
Artificial Intelligence 2, 2007: Home problems

General instructions. READ CAREFULLY!

The problem set consists of five parts. Problems 1 and 4 are mandatory, the others voluntary
(but check the requirements for the various grades on the web page). After solving the prob-
lems, collect your answers and your programs in one zip file named lastname_firstname.zip,
which, when opened, generates one folder for each problem (e.g. Problem_1, Problem_2 etc.)
in the assignment. Make sure to keep copies of the files that you hand in!

You should provide a brief report in the form of a PDF, PS or text file. In the case of analytical
problems make sure to include all the steps of the calculation in your report, so that the cal-
culations can be followed. Providing only the answer is not sufficient. Whenever possible, use
symbolical calculations as far as possible, and introduce numerical values only when needed.

In all problems requiring programming, use Matlab. The complete program for the problem
in question (i.e. all source files) must be handed in, collected in the same folder. In addition,
clear instructions concerning how to run the programs should be given in the report. It should
not be necessary to edit the programs, move files etc. Programs that do not function or require
editing to function will result in a deduction of points.

The maximum number of points for the problem set is 25. Incorrect problems will not be
returned for correction, so please make sure to check your solutions and programs carefully
before e-mailing them to mattias.wahde@chalmers.se.

You may, of course, discuss the problems with other students. However, each student must

hand in his or her own solution. In obvious cases of plagiarism, points will be deducted from
all students involved. Don’t forget to write your name and civic registration number on the
front page of the report!

NOTE: Please make sure to follow the instructions above, as well as the specific instructions
for each problem below, as a failure to do so may result in a deduction of points!

Deadline: 20080107



Problem 1, 5p, Basic GA program

a) Write a standard GA as defined on p. 22-23 in Chapter 2 in Basics of evolutionary algo-

rithms. You are welcome to use the code from Chapter 3, but remember that a standard GA
uses different operators to some extent. In addition to the main program, you should write
Matlab functions (placed in separate M-files) for

1. initializing a population (initpop.m),

2. decoding a (binary) chromosome (decode_chromosome.m),

3. evaluating an individual (evaluate_individual.m),

4. ranking fitness values for the whole population (rank_fitness.m),

5. selecting individuals with roulette-wheel selection (roulette_wheel_select.m),

6. carrying out crossover (crossover.m)

7. carrying out mutations (mutate.m).

Hint: For fitness ranking, use the sort function in Matlab!

b) Next, as a test of your GA, find (and report) the minimum value of the function

g(x1, x2) =
(

1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2

1
− 14x2 + 6x1x2 + 3x2

2
)
)

×
(

30 + (2x1 − 3x2)
2(18 − 32x1 + 12x2

1
+ 48x2 − 36x1x2 + 27x2

2
)
)

(1)

in the interval x1, x2 ∈ [−5, 5] as well as the location (x∗

1
, x∗

2
) of the minimum. Define the

fitness function f as 1/g(x1, x2). Select (and report) appropriate parameters for the GA (e.g.
by trial-and-error). Use at least 20 genes (bits) per variable in the chromosomes.

Check carefully that you enter the function g(x1, x2) correctly. Hint: g(−1, 1) = 87100.

Note: the important thing is the actual minimum, not just the output from your program!



Problem 2, 5p, The traveling salesman problem

The traveling salesman problem (TSP) has many applications in e.g. network routing and
placement of components on circuit boards. In this problem, you will solve the TSP in a case
where the cost function is simply taken as the length of the route. Write a GA that can search
for the shortest route between N cities, using permutation coding for the path. Use an encoding
method such that the chromosomes consist of lists of integers determining the indices of the
cities (Hint: use the command randperm in Matlab to generate such chromosomes). Examples
of five-city paths starting in city 4 are e.g. (4,3,1,2,5), (4,1,5,2,3), (4,5,1,2,3) etc. The first
chromosome thus encodes the path 4 → 3 → 1 → 2 → 5 → 4. The fitness should be taken
as the inverse of the route length (calculated using the ordinary cartesian distance measure,
i.e. not the city-block distance measure). The program should always generate syntactically
correct routes, i.e. routes in which each city is visited once and only once until (NOTE!), in
the final step, the tour ends by a return to the starting city.

Specialized operators for crossover and mutation are needed in order to ensure that the
paths are syntactically correct. Use order crossover as described in problem 5.3b. Your pro-
gram must contain a separate function order_crossover with the following interface

function [c1new, c2new] = order_crossover(c1,c2);

where c1, c2, c1new, and c2new are chromosomes (paths). For mutations use the swap muta-
tions defined in problem 5.3a. Solve the following problems:

(a) In the TSP, paths that start in different cities but run through the cities in the same order
are equivalent (in the sense that the path length is the same). Furthermore, paths that go
through the same cities in opposite order are also equivalent. Thus, for example, the paths
(1, 2, 3, 4, 5) and (2, 3, 4, 5, 1) are equivalent, as are (1, 2, 3, 4, 5) and (5, 4, 3, 2, 1). Paths that
are not equivalent are called distinct paths. How many distinct paths are there in the general
case of N cities?

(b) Use your program to search for the shortest possible path between the cities whose coordi-
nates are given in the file

www.me.chalmers.se/~mwahde/courses/isd/ai2/2007/TSPcities2.m

This file contains a 50 × 2 matrix with the coordinates (xi, yi) for city i, i = 1, . . . , 50. In
addition to the full program, send also the shortest path you have found, in electronic format,
i.e. in a text file or a Matlab file (.mat), containing a vector with the city indices for the path
in question. Note that the indices should be in the interval [1, 50], not [0, 49]. For example, a
path may be given as

bestpath = [4 7 11 39 50 41 3 ... etc.

The length of the path will be tested using the vector that you provide. Finally, in your report,
draw the shortest path, and specify its length. For full points, it is required that the length of
your shortest path should be less than 150 length units.



Problem 3, 5p, The n-parity problem using backpropagation

Exclusive or (XOR) is a commonly used logical operator, which takes two inputs and for
which the output y is equal to 1 if exactly one of the inputs x1 or x2 is equal to 1, and 0
otherwise. Thus, the truth table for XOR is given by

x1 x2 y
0 0 0
1 0 1
0 1 1
1 1 0

XOR can be generalized to n inputs, and the resulting Boolean function is called an n−parity
function. These functions give the output 1 if an odd number of inputs are equal to 1, and 0
otherwise. Parity functions can be represented by feedforward neural networks (FFNNs), with
n inputs, n neurons in the hidden layer, and one output. Write a backpropagation program
and use it to find a network that can represent

a) The 2–parity (XOR) function,
b) The 3–parity function,
c) The 4–parity function.

For each n = 2, 3, 4, use an n − n − 1 network. The neurons in the FFNN should use the
squashing function

σ(z) =
1

1 + e−cz
, (2)

for some suitable value of c (around 1 to 3). You may start from the file BP.m, available at

www.me.chalmers.se/~mwahde/courses/isd/ai2/2007/BP.m

The maximum error εtot (computed efter complete training epochs, as indicated in the file BP.m)
should not exceed 0.01. εtot is defined as

εtot =

√

√

√

√

1

2n

2n

∑

m=1

ε2
m

, (3)

where ε2

m
= (o− yo

1
)2 denotes the error for input-output pair m (o is the desired output and yo

1

the actual output).
You should provide the best networks in electronic format (as a text file or a .mat-file),

as well as (NOTE!) a test program where the user can enter two (a), three (b), or four (c)
input elements and obtain the output from your best networks. Encode the best networks (for
n = 2, 3, 4) in the test program so that it can run directly without having to load any input
files. Also, you should indicate the value of the error (over the whole training set), for each
network.



Problem 4, 5p, Particle swarm optimization

Particle swarm optimization (PSO) is a stochastic optimization method based on the properties
of swarms, such as bird flocks, fish schools etc. Implement a basic PSO (as described in the
handout) in Matlab. Remember to place separate Matlab functions in separate files.

a) Next consider the function

f(x, y) = 1 + (−13 + x − y3 + 5y2 − 2y)2 + (−29 + x + y3 + y2 − 14y)2 (4)

Use your PSO to find the minimum of f . Let the variables x and y vary in the range [−10, 10].

b) Modify your PSO so that it handles integer programming (see the handout) and use the
modified program to find a global minimum (there are two) of the function

f = −(15 27 36 18 12)x + xT

















35 -20 -10 32 -10
-20 40 -6 -31 32
-10 -6 11 -6 -10
32 -31 -6 38 -20
-10 32 -10 -20 31

















x, (5)

where x = (x1, x2, x3, x4, x5)
T, and xi ∈ {−30,−29, . . . , 29, 30} ∈ Z. Note that the function is

positive for many values of x, but that the global minimum value f ∗ < 0.



Problem 5, 5p, Analytical properties of GAs

Assume that a genetic algorithm with binary encoding is to be used in a case where the fitness
function is given by

f(k) = k(n − k), (6)

where k is the number of ones in the chromosome and n is the chromosome length, which
is much larger than one, but finite. The population size is assumed to be infinite, and it is
further assumed that the initialization is random so that, in the first generation, the probability
distribution is

p1(k) = 2−n

(

n

k

)

, (7)

Compute

1. The average fitness in the first generation,

2. The probability distribution p2(k) in the second generation, i.e. after evaluation and
(roulette-wheel) selection.

3. The average fitness in the second generation. Simplify the answer as much as possible -
it should be given in the form of a polynomial in n, i.e. f̄2 = a + bn + . . ., where a, b, . . .
are constants (i.e. independent of n).

Note! Consider only selection - you may neglect crossover and mutation.


