as

yk → y′
k = sgn





n
∑

j=1

mkjyj



 . (3.24)

If the input to the sgn function is exactly equal to zero, yk is left unchanged.
This iteration, consisting of the selection of a random neuron and output mod-
ification according to Eq. (3.24), is repeated until none of the output signals
changes anymore. The values of the components of the vector y are then taken
as the output of the network.

Example 3.3: Store the vectors r(1) = (1, 1, 1)T and r(2) = (−1,−1,−1)T in a
Hopfield network. How does the corresponding weight matrix look? Which
memory is recalled if the network is subjected to the input signal c = (1, 1,−1)T ?
Solution: According to Eq. (3.22), the memory matrix m will have the follow-
ing elements:

m11 = 0, (3.25)

m12 =
1

2

2
∑

ν=1

r
(ν)
1 r

(ν)
2 =

1

2
(1 × 1 + (−1) × (−1)) = 1, (3.26)

etc. The complete matrix looks as follows

m =







0 1 1
1 0 1
1 1 0





 . (3.27)

With c = (1, 1,−1)T , the output signals of the two first neurons are unchanged

y1 → y′
1 = sgn(0 × 1 + 1 × 1 + 1 × (−1)) = sgn(0) ⇒ no change, (3.28)

y2 → y′
2 = sgn(1 × 1 + 0 × 1 + 1 × (−1)) = sgn(0) ⇒ no change. (3.29)

However, for the third neuron (whenever it is selected by the random selection
procedure), the output becomes

y3 → y′
3 = sgn(1 × 1 + 1 × 1 + 0 × (−1)) = sgn(2) = 1. (3.30)
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Thus, when the third neuron is selected, the output of the network changes
according to (1, 1,−1)T → (1, 1, 1)T . When this state has been reached, no
further change occurs (check!). The Hopfield memory was able to correct the
error in the cue c and converge on the stored memory closest to the noisy cue.

3.2.2 Interpretation of the Hopfield network

The Hopfield model is, in fact, inspired more by physics than biology, and
it has strong analogies with the theory of spin glasses in statistical physics.
The analysis of this analogy is beyond the scope of this book, but we shall
nevertheless briefly discuss how the Hopfield memory operates. Borrowing
from physics, we can define an energy function for the Hopfield network as

E = −1

2

n
∑

i=1

n
∑

j=1

mijyiyj. (3.31)

Let us now investigate the behavior of E as the Hopfield algorithm is applied
to the network. Consider a neuron k whose output undergoes a change accord-
ing to the Hopfield algorithm in Eq. (3.24). There are two possible changes,
namely ∆yk = y′

k − yk = 1 − (−1) = 2 and ∆yk = y′
k − yk = −1 − 1 = −2. The

new value of the energy function E becomes

E ′ = −1

2

n
∑

i=1
i6=k

n
∑

j=1
j 6=k

mijyiyj −
1

2

n
∑

j=1
j 6=k

mkjy
′
kyj −

1

2

n
∑

i=1
i6=k

mikyiy
′
k =

= −1

2

n
∑

i=1
i6=k

n
∑

j=1
j 6=k

mijyiyj −
n
∑

j=1
j 6=k

mjkyjy
′
k =

= −1

2

n
∑

i=1
i6=k

n
∑

j=1
j 6=k

mijyiyj −
n
∑

j=1
j 6=k

mjkyj(∆yk + yk) =

= −1

2

n
∑

i=1
i6=k

n
∑

j=1
j 6=k

mijyiyj −
n
∑

j=1
j 6=k

mjkyjyk −
n
∑

j=1
j 6=k

mjkyj∆yk =

= −1

2

n
∑

i=1

n
∑

j=1

mijyiyj −
n
∑

j=1

mjkyj∆yk = E − ∆yk

n
∑

j=1

mkjyj, (3.32)

where, in the last step, the condition j 6= k can be dropped, since mii ≡ 0
anyway. Furthermore, the fact that the weight matrix is symmetric has also
been used. Thus, the change in the energy function equals

∆E = E ′ − E = −∆yk

n
∑

j=1

mkjyj . (3.33)
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A B

C

P

Figure 3.2: A one–dimensional energy landscape. Three attractors (A,B, and C) are shown.
The arrow shows the motion of the point P under the influence of the Hopfield algorithm.

Now, if ∆yk < 0 the input to the signum function must have been negative.
However, the input to the signum function is exactly equal to

∑n
j=1 mkjyj, i.e.

the sum in Eq. (3.33). One the other hand, if ∆yk > 0, the sum in Eq. (3.33)
must have been positive. Either way, the product of ∆yk and

∑n
j=1 mkjyj will

be positive, and ∆E will therefore be negative.

Thus, when the Hopfield algorithm is applied, the energy E will always de-
crease, until a minimum has been reached. Thereafter, ∆E = 0. The function E
is an example of a so called Lyapunov function, and an interpretation in terms
of an energy landscape can now be introduced. An example is shown in Fig.
3.2. For simplicity, only a one–dimensional landscape has been drawn. Every
vector that is presented to the network is represented by a point in the energy
landscape. The Hopfield algorithm will move the point toward an attractor
i.e. a local minimum in the energy landscape, as shown in Fig.3.2.

However, there is no guarantee that the algorithm will converge on one of
the stored memory patterns. The energy landscape may contain false attrac-
tors, i.e. local minima in the energy landscape that do not correspond to any
stored vector. An example of a false attractor is shown in Fig. 3.3.

Even though the possible presence of false attractors complicates the situ-
ation a bit, we have seen that a Hopfield network is able to converge on the
correct stored pattern even when it is presented with a noisy or incomplete
version of that pattern. However, the storage capacity of Hopfield networks is
not very large, and several extensions and modifications of the Hopfield model
have been suggested. One such extension is the Boltzmann machine which,
however, will not be treated here.
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A B

C

Figure 3.3: One-dimensional energy landscape with one false attractor, indicated by an ar-
row.

Problems

3.1 a) Generate a linear memory that stores the following associations:

c1 =
1√
2
(1, 1, 0)T → r1 = (1,−3, 5)T, (3.34)

c2 =
1√
2
(−1, 1, 0)T → r2 = (−2, 4,−6)T, (3.35)

c3 = (0, 0, 1)T → r3 = (3,−3, 2)T. (3.36)

Check that the linear memory associates perfectly when presented with the
three input signals c1, c1, and c3.
b) What is the output if the input is chosen as an approximation of the vector
c3, namely (0, 0.2425, 0.9701)T?

3.2 a) The two vectors r(1) = (−1,−1,−1,−1,−1)T and r(1) = (1, 1,−1, 1,−1)T

are to be stored in a Hopfield network. Determine the weight matrix m.
b) The Hopfield network with the matrix m from a) is exposed to the input
signal c = (1,−1, 1,−1,−1)T. The Hopfield algorithm generally updates the
output signal for one randomly chosen neuron at a time. Assume that the neu-
rons, in this case, happen to be updated in the order 1, 2, 3, 4, 5, i.e. neuron 1 is
updated first, followed by neuron 2 etc. Determine the output signal from all
5 neurons after each of the 5 updating steps.
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Answers to exercises

3.1 a)

M =
1√
2







3 -1 3
√

2

-7 1 -3
√

2

11 -1 2
√

2





 . (3.37)

b) r = (2.739,−2.739, 1.769).
3.2 a) The weight matrix takes the following form

m =

















0 1 0 1 0
1 0 0 1 0
0 0 0 0 1
1 1 0 0 0
0 0 1 0 0

















b) Starting from y(0) = c = (1,−1, 1,−1,−1)T, the output from the network,
after the first step, is

y1 → y′
1 = sgn





5
∑

j=1

m1jyj



 = sgn(−2) = −1 ⇒

⇒ y(1) = (−1,−1, 1,−1,−1)T (3.38)

For the subsequent steps, the output vectors are

y′
2 = −1 ⇒ y(2) = (−1,−1, 1,−1,−1)T (3.39)

y′
3 = −1 ⇒ y(3) = (−1,−1,−1,−1,−1)T = r(1) (3.40)

y′
4 = −1 ⇒ y(4) = (−1,−1,−1,−1,−1)T (3.41)

y′
5 = −1 ⇒ y(5) = (−1,−1,−1,−1,−1)T (3.42)
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