Backpropagation

Using multilayer networks it is possible to represent the XOR function.

In fact, it can be shown that any continuous function can be approximated with
arbitrary accuracy using a 2-layer network. A 3-layer network can approximate
any non-continuous function with arbitrary accuracy.

However, in order for a multilayer network to be useful, a non-linear activation
function (sigmoid) must be used. In fact, if the activation function is linear a
multilayer network is equivalent with a one-layer network:
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Input layer (x = yL) Hidden layer (yH.)  Output layer (y°,)
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Assume that a training set, i.e. a set of Minput-output pairs, has been defined
as shown in the table:
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For any input vector X' = XM, the components e, = g,(™ of the error &M
can be computed as

2
£1 o — Hp .

where y,(©) is the output from neuron /.
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For output neurons it is thus easy to compute the error. However, for the
neurons in the hidden layer, the error cannot be computed directly. We are
therefore faced with a credit assignment problem: how should neurons
in the hidden layer be rewarded (or punished) for their performance?

First, however, let us consider the output neurons. The total error for the
input vector X(M can be defined as
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In backpropagation, it is common to use stochastic gradient descent. Thus,
the input-output pairs {X™), M} are considered one at a time, and we can
therefore drop the superscript (m), in order to reduce the number of indices.
Thus we set

& = £tm)

The derivation of the backpropagation rule proceeds in approximately the
same way as the derivation of the delta rule: the basic idea is to find the

direction of steepest descent (i.e. the negative gradient) and then follow

this direction towards smaller training errors:
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where ®i; "is the weight connection neuron jin the hidden layer with
neuron /in the output layer, and =" is the weight connection input
element jwith neuron / in the hidden layer.

The derivative for of the error with respect to the weight connecting the hidden
layer to the output layer can easily be computed as
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The modifications of the weights connecting the hidden layer to the output
layer can now be computed as

aE .
w0 Y5
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where &; — e;a'is the local gradient. Except for the o', the expression for the
weight modification is the same as in the derivation of the delta rule (where
c’ was equal to 1).
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Consider now the neurons in the hidden layer.
These neurons are connected to a// neurons in
the output layer, and will therefore affect the
error for all those neurons.

The partial derivative with respect to the weights
connecting the input elements to the hidden
layer can be obtained (using the chain rule) as
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Continuing this calculation, we find

e . (O) n® g A0 O
d.; W, l Z E? Z ‘ E;dl” ﬂ{. —Hy; |
Ay, I\ 2 =1 =1 dy,z =1 Ay,

{t Y d I'H':l
- Z erso | 2w, Cuy
s=0

ﬂ_{fﬂ I'.”-:l
¥ H-0 H H-0
— ) o Zﬂ* v, |y
=1
(e

:  H-0
- Z OpeLy;
=1

Mattias Wahde, PhD, associate professor, Chalmers University of Technology

e-mail: mattias.wahde@chalmers.se  www: www.me.chalmers.se/~mwahde




CHALMERS

Thus, the weight modification can be written
ﬂiufj H ?}H:-yf..

where
" o Rl .o
p=0 =1

This completes the derivation of the backpropagation algorithm. The
algorithm derives its name from the fact that the errors are propagated

backwards through the network. Thus in order to compute the k, one must
first know the § etc.
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Note that the modifications Awy; are computed for all weights in the
network betore any modifications are actually applied. Thus, in the compn-
tation of the modifications for the weights connecting the inpnat laver to the

hidden layer, the old valnes are used for the weights wﬂ 0
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Example

The backpropagation algorithm can be illustrated by means of an example.
Consider the network shown in the figure below:

X,= 1.0

x=0.0

The aim of the training is to arrive at a set of weights for which the input
X,=1.0, x,=0.0 gives the output 0=1.0.
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The first step is to compute the output from the network, starting with the
output from the hidden layer:

2
il o[> wl, Pyl ] =0(0.2x 1.0+0.3x 1.0 -0.1x0)
p=0
a(0.5) o (.6225,
2
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a=0
a((.5014) = 0.6345.
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The next step is to compute the error and the local gradient: (only one such
term here, since the output layer consists of a single neuron)

€1 — 01 — y? 1 — 06345 = 0.36505,

(ZwH th) a ((0L5514) = 0.2319,

&1 eu:ru(z wil~© j) 0.3655 % 0.2319 = 00848,
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Now the modifications of the weights connecting the hidden layer to the output
layer can be computed:

Awl =% = payll = 1 ¢ 0.0848 x 1 = 0.0848.
Awl =9 — péiy! =1 % 0.0848 x 0.6225 = 0.0528,
Awl =0 — péiyll — 1 ¢ 0.0848 % 0.4013 = 0.0340.
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Proceeding with the hidden layer, we find

2 1
] ; I—H_T : o H-O
K 7 Z wy, Uy Z N
p=0 =1
J"[[I.i)c’ilwﬁ O 02350 % 0.0848 x 0.5 = 0.00996.

The weight modifications for the first neuron in the hidden layer thus become

Jib‘fn'H f]'rflyé 1 0.00996 = 1 = 0.00996.
AwlH 0.00996,
Awiy (1,
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Similarly, for the second neuron in the hidden layer the weight modifications

are given by
‘—\"?-Uétl H IRAEES
Awl# (0.00204,
_Rwéz o (.

Updating all the weights, and again computing the output, we find (using,
of course, the same input signals)

y‘lj (1.6G06459,

Thus, the error has decreased from 0.3655 to 1-0.6649=0.3351.
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Comments on backpropagation

Momentum: the convergence of the backpropagation algorithm can be improved
through the introduction of a so called momentum term

_“ﬂug ":’[t] E._""-.?.L'E 'D[t— L1 f}ﬁfy;:-H:'.

(and similarly for the weights connecting the input elements to the hidden layer).
Thus, here the weight modification is not only dependent on the present input,
but also on the previous weight modification.
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Varying the learning rate: if the learning rate (n) is too large, there is a risk
of oscillatory behavior for the training error £. On the other hand, if the learning
rate is too small, convergence towards small training errors is slow.

Usually, the learning rate can be set rather high at the beginning of a run.

Two schemes for modifying the learning rate:
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Applications of
backpropagation

Backpropagation has many applications including

= System identification

= Function approximation
= Time series prediction
= Image recognition
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Using backpropagation

“Neural networks are the second best solution to just about any problem”

Neural networks can, in principle, be applied to almost all approximation and
prediction tasks. However, a neural network most often represents a black-box
solution to a problem:

neural
network
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Thus, in cases where a proper physical model exists, it is often better to
perform parameter-tuning within that model, rather than using a neural
network.

However, in many cases, no physical model is available (or, if a model is
available, it may be too complex to use). In such cases, the use of a
neural network is well motivated.

Neural network have additional advantages, such as (1) the ability to
interpolate between data points, even in cases where the approximated
function is non-linear, (2) graceful degradation, which is of particular
importance in hardware implementations.
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Function approximation

Feedforward neural networks (FFNN) are often used for function approximation.

Even though the training times (using backpropagation) may be long, the
execution (i.e. computation of output) is almost instantaneous.

| ———
Rapid computation of output
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Function approximation: example

Consider the function

. 1 — —
flo,y) = 5 (hill V 2y + cos vV 3(x? + yzfil)

on the range x,y in [-1,1].

A plot of the function is shown
in the figure on the right.
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FunctionApproximation_Training

2 1
. . . -1.0000 -1.0000 0.0197
In order to approximate this function 10000 -0.9000 —0.0220
with a neural network, a training data ~1.0000 -0.8000 -0.0250
. . -1.0000 -0.7000 -0.0054
set must be obtained by sampling the 10000 —0.6000 0.0218
function. Here, the function was sampled ~1.0000 -0.5000 0.0449
. g . . -1.0000 -0.4000 0.0558
at 21 equidistanct points along each axis,
to generate a total of 10000 98000 ~0-0250
21172 = 441 tl‘alnlng data pOIntS. l:OOOO 1:0000 0_6197

Training data set

A validation set containing 400 points Was  r..ctionapproximation validation

generated by sampling points between 2 00 0 5500 —0. 91
those used in the training set. 0.9500 -0.8500 —0.0188
-0.9500 -0.7500 0.0113

. . -0.9500 -0.6500 0.0520
Parts of the training data set and the 10,9500 -0.5500 0.0899

validation data set are shown
in the table on the right.

Validation data set
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0.4

For the training (using the
Backpropagation_v1.0 software,

a 2-4-1 FFNN was used, with tanh(¢2)
as the activation function. A 2-10-1
FFNN was also tried.
The graph shows the training and
validation error for both runs. The
error for the network with 10 hidden
neurons drops rapidly at first, then
reaches a plateau, and finally continues
to drop to slightly lower values than the error obtained for the network with
4 hidden neurons.
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Time series prediction

Consider a series of values x (/), /= 1,2,...,n. Time series prediction is the
problem of predicting x (f +j,), for all relevant values of j, given a set of earlier
values {x (/= j,), x (/= J,),..., x(/— J\)}, where, commonly j,=0, j,=1, j,= 2 etc.

N is called the lookback.

Common applications. Prediction of

. Financial time series

. Macroeconomic time series

. Medical and epidemiological time series
. Meteorological time series

. Earthquake data time series

Mattias Wahde, PhD, associate professor, Chalmers University of Technology

e-mail: mattias.wahde@chalmers.se  www: www.me.chalmers.se/~mwahde



CHALMERS
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An FFNN for time series prediction, with a lookback of /= 3.

A limitation of FFNN for time series prediction is their lack of dynamic
short-term memory. FFNN have, of course, a long-term memory encoded in
the connection weights obtained using (backpropagation) training. However,

the response to any given input is always the same, as illustrated in the figure
on the next slide
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An illustration of the lack of dynamic short-term memory in FFNN.

By contrast, recurrent neural networks (RNN) do have dynamic short-term
memory, but are more difficult to train.
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Example of time series prediction:
Rainfall in Fortaleza, Brazil.

000

The figure shows the annual rain
fall in Fortaleza, Brazil, from 1849 w0
to 1979.

2000

A conversion software was used ool
for converting the raw data into a
form suitable for use with FFNNs. tooo

The lockback was set to 5 steps, and o
the data set was further divided into o
a training set and a validation set. The oo e m R e
latter contained data from 1954 to 1979.
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Using the Backpropagation_v1.0 software, a 5-5-1 FFNN was trained to
predict the rain fall in year i, given input from years i-1, i-2, ..., i-5.

The training and validation errors

are shown in the figure. Note the oot}
clear case of overfitting, beginning
around 7,000 epochs. I

The network obtained after 7,000
epochs (i.e. at the minimum of the
validation error) was used. The
resulting predictions, however, were
of the same quality (average error)
as the simplest possible prediction, ol _ _ S
namely x(i) = x(i-1). 1o

021

IR
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Always consider simple prediction methods (such as linear predictors);
The results from an FFNN should be compared with the results from
the simple predictors!
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Image recognition

Automatic image recognition by neural networks is important in e.g.
security systems, systems for automatic mail sorting, and for character
recognition in e.g. PDAs.

A\ 4

Image ID

A\ 4
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Example: automatic identification of
Kanji signs

Some languages, e.g. Japanese and Chinese, are based on pictograms
(called kaniji, in the case of Japanese). Four examples of kanji signs are
shown in the figure below. From left to right, the signs are &suk/7 (moon),
miru (to see), wa (peace, harmony), and kawa (river).

o s
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The signs on the previous slide were represented as 16x16 images, and
the Backpropagation_v1.0 program was used to train a 256-4-2
network to distinguish between these signs. A successful network was
found quickly. The trained FFNN was not only
able to distinguish between the four training |
images, but could also cope with noisy EI
versions of the images (as shown in the

figure on the right), in all cases producing - H
correct output.

Thresholding was used, i.e. an output signe
below a threshold T was set to 0, and and

output signal above 1-T was set to 1. The - M

four images were encoded in a binary
fashion, i.e. 00 = first image, 01 = second image etc.
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Overfitting: When backpropagation is applied to a training set, the error

usually falls quickly at first, and then more slowly. When the RMS error falls
below the noise level in the data set, the training should be terminated. However,
in many cases the noise level of the data set is unknown, and there is a risk

of training too much, so that the network is tuned to the noise (which does not
increase the predictive capacity of the network). This is known as overfitting.

In order to avoid overfitting, the data set should be split into one training set

and one validation set. The training should be terminated before the error over
the validation set starts increasing:

validation error
E ¥/A/

training error

termination point I

epochs
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