
INTRODUCTION TO EVOLUTIONARY

COMPUTATION

MATTIAS WAHDE

Department of Applied Mechanics
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2007

Introduction to Evolutionary Computation

MATTIAS WAHDE

c© MATTIAS WAHDE, 2007

Department of Applied Mechanics
Chalmers University of Technology
SE–412 96 Göteborg
Sweden
Telephone: +46 (0)31–772 1000

Contents

1 Biological basis of evolutionary algorithms 1
1.1 Biology as a source of inspiration 1
1.2 Biological background and terminology 2
1.3 Biology vs. evolutionary algorithms 6

1.3.1 Embryological development 7
1.3.2 Multicellularity . 8
1.3.3 Gene regulation and learning 8
1.3.4 Bioinformatics and artificial life 9

1.4 Summary . 9

2 Basics of evolutionary algorithms 11
2.1 A simple genetic algorithm . 11
2.2 Components of genetic algorithms 15

2.2.1 Encoding scheme . 17
2.2.2 Fitness assignment . 18
2.2.3 Selection . 19
2.2.4 Replacement . 19
2.2.5 Crossover . 20
2.2.6 Mutation . 21
2.2.7 Elitism . 22
2.2.8 A standard algorithm . 22

3 Using evolutionary algorithms 25
3.1 Implementation of a GA in Matlab 25

3.1.1 Objective function . 26
3.1.2 Initialization . 26
3.1.3 Decoding the chromosomes 28
3.1.4 Evaluation . 29
3.1.5 The complete EA . 33
3.1.6 Running the program . 35

i

CONTENTS ii

3.1.7 Refinements . 35
3.2 Function optimization . 37

3.2.1 A benchmark function . 37
3.2.2 Experiments with the benchmark function 38

4 Properties of evolutionary algorithms 43
4.1 The schema theorem . 43
4.2 Premature convergence . 46
4.3 Analytical properties of evolutionary algorithms 47

4.3.1 Multi-dimensional fitness functions 55

5 Advanced topics 57
5.1 Representations . 57

5.1.1 Gray coding of binary-valued chromosomes 57
5.1.2 Messy encoding schemes 58
5.1.3 Variable length encoding schemes 59
5.1.4 Grammatical encoding . 66

5.2 Selection . 68
5.2.1 Boltzmann selection . 68
5.2.2 Competitive selection and co-evolution 69

5.3 Fitness measures . 70
5.3.1 Multi-objective optimization 72
5.3.2 Constrained optimization 73

5.4 EAs with mating restrictions . 75
5.4.1 Species-based EAs . 75
5.4.2 Subpopulation-based EAs 77
5.4.3 Grid-based EAs . 77

5.5 Experiment design . 78

6 Versions of evolutionary algorithms 81
6.1 Evolutionary algorithms: different versions 81
6.2 Genetic algorithms . 81
6.3 Genetic programming . 82

6.3.1 Tree-based genetic programming 82
6.3.2 Linear genetic programming 84

6.4 Evolution strategies . 87
6.5 Evolutionary programming . 88

Appendix A: Binomial identities 91

Appendix B: Artificial neural networks 93

Bibliography 98

c© Mattias Wahde, 2007

CONTENTS iii

c© Mattias Wahde, 2007

CONTENTS iv

c© Mattias Wahde, 2007

Chapter 1
Biological basis of evolutionary
algorithms

1.1 Biology as a source of inspiration

Many adaptive algorithms in use today are inspired by the properties of bi-
ological systems in one way or another. Since nature is all about adaptation,
this should not come as a surprise.

Evolution, the process of gradual hereditary change which has given rise
to immensely complex biological structures, can be considered as a kind of
”meta–inspiration”, since it is evolutionary processes that have produced the
assemblies of brain cells on which computational structures such as artificial
neural networks are based. The search and optimization algorithms known as
evolutionary algorithms are directly inspired by Darwinian evolution. Know-
ing that there are many other optimization algorithms available, one might ask
oneself why algorithms based on evolution should be introduced. There are
several reasons. First of all, as we shall see later, evolution – whether artificial
or natural – has, under the right conditions, the ability to avoid getting stuck
at local optima in a search space. Thus, given enough time, an evolutionary
algorithm usually finds a solution close to the global optimum.

Furthermore, due partly to its stochastic nature, evolution can find several
different (and equally viable) solutions to a given problem. The great diversity
of species in nature, for instance, tells us that there are many different solutions
to the problem of survival. Another classical example is the evolution of the
eye. Richard Dawkins notes in his book ”Climbing Mount Improbable” [5] that
the eye has evolved in forty (!) different ways, completely independently of
each other. Thus, when nature was given the task of designing light–gathering
devices to improve the chances of survival of previously blind species, a large
number of different solutions were discovered. Two examples are the com-

1

CHAPTER 1. BIOLOGICAL BASIS OF EVOLUTIONARY ALGORITHMS 2

pound eyes of insects and the lens eyes of mammals. There is a whole range
of complexity from simple eyes which barely distinguish light from darkness,
to strikingly complex eyes which provide their owner with very acute vision.

In artificial evolution, the ability of the algorithm to come up with solutions
that were not anticipated is very important. Particularly in complex problems,
it often happens that an evolutionary algorithm finds a solution which is re-
markably simple, yet very difficult to arrive at by other means.

The ability of evolution to find different successful solutions applies not
only to the construction of eyes, but also to any complex biological system
such as the echo–location circuits of the bat or, of course, the human brain as
a whole. Thus, evolution works, and the idea of inventing an algorithm based
on it is hardly far–fetched.

Biologically inspired computation methods have begun to play a strong
role in science and engineering. However, one should not exaggerate the anal-
ogy between the processes going on in biological systems and the adaptive
algorithms that are used for solving engineering problems. At best, these al-
gorithms are only a caricature of their biological counterparts. However, the
intention is not to reproduce nature. Biology should serve as an inspiration for
adaptive algorithms, not as a dictator.

In retrospect, one may wonder why biologically inspired computation only
appeared in the mid–20th century, and gained widespread acceptance (to the
extent that it has) only toward the very end of the 20th century. This lapse is
rapidly being repaired though, and the computational methods described here
are now becoming standard tools in many scientific disciplines.

1.2 Biological background and terminology

The algorithms considered in this course, namely evolutionary algorithms (EAs)
(of which genetic algorithms (GAs) are a special case), are strongly inspired by
biology, and most of the terminology regarding EAs therefore has its origin in
biology. We will thus begin our study of EAs with a short introduction to the
relevant biological terms and concepts.

As the name implies, EAs are based on processes similar to those that occur
during biological evolution. A central concept in the theory of evolutionary
change is the notion of a population, by which we mean a group of individu-
als of the same species (i.e. that can mate and have fertile offspring), normally
confined to some particular area in which the members of the population live,
reproduce, and die. The members of the population are referred to as indi-
viduals. In cases where members of the same species are separated by, for
instance, a body of water or a mountain range, they form separate popula-
tions. Given enough time, speciation (i.e. the formation of new species) may
occur.

c© Mattias Wahde, 2007

CHAPTER 1. BIOLOGICAL BASIS OF EVOLUTIONARY ALGORITHMS 3

A T

C G

T A

Figure 1.1: A chromosome is shown in the left side of the figure. The two blow-ups on the
right show the individual base pairs. Note that A is always paired with T, and C is always
paired with G.

One of the central ideas behind Darwin’s theory of evolution is the idea of
gradual, hereditary change: new features in a species, such as protective cover
or fangs, evolve gradually in response to a challenge provided by the environ-
ment. For instance, in a species of predators, longer and sharper fangs may
evolve as a result of the evolution of thicker skin in their prey. This gradual
arms race between two species is known as co–evolution.

The central concept here is heredity, i.e the idea that the properties of an
individual can be encoded in such a way that they can be transmitted to the
next generation when, and if, an individual reproduces. Before (and even a
significant time after) Darwin, this concept was not universally accepted, to
put it mildly. There were competing theories of evolutionary change, as well
as those who claimed that evolutionary change did not occur at all.

One such theory, known as the Lamarckian theory suggested that traits
that were acquired by the individual during its lifetime could be transferred
to the next generation. Thus, according to this theory, a person that acquired a
particular skill in, say, painting, could transfer this skill to his or her children.
However, this theory has been refuted, and it is known that the information
encoded in the sex cells of an individual does not change during the lifetime
of the individual, at least not as a result of learning. (Radiation, chemicals etc.
may cause changes).

However, it should also be remembered that, at least for higher animals,
the success or failure of an individual is of course not only determined by the
genes: the environment in which the individual lives is also of great impor-
tance.

Anyway, let us return to the concept of heredity. How is the transferable
information stored in an individual? The answer is that each individual of

c© Mattias Wahde, 2007

CHAPTER 1. BIOLOGICAL BASIS OF EVOLUTIONARY ALGORITHMS 4

GenePromoter

GenePromoter

RNA
polymerase

A G G C T

A G G C T

RNA
polymerase

C
U

C
G A

mRNA

Figure 1.2: The transcription process. The RNA polymerase binds to a promoter region, and
then moves along the DNA molecule, generating an mRNA molecule.

a species carries (in each cell of its body) a genome that, in higher animals,
consists of several chromosomes in the form of DNA molecules. Each chromo-
some, in turn, contains a large number of genes, which are the units of heredity
and which encode the information needed to build and maintain an individ-
ual. Each gene is composed, essentially, of a sequence of bases. There are four
bases in chromosomes (or DNA molecules), denoted A,C,G, and T. Thus, the
information is stored in a digital fashion, using an alphabet with four symbols,
as illustrated in Fig. 1.1.

During development, as well as during the life of an individual, the DNA is
read by an enzyme called RNA polymerase, and this process, known as tran-
scription, produces another type of molecule called messenger RNA (mRNA).
In this process, the DNA is (temporarily) split, so that the RNA polymerase
can access one sequence of bases. Then, during the formation of the mRNA
molecule, the RNA polymerase moves along the DNA molecule, using it as a
template to form a chain of bases, as shown in Fig. 1.2. Note that the T base is
replaced by another base (U) in mRNA molecules. Next, the proteins, which
are chains of amino acids, are generated in a process called translation using
mRNA as a template. A greatly simplified version of the translation process
is given in Fig. 1.3. In translation, which takes place in the ribosomes, each
sequence of three bases (referred to as a codon) codes for an amino acid, or for
a start or stop command. Thus, for example, the sequence AUG is (normally)
used as the start codon. Since there are only 20 amino acids, and 43 = 64 pos-
sible three-letter combinations using the alphabet A, C, G, U, there is some

c© Mattias Wahde, 2007

CHAPTER 1. BIOLOGICAL BASIS OF EVOLUTIONARY ALGORITHMS 5

C C G U

Pro

U

Leu

G C A

Gln

tRNA

Tyr

Ribosome

mRNA

Protein

A

Figure 1.3: The translation process. The tRNA molecules transport amino acids to the ribo-
somes. In the case shown in the figure, a tRNA molecule is just arriving, carrying a Tyrosine
amino acid. The growing chain of amino acids generated at the ribosomes will, when completed,
form a protein. In this example, the amino acid Glutamine (Gln), encoded by the sequence
CAA, has just been added to the protein. Note that the figure is greatly simplifed; in reality,
the process is quite complex.

redundancy in the code. For example, the codons GCU, GCC, GCA, and GCG
all code for the amino acid Alanine. Other amino acids, such as e.g. Tryptophan
are encoded only by one single sequence (UGG in the case of Tryptophan). As
shown in Fig. 1.3, the amino acids are transported to the ribosomes by transfer-
RNA (tRNA) molecules, and are then used in the growing amino acid chain
forming the protein. Proteins are the building blocks of life, and are involved
in one way or another in almost every activity that takes place inside the living
cell. However, not all genes are expressed (i.e. active) at all times. For exam-
ple, some genes are primarily active during the development of the individual,
whereas other genes are active during adult life. Also, different cells in a body
may show different patterns of activity, even though the genetic material in
each cell of a given individual is the same. Furthermore, as will be discussed
in Subsect. 1.3.1 below, the function of many genes is simply to regulate (via
their protein products) the activity of other genes.

Returning the structure of the DNA molecules, it should be noted that each
gene can have several settings. As a simple example, consider a gene that
encodes eye color in humans. There are several options available: eyes may be
green, brown, blue etc. The settings of a gene are known as alleles. Of course,
not all genes encode something that is as easy to visualize as eye color, but
we can still accept the idea that each gene has several settings available. Now,
the complete genome of an individual, with all its settings (encoding e.g. hair

c© Mattias Wahde, 2007

CHAPTER 1. BIOLOGICAL BASIS OF EVOLUTIONARY ALGORITHMS 6

0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1

X , X1 2

Figure 1.4: Typical usage of a chromosome in a genetic algorithm. The 0s and 1s are the
genes, which are used as binary numbers to form, in this case, two variables x1 and x2, using
e.g. the first half of the chromosome to represent x1 and the second half to represent x2.

color, eye color, etc.) is known as the genotype.

During development, the stored information is decoded, resulting in an
individual carrying the traits encoded in the genome. The individual, with all
its traits, is known as the phenotype, corresponding to the genotype.

Two central concepts in evolution are fitness and selection (for reproduc-
tion), and these concepts are often intertwined: individuals that are well adap-
ted to their environment (which includes not only the climate and geography
of the region where the individual lives, but also other members of the same
species, as well as members of other species), i.e. those that are stronger or
smarter than the others, have a larger chance to reproduce, and thus to spread
their genetic material, resulting in more individuals having these properties
etc.

Reproduction is the central moment for evolutionary change. Simplifying
somewhat, we may say that during this process, the chromosomes of two (in
the case of sexual reproduction) individuals are combined, some genes being
taken from one parent and others from the other parent. The copying of ge-
netic information takes place with remarkable accuracy, but nevertheless there
occurs some errors. These errors are known as mutations, and constitute the
providers of new information for evolution to act upon. In some simple species
(e.g. bacteria) sexual reproduction does not occur. Instead, these species use
asexual reproduction, in which only one parent is involved.

1.3 Biology vs. evolutionary algorithms

We should pause here to note that this description of reproduction (and indeed
of evolution altogether) is greatly simplified: for example, in higher animals,
the chromosomes are paired, allowing such concepts as recessive traits etc.
Furthermore, not all parts of DNA are actually used in the production of an
individual: a large part of the genetic information is dormant (but may come
to be used in later generations).

Another simplification comes from the way chromosomes are used in evo-

c© Mattias Wahde, 2007

CHAPTER 1. BIOLOGICAL BASIS OF EVOLUTIONARY ALGORITHMS 7

1 2 3 4

Figure 1.5: A schematic illustration of the function of the genome in a biological system.
Four genes are shown. Genes 1,3, and 4 are transcription factors, which regulates each other’s
levels of expressions, as well as that of gene 2, which is a structural gene. The arrow below gene
2 indicates that its product is used in the cell for some other purpose than gene regulation. Note
that the figure is greatly simplified in that the intermediate step of translation is not shown.

lutionary algorithms. The most common usage is illustrated in Fig. 1.4. The
figure shows the typical procedure used when generating an individual from
a chromosome in a genetic algorithm. As can be seen from the figure, the chro-
mosome is used as a lookup table from which the traits of the corresponding
individual are obtained. In the simple case shown in the figure, the individ-
ual obtained consists of two variables x1 and x2 which can be used e.g. in a
function optimization problem.

1.3.1 Embryological development

The simple procedure shown in Fig. 1.4 is, in fact, just a caricature of the pro-
cess taking place when an individual is generated in a biological system. The
biological process is illustrated schematically in Fig. 1.5. First of all, in biolog-
ical systems, the chromosome is not used as a simple lookup table. Instead,
genes interact with each other to form complex genetic regulatory networks,
in which the activity (i.e. the level of production of mRNA) of a gene often is
regulated by the activity of several other genes [15]. In such cases, the product
of a gene (i.e. a protein) may attach itself to an operator close (on the DNA
molecule) to another gene, and thereby affect, i.e. increase or decrease, the
ability of RNA polymerase to bind to the DNA molecule at the starting posi-
tion of the gene (the promoter region).

Genes that regulate other genes are called regulatory genes or transcrip-
tion factors. Some regulatory genes regulate their own expression, forming
a direct feedback loop, which can act to keep the activity of the gene within
specific bounds, see gene 1 in Fig. 1.5.

Gene regulation can occur in other ways as well. For example, a regulatory
gene may activate a protein (i.e. the product of another gene) which then,
in turn, may affect the transcription of other genes. Genes that have other

c© Mattias Wahde, 2007

CHAPTER 1. BIOLOGICAL BASIS OF EVOLUTIONARY ALGORITHMS 8

tasks than regulating genes are called structural genes. Such genes produce
the many proteins needed for a body to function, i.e. proteins that appear in
muscle tissues. In addition, many structural genes code for enzymes, which
are proteins that catalyze various chemical reactions, such as e.g. breakdown
of sugars.

During embryological development of an individual, the genome thus ex-
ecutes a complex program, resulting in a complete individual.

1.3.2 Multicellularity

An additional simplification in most evolutionary algorithms is the absence
of multicellularity. By contrast, in biological systems, the development of an
individual results in a system of many cells (except, of course, in the case of
unicellular organisms), and the level of gene expression in each cell is deter-
mined by its interaction with other cells. Thus, signalling between cells is an
important factor in biological systems. Note, however, that the genome is the
same in all cells in the body. It is only the expression of genes that varies between
cells, determining e.g. if a cell should become part of the brain (a neuron) or
part of the muscle tissue.

1.3.3 Gene regulation and learning

In evolutionary algorithms, the individual resulting from the decoding pro-
cedure shown in Fig. 1.4 is usually fixed during its evaluation. However, in
biological systems, the genome remains active throughout the life time of the
individuals, and continues to produce the proteins needed in the body. In
a computer analogy, the embryological development described above can be
considered as a subroutine which comes to a halt when the individual is born.
At that time, another subroutine, responsible for the growth of the newborn in-
dividual is activated, and is then followed by a subroutine active during adult
life.

Among other things, it has been found that gene regulation affects learning.
For example, in the nematode worm C. Elegans, it is known that the knockout
(deactivation) of only two genes, aptly named lrn-1 and lrn-2, destroys the abil-
ity of the animal to perform associative learning, i.e. to associate a substance
with a reward or a punishment [3].

Much of what is known about the relation between gene regulation and
learning comes from studies of the giant sea slug Aplysia, carried out by Kan-
del and co-workers [12]. This particular animal was chosen since it has a rather
small number of neurons (around 20,000). Moreover, the neurons of Aplysia are
quite large, and are therefore relatively easy to manipulate and study. Kandel
et al. studied sensitization, i.e. a heigthened state of alertness that may occur

c© Mattias Wahde, 2007

CHAPTER 1. BIOLOGICAL BASIS OF EVOLUTIONARY ALGORITHMS 9

in an animal if its body is touched, much like a person will become sensitive
to any sound immediately after being startled by a loud noise (e.g. a gunshot).
In the case of Aplysia, a light touch on the tail sensitizes the animal for several
minutes, so that, upon receiving another touch, on a different part of the body,
its reaction will be stronger than it would have been, had the tail not been
touched. A single touch leads to sensitization that lasts for a few minutes.
However, if the animal is touched several times during a short time span, its
memory of the event lasts longer (several days). Kandel et al. were able to
show that, unlike the short-term process, long-term sensitization requires the
synthesis of new proteins. In other words, long-term memory storage requires
gene expression, and thus a link is formed between genes and memory forma-
tion (learning).

1.3.4 Bioinformatics and artificial life

Even after the mapping of the human genome, we do not have complete knowl-
edge of how a human develops. Instead, work can now begin to try to uncover
the complex interactions between genes.

Genetic regulatory networks are one of the topics of a new scientific disci-
pline called bioinformatics, which combines computer science, biology, bio-
chemistry, and mathematics in an attempt to understand how genes interact
with each other.

Thus, we have allowed ourselves to make a few simplifications in the de-
scription of evolution, and yet more simplifications will be made when we
begin to study evolutionary algorithms. Again it is important to note that we
use biology as an inspiration, and are free to use whichever part of biologi-
cal reality we find convenient. Note also that many of the details of evolution
could have turned out differently, if the climate and chemical conditions on
Earth had been different. For example, biological systems could have stored
information using a binary alphabet (as in computers) instead of a tertiary al-
phabet (A,C,G,T). While the study of ”life as it is” is the subject of biology,
the study of ”life as it could be” is the subject of a rather new discipline of
science known as artificial life or ALIFE, which has strong connections with
evolutionary biology.

1.4 Summary

To summarize our description of evolution, we note that it is a process that acts
on populations of individuals. Information is stored in individuals in the form
of chromosomes, consisting of many genes. Individuals that are well adap-
ted to their environment are able to initiate the formation of new individuals
through the process of reproduction, which combines the genetic information

c© Mattias Wahde, 2007

CHAPTER 1. BIOLOGICAL BASIS OF EVOLUTIONARY ALGORITHMS 10

Figure 1.6: Two flying machines that were not assembled by evolution: their parts do not
directly encode the information from previous generations. By contrast, a bird is a flying
machine assembled by evolution, and its cells contain the information needed to make another
flying machine of the same type. Photo: NASA.

of two separate individuals. Mutations provide further material for the evolu-
tionary process.

Finally, we should point out that evolution is not a random search through
the space of possible biological entities: mutations are random, but selection
is not. This may seem obvious, but has fooled many people, including well–
known researchers who ought to have known better. One example is that of
a researcher who claimed that belief in evolution was equivalent to believ-
ing that a storm passing through a junk yard can assemble an aircraft. This
comparison is absolutely false, for two reasons; First, evolution is a theory of
gradual change. No one claims that an aircraft, or the sonar system of a bat, or
the brain of a human could be assembled in one step, corresponding to one gi-
ant mutation. Instead, evolution gradually builds more complex structures, by
selecting those individuals that are most fit. Second, evolution involves hered-
itary change: it does not start from scratch with each new individual. Instead,
in a way, every individual has in its genome the entire history of its species,
and the evolutionary process has access to all this information as it tries to
improve on an already present design.

c© Mattias Wahde, 2007

Chapter 2
Basics of evolutionary algorithms

There are many computational methods inspired by biological evolution, and
these methods are collected under the umbrella term evolutionary algorithms
(EAs). The most common type of EA is the genetic algorithm (GA), which
was developed by John Holland [10] and others, and which we will introduce
in this chapter. Other algorithms, such as e.g. genetic programming (GP) will
be introduced in Handout 6.

2.1 A simple genetic algorithm

When a GA is to be used for solving an optimization problem, the variables
of the problem are encoded in strings known as chromosomes. Each chromo-
some consists of a number of elements known as genes, in accordance with
the biological terminology introduced previously. The genes encode the in-
formation stored in the chromosome, and there are several different encoding
schemes. In the first GAs that were developed, the encoding scheme was bi-
nary, meaning that the genes could only take the values (alleles) 0 or 1. Later
on, other encoding schemes have been introduced as well.

When the algorithm is initialized, a population (i.e. a set) of N chromo-
somes are generated, by assigning random values to the genes in the chro-
mosomes. When a chromosome is decoded, the corresponding individual is
obtained, and the N individuals obtained from the N chromosomes form the
first generation.

The exact procedure by which an individual is obtained from a chromo-
some varies from problem to problem. Let us now turn to an example.

11

CHAPTER 2. BASICS OF EVOLUTIONARY ALGORITHMS 12

0 1 0 1 1 0 1 0 1 1 0 0 1 1 0 1 1 0 1 0

g10
g1

Figure 2.1: A chromosome encoding two variables with 10–digit binary accuracy.

Example 2.1 Consider the problem of finding the maximum of a simple function,
namely

h(x1, x2) = e−(x2

1
+x2

2
), (2.1)

in the interval x1, x2 ∈ [−2, 2]. In the given interval, the function g obviously has its
extremum (=1) at the point x1 = x2 = 0. Using binary encoding, a typical chromosome
for this problem can take the form shown in Fig. 2.1. The procedure for decoding
this chromosome operates as follows: the value of the first gene in the chromosome,
denoted g1, is multiplied by 2−1 = 0.5, the second by 2−2 = 0.25 etc. down to the
tenth gene, whose value is multiplied by 2−10. The ten numbers thus obtained are
then added to form a temporary variable

x1,tmp =
10
∑

k=1

2−kgk (2.2)

Alternatively, x1,tmp can be obtained in a slightly more elegant way

x1,tmp =
1

2
(g1 +

1

2
(g2 +

1

2
(g3 + . . .) (2.3)

This value is transformed to the requested interval [−2, 2] by the transformation

x1 = −2 + 4x1,tmp. (2.4)

With the 10–digit encoding scheme used above, the range of the temporary variable
will be from 0 to 0.999023, since

10
∑

k=1

2−k =
210 − 1

210
≈ 0.999023 (2.5)

Thus, the interval [−2, 2] is not fully covered; the largest possible value of x1 = −2 +
4 × 0.999023 = 1.99609. In this example, where the maximum is not located on the
boundary of the interval, the limited accuracy does not pose any problem. However,
in many cases the maximum is located on the boundary. In such cases it is important
that the possible values of x1 should be able to reach the boundary of the interval.
In the case above this could have been achieved by multiplying x1,tmp by 4/0.999023
rather than 4.

A similar transformation is applied to obtain the value of x2

x2 = −2 + 4x2,tmp, (2.6)

c© Mattias Wahde, 2007

CHAPTER 2. BASICS OF EVOLUTIONARY ALGORITHMS 13

where

x2,tmp =
10
∑

k=1

2−kgk+10 (2.7)

Thus, for each chromosome the corresponding individual, consisting of a value of x1

and a value of x2, can be obtained.

Now, when the N chromosomes have been initialized, they are decoded
and the individuals are evaluated one at a time. The evaluation procedure is
usually the most time–consuming part of any GA. It commonly uses more than
99% of the CPU time, the remaining 1% or less being spent on the decoding of
chromosomes and the formation of new individuals (see below).

In the case of function maximization, the evaluation is simple: The two
variables x1 and x2 obtained from the chromosome are used to form h(x1, x2).
Now, since the aim is to find the maximum of the function, the higher the
value of h, the better the individual. Using biological terminology, we say
that an individual with a high value of h has higher fitness, denoted f , than an
individual with a low value of h. In this case, therefore, we have for individual
i

f(i) = h(x1, x2), (2.8)

where the values of x1 and x2 have been obtained from the chromosome cor-
responding to individual i. The procedure of decoding the chromosome, eval-
uating the individual, and making the fitness assignment, is repeated until all
N individuals forming the first generation have been evaluated. The next step
is to form the second generation. In analogy with the biological introduction
given above, the concepts of selection of fit individuals, followed by crossover
and mutation, are used in this phase.

Selection can be carried out in several different ways. In roulette wheel
selection, two individuals are selected from the whole population using a
fitness–proportionate selection procedure, in which each individual is assigned
a slice of a roulette wheel, with an opening angle proportional to its fitness.
Now, as the wheel is turned, an individual with high fitness has a greater
chance of being selected than an individual with low fitness, and the proba-
bility is directly proportional to the fitness. In practice, one does not turn a
roulette wheel. Instead, a random number r between 0 and 1 is drawn, and
the selected individual is taken to be the one with the population index (see
Example 2.2) corresponding to the smallest value j which satisfies the inequal-
ity

∑j
i=1 f(i)

∑N
i=1 f(i)

> r. (2.9)

c© Mattias Wahde, 2007

CHAPTER 2. BASICS OF EVOLUTIONARY ALGORITHMS 14

Figure 2.2: The crossover procedure. The crossover point is chosen at random.

Example 2.2 Consider a case in which the population consists of only 4 individuals,
having fitnesses f(1) = 0.2, f(2) = 0.5, f(3) = 0.3, and f(4) = 0.6. The population

index is used to enumerate the individuals. Thus, the first individual, with fitness 0.2
has population index 1, the second individual population index 2 etc.

Now, one can imagine a roulette wheel divided into four sectors, one for each in-

dividual, with sizes proportional to the fitness values of the individuals. Thus the

individual with fitness 0.2 would occupy 0.2/(0.2 + 0.5 + 0.3 + 0.6) = 0.125 = 12.5%

of the circle, and therefore have a 12.5% chance of being selected etc.

By generating two random numbers, two individuals can be selected ac-
cording to Eq. (2.9). Note that an individual can be selected several times, i.e.
the selection procedure operates with replacement.

When two individuals have been selected, two new individuals are formed
by crossover and mutation. In crossover, a crossover point is selected ran-
domly. The two chromosomes are then cut at the crossover point, and the first
part of the first chromosome is joined with the second part of the second chro-
mosome, and vice versa. The crossover procedure is illustrated in Fig. 2.2. In
the figure, the crossover point was (randomly) chosen between the second and
third genes.

The final step in the formation of new individuals is mutation . Each of the
two new chromosomes formed by crossover is subjected to mutation, which
operates by drawing a random number for each gene along the chromosome.
If this random number is smaller than the mutation probability, the corre-
sponding gene is assigned a new random value in the allowed range. The
procedure is illustrated in Fig. 2.3.

The two old individuals are discarded and replaced by the two new indi-
viduals. Often, generational replacement is used. In this case, the entire old
generation is replaced by new individuals, obtained by repeating the proce-

c© Mattias Wahde, 2007

CHAPTER 2. BASICS OF EVOLUTIONARY ALGORITHMS 15

4 3 9 5 0 1 4 5 4 6 9 5 3 1 4 5

Figure 2.3: Mutation, shown for the case of discrete decimal encoding. For each gene, a
random number is drawn and compared with the mutation probability.

dure of selection, crossover, and mutation N/2 times.

When the new (second) generation has been formed, it is evaluated in ex-
actly the same way as the first generation, and is then replaced by the third
generation etc. The procedure is repeated until a satisfactory solution to the
problem has been found.

Example 2.1, continued Returning to the example involving the search for the max-

imum of h(x1, x2), the progress of the GA can be illustrated by showing the location in

the xy–plane of the individuals at successive generations. This is done in Fig. 2.4. The

population size was constant and equal to 10. However, some individuals in later gen-

erations had almost equal chromosomes, so that the number of individuals in some

frames appears to be less than 10.

2.2 Components of genetic algorithms

In the example above, one version of a very simple GA was presented. Here,
some of the different operators involved in artificial evolution will be described.

It is important to realize that some parts of the implementation of a GA are
strongly problem dependent, and so cannot be completely described in general
terms. For instance, the construction of the decoding procedure, which turns a
chromosome into an individual that can be evaluated, is different in each case,
and the same applies to the construction of the fitness function.

As mentioned in the beginning of the chapter, the discussion is centered
around genetic algorithms. However, many of the operators used in GAs are
the same (or only slightly different) when used in connection with other ver-
sions of EAs, as we shall see in Handout 6.

c© Mattias Wahde, 2007

CHAPTER 2. BASICS OF EVOLUTIONARY ALGORITHMS 16

Generation 1

Generation 2 Generation 4

Generation 8 Generation 16

Figure 2.4: The progress of a GA searching for the maximum of the function h(x1, x2) =

e−(x2

1
+x2

2
). The population size was equal to 10. Note how the population gradually converges

to the maximum of the function.

c© Mattias Wahde, 2007

CHAPTER 2. BASICS OF EVOLUTIONARY ALGORITHMS 17

 0.4651 0.9531 0.1591

5 6 1 5 0 4 7 3 5 9 9 8

1 0 0 1 0 1 1 1 1 0 0 1

Figure 2.5: Real–number encoding (top), discrete decimal encoding (middle), and binary
encoding (bottom).

2.2.1 Encoding scheme

The representation for the individual genes in a chromosome can be chosen in
several different ways. The three most common are binary encoding, where
genes take the values 0 or 1, discrete decimal encoding, where genes take in-
teger values in the range [0, 9], and real–number encoding, where genes take
any value in the range [0, R], where R is a non-negative real number (usually
1). As is often the case with GAs, it is not possible to say that one encoding
scheme is always superior to the others, and it is also difficult to make a fair
comparison between the various encoding schemes. Real–number encoding
schemes often use slightly different mutation methods (see below), which im-
prove their performance in a way that is not available for binary encodings.
The three encoding schemes are shown in Fig. 2.5.

In real–number encoding, a single gene g is used to represent a number
between 0 and 1. This number is then rescaled to the appropriate range, ac-
cording to

x = −d+ 2dg, (2.10)

assuming that the standard value R = 1 has been chosen for the range of
allowed gene values. The decoding procedure for discrete decimal encoding
is given by

x = −d+ 2d
(

g1 × 10−1 + g2 × 10−2 + g3 × 10−3 + . . .
)

, (2.11)

giving a number x in the range [−d, d[. Similarly, for binary encoding, the
procedure is

x = −d+ 2d
(

g1 × 2−1 + g2 × 2−2 + g3 × 2−3 + . . .
)

. (2.12)

c© Mattias Wahde, 2007

CHAPTER 2. BASICS OF EVOLUTIONARY ALGORITHMS 18

In addition to the encoding schemes shown here, other encoding schemes
exist as well. For example, in the traveling salesperson problem (TSP), see
Handout 5, the chromosome may represent a permutation of the nodes in-
volved in the problem. Each such permutation will generate a valid path for
TSP, i.e. one in which each node is visited, and in which no node is visited
twice. In addition, chromosomes may represent complicated structures such
as neural networks, finite state machines etc. However, in these cases, the
corresponding algorithm is usually not called a genetic algorithm; Instead, the
umbrella term evolutionary algorithm is used, the term genetic algorithm being
reserved for cases involving simple, linear chromosomes of the kind shown in
Fig. 2.5.

2.2.2 Fitness assignment

The evaluation of an individual leads to a fitness assignment, which conveys
information on the performance of the individual. The simplest possible fit-
ness assignment consists of simply assigning the value obtained from the eval-
uation (assuming a maximization task) without any transformations. This
value is known as the raw fitness value. For example, if the task is to find
the maximum of a simple bounded trigonometric function such as f(x) =
sin(x) cos(2x) − cos(x) sin(

√
2x) in the interval [0, 1], then the raw fitness value

would be useful. However, if instead the task is to find the maximum of the
function g(x) = 1000 + f(x), the raw fitness values would be of little use, since
they would all be of order 1000. The selection process would find it difficult to
single out the best individuals.

Often it is therefore a good idea to rescale the fitness values before they
are used. Linear fitness ranking is a commonly used rescaling procedure,
where the best of the N individuals in the population is given fitness N, the
second best fitnessN−1 etc. down to the worst individual who is given fitness
1. Letting R(i) denote the ranking of individual i, defined such that the best
individual ibest has ranking R(ibest) = 1 etc. down to the worst individual with
ranking R(iworst) = N , the fitness assignment is given by

f(i) = (N + 1 −R(i)). (2.13)

Fitness ranking must be used with caution, however, since individuals that
are only slightly better than the others may receive very high fitness values
and soon come to dominate the population, trapping it in a local optimum.

The tendency to converge on a local optimum can be decreased by using a
slightly less extreme fitness ranking, assigning fitness values according to

f(i) = fmax − (fmax − fmin)

(

R(i) − 1

N − 1

)

. (2.14)

c© Mattias Wahde, 2007

CHAPTER 2. BASICS OF EVOLUTIONARY ALGORITHMS 19

This ranking yields equidistant fitness values in the range [fmin, fmax]. The sim-
ple ranking in Eq. (2.13) is obtained if fmax = N, fmin = 1.

The choice of the fitness measure often has a strong impact on the results
obtained by the GA. In some cases it is quite simple to select a good fitness
measure, whereas in other cases it can be very difficult. This topic will be
discussed briefly in Handout 3.

2.2.3 Selection

In Example 2.2 above, roulette-wheel selection was used. Roulette-wheel se-
lection is one example of a fitness-proportionate selection scheme, in which
the expected number of copies of a given individual after selection (neglecting
crossover and mutation) is directly proportional to its fitness. Roulette-wheel
selection is easy to implement, but has some disadvantages. In addition, it
is evident that roulette-wheel selection is a far cry from what happens in na-
ture, where small groups of individuals, usually males, fight each other until
there remains a single winner which is allowed to mate. Tournament selec-
tion tries to incorporate the main features of this process. In its simplest form,
tournament selection consists of picking two individuals randomly from the
population, and then selecting the best one as a parent. When two parents
have been selected this way, crossover and mutation take place as usual. A
more sophisticated tournament selection scheme involves selecting m individ-
uals randomly from the population. Next, with probability r, the best of the m
individuals is selected, and with probability 1− r a random individual among
the other m−1 is selected. m is referred to as the tournament size, and r is the
tournament selection parameter. A typical numerical value for r is around
0.75. The tournament size is commonly set as a (small) fraction of the popu-
lation size. Thus, unlike the case with roulette-wheel selection, in tournament
selection no individual is discarded without at least participating in a close
combat involving a small number of individuals. Note also that, in tourna-
ment selection, negative fitness values are allowed, whereas all fitness values
in roulette-wheel selection must be non-negative.

Both roulette-wheel selection and tournament selection operate with re-
placement, i.e. selected individuals are returned to the population and can
thus be selected again.

In addition to roulette-wheel selection and tournament selection, there are
other selection schemes. Some of these will be discussed briefly in Handout 5.

2.2.4 Replacement

In Example 2.1 (Fig. 2.4), we used generational replacement meaning that all
individuals in the evaluated generation were replaced by an equal number

c© Mattias Wahde, 2007

CHAPTER 2. BASICS OF EVOLUTIONARY ALGORITHMS 20

of offspring. Generational replacement is not very realistic from a biological
point of view. In nature, different generations co–exist and individuals appear
(and disappear) constantly, not only at specific intervals of time. By contrast,
in generational replacement, there is no competition between individuals from
different generations.

In general, replacement schemes can be characterized by their generational
gap G, which simply measures the fraction of the population that is replaced
in each selection cycle, i.e. in each generation. Thus, for generational replace-
ment, G = 1.

At the opposite extreme are replacement schemes that only replace one in-
dividual in each step. In this case G = 1/N , where N is the population size.
In steady-state reproduction, G is usually equal to 1/N or 2/N , i.e. one or two
individuals are replaced in each generation. In order to keep the population
size constant, NG individuals must be deleted. The deletion procedure varies
between different steady-state replacement schemes; in some, only the N par-
ents are considered for deletion, whereas in others, both parents and offspring
are considered.

Deletion of individuals can be performed in various ways, e.g. by remov-
ing the least fit individuals or by removing the oldest individuals.

As mentioned above, for G = 1 (i.e. generational replacement), individuals
from different generations do not compete with each other. Note however that
there may still be some de facto overlap between generations if the crossover
and mutation rates are sufficiently low since, in that case, many of the offspring
will be identical to their parents.

2.2.5 Crossover

Crossover is one of the most important operators in GAs. It allows partial
solutions from different regions of the search space to be assembled into a
complete solution to the problem at hand.

While crossover plays a very important role, its effects may be negative if
the population size is small, which is almost always the case in artificial evo-
lution where the population size N typically is of order 30–1,000, as compared
to populations of several thousands or even millions of individuals in nature.
The problem is that, through crossover, a successful (partial) solution will very
quickly spread through the population causing it to become rather uniform or
even completely uniform, in the absence of mutation. Thus, the population
will experience inbreeding towards a possibly suboptimal solution.

A possible remedy is to allow crossover or sexual reproduction only with
a certain probability pc. In this case, some new individuals are formed using
crossover followed by mutation, and some individuals are formed using asex-
ual reproduction, i.e. only mutations. Example 2.1 above had pc = 1. A more

c© Mattias Wahde, 2007

CHAPTER 2. BASICS OF EVOLUTIONARY ALGORITHMS 21

common choice is pc = 0.8.
The crossover procedure can be implemented in various ways. The sim-

plest version is one–point crossover, in which a single crossover point is ran-
domly chosen, and the first part of the first chromosome is joined with the
second part of the second chromosome, as shown in Fig. 2.2. The procedure
can be generalized to n–point crossover, where n crossover points are selected
randomly, and the chromosome parts are chosen with 50% probability from
either parent. In uniform crossover, the number of crossover points is equal
to the number of genes in the chromosome, minus one.

2.2.6 Mutation

In natural evolution, mutation plays a subordinate, but still important, role
providing the two other main operators, selection and crossover, with new
material to work with. Most often, mutations are deleterious when they occur
but may bring advantages in the long run, for instance when the environment
suddenly undergoes changes such that individuals without the mutation in
question have difficulties surviving.

In GAs, the value of the mutation probability pmut is usually set by the user
at the start of a GA run, and is thereafter left unchanged throughout the run.
A typical value for the mutation probability is 1/n, where n is the number of
genes in the chromosome.

There are, however, some versions of EAs, notably evolution strategies, in
which the mutation probabilities are allowed to vary. A simple prescription for
a varying mutation rate is to increase the mutation probability if the diversity
in the population falls below a certain value, and to decrease it if the diversity
becomes too large.

The diversity measure can be defined as

D =

√

√

√

√

√

N
∑

i=1

N
∑

j=i+1

d2
ij , (2.15)

where

dij =
n
∑

k=1

|gi
k − gj

k|, (2.16)

where gm
k denotes gene k in chromosome m.

In the case of discrete encodings (either binary or decimal) mutation nor-
mally consists of selecting a new random value for the gene in question. In
real–number encoding, the modifications obtained by randomly selecting new
values often become too large to be useful and therefore an alternative ap-
proach, known as real–number creep, is frequently used instead. In real–
number creep, the mutated value is not completely unrelated to the value

c© Mattias Wahde, 2007

CHAPTER 2. BASICS OF EVOLUTIONARY ALGORITHMS 22

before the mutation as in the discrete encodings. Instead, the mutation is cen-
tered on the previous value and the creep rate determines how far the muta-
tion may take the new value. In arithmetic creep, the old value g of the gene
is changed to a new value g′ according to

g → g′ = g − c + 2cr, (2.17)

where c ∈ [0, 1] is the creep rate and r is a random number in [0, 1]. In geomet-
ric greep, the old value of the gene changes as

g → g′ = g(1 − c+ 2cr), (2.18)

Note that, in geometric creep, the variation in the value of the gene is propor-
tional to the previous value. Thus, if g is small, the change in g will be small
as well. In addition, it should be noted that geometric creep cannot change
the sign of g. Thus, when using geometric creep, the encoding scheme should
be the standard one for real-numbered encoding, in which genes take non-
negative values (e.g. in [0, 1]).

Furthermore, in both arithmetic and geometric creep, it is possible to obtain
new values g′ outside the allowed range. In that case, g′ is instead set to the
limiting value.

Finally, it should be noted that creep mutations can be defined for binary
representations as well. One procedure for doing so is to decode the genes
representing a given variable, change the variable by a small amount, e.g. ac-
cording to an equation similar to Eq. (2.17) or Eq. (2.18), and then to encode
the new number back into the chromosome.

2.2.7 Elitism

Even though a fit individual has a large probability of being selected for repro-
duction, there is no guarantee that it will be selected. Furthermore, even if it
is selected, it is probable that it will be destroyed during crossover. In order to
make sure that the best individual is not lost, it is common to make one or a
few exact copies of this individual and place them directly in the next genera-
tion, a procedure known as elitism. All the other new individuals are formed
via the usual sequence of selection, crossover, and mutation.

2.2.8 A standard algorithm

As is obvious from the discussions above, there are many different ways of
implementing GAs, and it is therefore convenient to define a standard algo-
rithm against which other versions can be compared. The standard algorithm
is here defined as the GA having the following properties:

c© Mattias Wahde, 2007

CHAPTER 2. BASICS OF EVOLUTIONARY ALGORITHMS 23

• One population withN individuals (i.e. no subpopulations, see Handout
5).

• Binary encoding of the strings.

• Linear fitness ranking.

• Roulette wheel selection.

• One–point crossover.

• Fixed values of the crossover probability pc and the mutation probability
pmut.

• Elitism: A copy of the best individual is transferred (unchanged) to the
next generation.

• Generational replacement.

c© Mattias Wahde, 2007

CHAPTER 2. BASICS OF EVOLUTIONARY ALGORITHMS 24

c© Mattias Wahde, 2007

Chapter 3
Using evolutionary algorithms

In this chapter it will be shown how to implement an EA, namely a simple
genetic algorithm (GA) for function optimization using Matlab.

The program code below is written in Matlab. While Matlab does have
many advantages, foremost of which is its simplicity (from the user’s point-of-
view), it is, unfortunately, quite slow compared to implementations using e.g.
C or Delphi. However, the main aim of this section is to illustrate some pro-
gramming principles concerning GAs, rather than providing the fastest possi-
ble program. For that reason, the program below has also been written in such
a way that it should be as easy as possible to read the code, and also as easy
as possible to transfer the code to another high-level programming language
such as C, Java, Pascal, or Ada. Thus, Matlab’s vector handling capacities have
not been used; instead loops have been written in the standard way, used by
most high-level programming languages.

In addition, the text below is also intended as an introduction to Matlab
M–file programming. Thus, it is not assumed that the reader is accustomed to
using Matlab.

3.1 Implementation of a GA in Matlab

The Matlab code described in this section implements a simple genetic algo-
rithm for function optimization, and will consist of a main program, contained
in a Matlab M–file named funcopt.m , as well as several other functions con-
tained in the files
initpop.m ,
decode_chromosome.m ,
evaluate_individual.m ,
tournament_select.m ,
crossover.m ,

25

CHAPTER 3. USING EVOLUTIONARY ALGORITHMS 26

and
mutate.m .

3.1.1 Objective function

In function optimization, the aim is to find the maximum (or minimum) of a
given objective function. When writing the program below, we will consider
the function

f(x1, x2) =
e−x2

1
−x2

2 +
√

5 sin2(x2x
2
1) + 2 cos2(2x1 + 3x2)

1 + x2
1 + x2

2

. (3.1)

The goal will be to find the maximum of this function of two variables, in the
range x1, x2 ∈ [−3, 3]. Later in the chapter, other functions will be considered
as well.

3.1.2 Initialization

Let us first write a skeleton for the main file, containing the parameter defi-
nitions. First, create an empty directory named SimpleEA ., either using the
command mkdir SimpleEA (in Unix or Linux) or by making a new folder
(in Windows). Start Matlab, by typing Matlab (in Unix or Linux) or by double-
clicking the Matlab icon (in Windows). Start a text editor. Then, write an M-file
containing the following code:

npop = 30;
ngenes = 20;
pcross = 0.8;
pmut = 0.05;
ptour = 0.75;
range = 5.0;

%population = initpop(npop,ngenes);

We have not yet written the function initpop , and can therefore not call it.
The % sign indicates that a row is a comment. So far, the program only defines
four parameters, namely the population size (npop), the number of genes in
the chromosomes (ngenes), the crossover probability (pcross), the mutation
probability (pmut), the range for the variables (range), and the tournament
selection parameter (ptour). Now save the M-file in the new directory as
funcopt.m . (for FUNCtion OPTimization). Test this simple program by typ-
ing

c© Mattias Wahde, 2007

CHAPTER 3. USING EVOLUTIONARY ALGORITHMS 27

funcopt

If you now type e.g. ngenes , Matlab will respond with the value (20) of
ngenes . Now, open the text editor again. Let us write the function initpop ,
which assigns random values to the genes. Type the following, and then save
the file (as initpop.m)

function population = initpop(npop,ngenes);

for i = 1:npop
for j = 1:ngenes

s = rand;
if (s < 0.5)

population(i,j)=0;
else

population(i,j)=1;
end

end
end

Note, again, that Matlab prefers to work with vectors and matrices, and that its
for loops are rather slow. Therefore, the initpop function would be much
faster if it were defined as

function population = initpop(npop,ngenes);

population = fix(2.0*rand(npop,ngenes));

where the fix function rounds (downwards) to the nearest integer. However,
as mentioned above, for clarity, we will most often use for loops in this intro-
duction.

Now, remove the comment (%) in the funcopt.m file, save all files, and
run the program by again typing

funcopt

There should be no output. If you type

population

c© Mattias Wahde, 2007

CHAPTER 3. USING EVOLUTIONARY ALGORITHMS 28

the npop chromosomes will be listed. They should contain only 0’s and 1’s.
The next step is to evaluate the individuals of the population. Modify the

funcopt.m . file to read

npop = 30;
ngenes = 20;
pcross = 0.8;
pmut = 0.05;
ptour = 0.75;
range = 3.0;

population = initpop(npop,ngenes);

for i = 1:npop
x = decode_chromosome(population,i,range,ngenes);
fitness(i) = evaluate_individual(x);

end

3.1.3 Decoding the chromosomes

The decoding procedure will read the chromosome, and produce the corre-
sponding individual. Naturally, the exact nature of this procedure will vary
from problem to problem. In the problem considered here, i.e. the maxi-
mization of the function given in Eq. (3.1), two variables are needed. In this
case, the first half of the chromosome can be used for generating the first vari-
able (x1) and the second half for the second variable (x2). Thus, the function
decode_chromosome can be implemented as follows:

function x = decode_chromosome(population,i,range,ngen es);

nhalf = fix(ngenes/2);

x(1) = 0.0;
for j = 1:nhalf

x(1) = x(1) + population(i,j)*2ˆ(-j);
end
x(1) = -range + 2*range*x(1);

c© Mattias Wahde, 2007

CHAPTER 3. USING EVOLUTIONARY ALGORITHMS 29

x(2) = 0.0;
for j = 1:nhalf

x(2) = x(2) + population(i,j+nhalf)*2ˆ(-j);
end
x(2) = -range + 2*range*x(2);

This function uses the genes in the first half of the chromosomes to obtain a
value of x(1) in the range [0,1], and the remaining genes to obtain a value
of x(2) in the same range. x(1) and x(2) are then rescaled to the inter-
val [-range ,range]. Save the file as decode_chromosome.m . Note that
it is not absolutely necessary to pass the value of ngenes as input to the
decode_chromosome function since ngenes also can be obtained using the
size command (try typing size(population)).

3.1.4 Evaluation

The evaluation procedure should evaluate the individual and return a fitness
value. In the case of function maximization this is very simple: the func-
tion value itself can be chosen as the fitness value. Thus, write the function
evaluate_individual.m as follows:

function f = evaluate_individual(x);

f = (exp(-x(1)ˆ2 - x(2)ˆ2)+sqrt(5)*(sin(x(2)*x(1)*x(1)) ˆ2)+ ...
2*(cos(2*x(1) + 3*x(2))ˆ2))/(1 + x(1)ˆ2 + x(2)ˆ2);

The ... characters indicate that the formula continues on the next row. Note:
the most common error in the implementation of the genetic algorithm shown
here is to make a mistake in typing in the function above. Check your writing
carefully!

Now, save all open files, and test the program by typing funcopt in the
Matlab command window. In its present state, the program will first randomly
generate a population and then loop through the entire population once, gen-
erating and evaluating each individual. If you now type fitness , a list of 30
(=npop) fitness values should appear.

Selection and reproduction

The next step is to write the part of the code that selects new individuals. In
order to achieve a monotonous increase in the fitness values, we should use
elitism. Here we will make two copies of the best individual. Modify the file

c© Mattias Wahde, 2007

CHAPTER 3. USING EVOLUTIONARY ALGORITHMS 30

funcopt.m to read:

npop = 30;
ngenes = 20;
pcross = 0.8;
pmut = 0.05;
ptour = 0.75;
range = 3.0;

population = initpop(npop,ngenes);

maxfitness = 0.0;
for i = 1:npop

x = decode_chromosome(population,i,range,ngenes);
fitness(i) = evaluate_individual(x);
if (fitness(i) > maxfitness)

maxfitness = fitness(i);
best_individual = i;

end
end

temp_pop = population;

temp_pop(1,:) = population(best_individual,:);
temp_pop(2,:) = population(best_individual,:);

The new variable maxfitness will contain the fitness of the best individual,
whose population index value is contained in the variable best_individual .
Note that Matlab contains a standard function max that returns the largest
component of a vector. Thus, the lines

if (fitness(i) > maxfitness)
maxfitness = fitness(i);
best_individual = i;

end

can be removed, if instead the line

[maxfitness,best_individual] = max(fitness);

is added outside the loop over i . The variable temp_pop is needed to store
temporarily the new individuals. The two first new individuals are taken
as exact copies of the best individuals in the first generation. The notation
temp_pop(1,:) refers to all the elements of the first row in the matrix temp_pop
etc.

c© Mattias Wahde, 2007

CHAPTER 3. USING EVOLUTIONARY ALGORITHMS 31

For the selection, we will use tournament selection, with tournament size
equal to 2. Again, open a new file and write the following:

function i = tournament_select(fitness,npop,ptour);

itmp1 = 1 + fix(rand*npop);
itmp2 = 1 + fix(rand*npop);

r = rand;

if (r < ptour)
if (fitness(itmp1) > fitness(itmp2))

i = itmp1;
else

i = itmp2;
end

else
if (fitness(itmp1) > fitness(itmp2))

i = itmp2;
else

i = itmp1;
end

end

Save the function as tournament_select.m . This function chooses the bet-
ter of two randomly selected individuals with probability ptour . With prob-
ability 1-ptour , the worse individual is selected. Now, in a new file, write the
function crossover as follows:

function new_individuals = crossover(population,i1,i2, ngenes);

cp = 1 + fix(rand*(ngenes-1));

for j = 1:ngenes
if (j < cp)

new_individuals(1,j) = population(i1,j);
new_individuals(2,j) = population(i2,j);

else
new_individuals(1,j) = population(i2,j);
new_individuals(2,j) = population(i1,j);

end
end

c© Mattias Wahde, 2007

CHAPTER 3. USING EVOLUTIONARY ALGORITHMS 32

This function defines a random crossover point, and makes two new tempo-
rary chromosomes using one–point crossover. Save this function as crossover.m .
The next step is to define the mutation function, which is done as follows

function mutated_individual = mutate(individual,pmut,n genes);

mutated_individual = individual;
for i = 1:ngenes

r = rand;
if (r < pmut)

mutated_individual(i) = fix(2.0*rand);
end

end

and save it in the file mutate.m . The expression fix(2.0*rand) produces
an integer random number equal to 0 or 1, since rand produces random num-
bers in the open interval [0, 1[. Note also that the new value of the mutated gene
is selected as either 0 or 1, with equal probability. Thus, a 0 may be mutated to
a 0, and a 1 may be mutated to a 1, making the effective mutation rate only half
of the assigned value (pmut). The function can easily be modified, however,
to produce mutations with the rate pmut .

Now, we can add the functions for selection, crossover, and mutation to the
main program funcopt.m , which then takes the form

npop = 30;
ngenes = 20;
pcross = 0.8;
pmut = 0.05;
ptour = 0.75;
range = 3.0;

population = initpop(npop,ngenes);

maxfitness = 0.0;
for i = 1:npop

x = decode_chromosome(population,i,range,ngenes);
fitness(i) = evaluate_individual(x);
if (fitness(i) > maxfitness)

maxfitness = fitness(i);
best_individual = i;

c© Mattias Wahde, 2007

CHAPTER 3. USING EVOLUTIONARY ALGORITHMS 33

end
end

temp_pop = population;

temp_pop(1,:) = population(best_individual,:);
temp_pop(2,:) = population(best_individual,:);

for i = 3:2:npop
i1 = tournament_select(fitness,npop,ptour);
i2 = tournament_select(fitness,npop,ptour);
r = rand;
if (r < pcross)

new_individuals = crossover(population,i1,i2,ngenes);
temp_pop(i,:) = new_individuals(1,:);
temp_pop(i+1,:) = new_individuals(2,:);

else
temp_pop(i,:) = population(i1,:);
temp_pop(i+1,:) = population(i2,:);

end
end

for i = 3:npop
temp_individual = mutate(temp_pop(i,:),pmut,ngenes);
temp_pop(i,:) = temp_individual;

end

population = temp_pop;

Note that the selection procedure is repeated (npop -1)/2 times. Crossover oc-
curs with probability pcross . The new individuals are mutated one at a time.
The first two individuals are supposed to be exact copies of the best individ-
ual in the previous generation, and are therefore not mutated at all. In the final
step, the first generation is erased and replaced by the second generation.

3.1.5 The complete EA

So far, the code evaluates the first generation and produces its offspring mak-
ing up the second generation. Normally, it is necessary to run many gener-
ations in order to achieve a good result. Therefore, we now add a loop over
generations. First, add the parameter maxgenerations after the range pa-
rameter in funcopt.m , and set it to, say, 100. Then, immediately after the line
population = initpop(npop,ngenes); , add the code

c© Mattias Wahde, 2007

CHAPTER 3. USING EVOLUTIONARY ALGORITHMS 34

for gen = 1:maxgenerations

At the end of funcopt.m , add another end command, to close the loop. Also,
indent the code between the two new lines to make it more aesthetically ap-
pealing.

In the part that determines the value of maxfitness , add also code to
store the values of x = x(1) and y = x(2) for the best individual:

if (fitness(i) > maxfitness)
maxfitness = fitness(i);
best_individual = i;
xbest = x;

end

Finally, immediately before the final end statement, add a line that prints
the values of maxfitness and xbest for each generation:

maxfitness, xbest

Thus, the final funcopt.m will have the following structure:

npop = 30;
ngenes = 20;
pcross = 0.8;
pmut = 0.05;
ptour = 0.75;
range = 3.0;
maxgenerations=100;

population = initpop(npop,ngenes);

for gen = 1:maxgenerations
maxfitness = 0.0;

for i = 1:npop
x = decode_chromosome(population,i,range,ngenes);
fitness(i) = evaluate_individual(x);
if (fitness(i) > maxfitness)

maxfitness = fitness(i);
best_individual = i;
xbest = x;

end
end

c© Mattias Wahde, 2007

CHAPTER 3. USING EVOLUTIONARY ALGORITHMS 35

temp_pop = population;

temp_pop(1,:) = population(best_individual,:);
temp_pop(2,:) = population(best_individual,:);

for i = 3:2:npop
i1 = tournament_select(fitness,npop,ptour);
i2 = tournament_select(fitness,npop,ptour);
r = rand;
if (r < pcross)

new_individuals = crossover(population,i1,i2,ngenes);
temp_pop(i,:) = new_individuals(1,:);
temp_pop(i+1,:) = new_individuals(2,:);

else
temp_pop(i,:) = population(i1,:);
temp_pop(i+1,:) = population(i2,:);

end
end

for i = 3:npop
temp_individual = mutate(temp_pop(i,:),pmut,ngenes);
temp_pop(i,:) = temp_individual;

end

population = temp_pop;

maxfitness,xbest

end

3.1.6 Running the program

The program is now complete. Run it by typing funcopt in Matlab. The
maximum value is equal to 3, and is obtained for x1 = x2 = 0. Note that
the program does not always reach the global maximum of the function. Try
modifying the parameters (e.g. population size and number of generations),
and investigate the impact on the results obtained from the program.

3.1.7 Refinements

Very often, it helps to get a graphical display of the progress of the GA. Matlab
graphics is a large topic, and it will not be discussed in detail here. However,
with only a few lines of code, it is possible to obtain a graph showing the prog-
ress of the GA: Directly after the line maxgenerations = 100; , before the

c© Mattias Wahde, 2007

CHAPTER 3. USING EVOLUTIONARY ALGORITHMS 36

10 20 30 40 50 60 70 80 90 100
2.5

2.55

2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95

3

best: 3.000

generation

fit
ne

ss

Figure 3.1: Typical output from a run of the program. Note that the vertical axis ranges from
2.5 to 3.

loop over generations (gen), add the following lines

hfig = figure;
hold on
set(hfig, ’Position’,[50,50,500,300]);
set(hfig, ’DoubleBuffer’,’on’);
axis([1 maxgenerations 2.5 3]);
hbestplot = plot(1:maxgenerations,zeros(1,maxgenerati ons));
htext = text(35,2.65,sprintf(’best: %4.3f’,0.0));
xlabel(’generation’);
ylabel(’fitness’);
hold off
drawnow;

Next, immediately after the loop over individuals (i.e. before the line
temp_pop = population;), add the lines

plotvector = get(hbestplot,’YData’);
plotvector(gen) = maxfitness;
set(hbestplot,’YData’,plotvector);
set(htext,’String’,sprintf(’best: %4.3f’,maxfitness));
drawnow;

Then save funcopt.m , and run the program again. A typical output from the
program, using default value of the parameters (i.e. the values entered when

c© Mattias Wahde, 2007

CHAPTER 3. USING EVOLUTIONARY ALGORITHMS 37

writing the program), is shown in Fig. 3.1. As can be seen, in this run, the GA
solved the problem quite easily, reaching the maximum fitness after less than
30 generations. In other runs, the GA does not quite reach the global maximum
of 3, but, in almost every run, it quickly finds a value within 0.1% or less of
this value. The ability of a GA to find quickly a sufficiently good solution
is one of the main reasons for its applicability and popularity in engineering
problems, where time and budget constraints often make it a priority to find a
good solution fast, even if that solution is not the best possible solution.

3.2 Function optimization

Here, the specific problem of optimization of mathematical functions will be
considered. This is one of the most important applications of GAs, since al-
most any problem can be reduced to finding the minimum or maximum of
some mathematical function. Often, the objective function is very complex,
involving e.g. a combination of discrete and continuous variables. Here, the
discussion will be limited to continuous, differentiable functions, even though
there is nothing preventing the GA implemented here from being applied to
functions with discontinuities.

In any application of a GA, a number of parameters must be set, and choices
must be made concerning the encoding scheme, the fitness function, the selec-
tion procedure etc. It is easy to realize that an attempt to find the best possi-
ble GA for a given problem will be very time-consuming. Furthermore, such
studies have shown that there is no unique, best GA for all problems. On the
contrary, it is generally found that some experimentation is needed, for each
new problem, in order to find good settings. However, luckily, it is also gen-
erally the case that the performance is not very sensitive to the exact choices
made.

The problem of selecting the properties of a GA for a given problem is
made even more complicated by the fact that, in some cases, the best results
are obtained if some parameters (such as the mutation rate) are allowed to
vary during a run.

Here, only a brief study will be made of the impact of variations in some
GA properties.

3.2.1 A benchmark function

There are many functions that could be used for investigating the performance
of a GA. Examples are the De Jong functions used in [11], and listed in Ta-
ble 3.1. As is shown in the Table, De Jong considered not only deterministic
functions, but stochastic functions (f4) as well. Here, however, we will limit
the study to deterministic functions. Clearly, the functions given in Table 3.1

c© Mattias Wahde, 2007

CHAPTER 3. USING EVOLUTIONARY ALGORITHMS 38

Function Range
f1(x) =

∑3
i=1 x

2
i [−5.12, 5.12]

f2(x) = 100 (x2
1 − x2)

2
+ (1 − x1)

2 [−2.048, 2.048]
f3(x) =

∑5
i=1 int(xi) [−5.12, 5.12]

f4(x) =
∑30

i=1 ix
4
i + N(0, 1) [−1.28, 1.28]

f5(x) = 0.002 +
∑25

j=1
1

j+
∑

2

i=1
(xi−aij)

6
[−65.536, 65.536]

Table 3.1: The 5 functions used by De Jong [11]. For each function, it is the minimum
that was sought, in the range listed in the second column. N(0,1) denotes Gaussian random
numbers with mean zero and standard deviation one. The aij are constants.

represent only a few choices from an infinitude of possible functions that could
be used for performance testing. However, the choice of benchmark function
is not arbitrary: For some functions it is, of course, easier to find the optimum
than in others, and they will thus provide a less stringent test of the GA. As
a general rule, a good benchmark function should contain many local optima,
making it more difficult to find the global optimum. Furthermore, the local op-
tima should preferably not be too evenly spaced, as some GA operators may
exploit such even spacing. In addition, the benchmark function should not be
separable, i.e it should not be possible to write f(x) as

∑

fi(xi). Finally, the
approach to the global optimum should not be smooth in any of the coordi-
nate directions. In other words, following a coordinate axis towards the global
optimum, one should encounter many local optima.

Keeping these guidelines in mind, we will here introduce a benchmark
function ψn of n variables, defined as

ψn(x1, x2, ..., xn) =
1

2
+

1

2n
exp (−α

n
∑

i=1

x2
i)

n
∑

i=1

cos

β
√
ixi

i
∑

j=1

jxj

 , (3.2)

where α and β are two positive parameters. This function has a global maxi-
mum of 1 at x1 = x2 = . . . xn = 0. A plot of ψ2(x1, x2), with α = 0.05 and β = 25
is shown in Fig. 3.2. The contour plot in the right panel of the figure clearly
shows the uneven spacing of the local optima.

3.2.2 Experiments with the benchmark function

Using the benchmark function ψn(x), the performance of a GA as a function
of its parameter settings can be investigated. In view of the many parameters
that can be varied, e.g. replacement scheme, crossover scheme, mutation rate,
population size etc., it would be very time-consuming to cover all options,
especially since GAs are stochastic so that several runs must be performed

c© Mattias Wahde, 2007

CHAPTER 3. USING EVOLUTIONARY ALGORITHMS 39

-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1

0

0.25

0.5

0.75

1

-1

-0.5

0

0.5

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Figure 3.2: The function ψ2(x1, x2).

with each parameter setting in order to obtain statistically valid results. Thus,
here only two representative cases will be studied.

The performance of different GAs can be compared in different ways, two
of the most common being to run each GA until (1) a given number of indi-
viduals have been evaluated or (2) a given fitness value has been reached. The
latter approach is often much more time-consuming since, for some parameter
settings, a very large number of individuals may be needed to reach the given
fitness cutoff. Thus, in the investigations presented below, the analyses will be
based on the results of each GA after a fixed number of evaluated individuals.

Varying the population size

The population size is a very important parameter in any GA. If it is set too
small, the population risks undergoing rapid inbreeding, after which only mu-
tations can provide variation, a process that usually is very slow. On the other
hand, if the population size is set too large, the evaluation of a generation will
take a very long time, making the GA very slow.

When comparing runs with different population sizes, it is important to
measure the performance as a function of the number of evaluated individuals
rather than the number of evaluated generations. This is so, since a GA with
large population size will sample more points in the search space (in a given
generation), than a GA with small population size, thus biasing a comparison
based on the number of evaluated generations in favor of the GA with large
population size.

In Table 3.2, the performance of GAs with different population sizes is com-
pared. In these runs, the objective function was ψ10(x) with α = 0.10 and

c© Mattias Wahde, 2007

CHAPTER 3. USING EVOLUTIONARY ALGORITHMS 40

Population size Avg. best fitness @ 105 ind. Avg. best fitness @ 106 ind.
30 0.95312 ± 0.02832 0.97224 ± 0.028194

100 0.97226 ± 0.02142 0.99706 ± 0.007562
300 0.99719 ± 0.00718 1.00000 ± 0.000000

1000 0.99997 ± 0.00001 1.00000 ± 0.000000

Table 3.2: The average best fitness after 100,000 (second column) and 1,000,000 (third col-
umn) evaluated individuals for ψ10(x) is shown for various population sizes. In all cases,
averages were taken over 10 runs.

Mutation rate Avg. best fitness @ 105 ind. Avg. best fitness @ 106 ind.
0.003 0.92958 ± 0.02677 0.93310 ± 0.03389
0.010 0.95542 ± 0.02018 0.97666 ± 0.01693
0.030 1.00000 ± 0.00000 1.00000 ± 0.00000
0.100 0.89221 ± 0.01961 0.95635 ± 0.02226

Table 3.3: The average best fitness after 100,000 (second column) and 1,000,000 (third col-
umn) evaluated individuals for ψ10(x) is shown for various mutation rates. In all cases, aver-
ages were taken over 10 runs.

β = 20, and runs were terminated after a given number of evaluated individ-
uals. A binary encoding scheme was used, with 25 genes per variable (i.e. a
total of 250 genes per chromosome). Selection was performed using tourna-
ment selection with a tournament size of 5, and a probability of 0.75 of select-
ing the best individual. Generational replacement, with elitism, was used. The
mutation rate was set to 0.02. Creep mutations were not used. The crossover
probability was set to 0.80, and single-point crossover was used. The variable
range was set to [−1.0, 1.0].

Varying the mutation rate

In a GA, mutations provide new material for evolution to work with. As is the
case with the population size, if the mutation rate is set too low, the result will
be rapid inbreeding, usually resulting in failure. On the other, the mutation
rate cannot be set too high, either, since mutations are random and therefore
normally have a negative immediate effect (even though the long-term effect
of a mutation can of course be positive). For example, if the mutation rate is
set to 1, the result will be a completely random search.

In Table 3.3, the performance of GAs with different mutation rates is com-
pared. Only full-range mutations were considered, i.e. no creep mutations
were used. The population size was equal to 100, and all other parameters
were set as in the investigation of population sizes above. Again, averages

c© Mattias Wahde, 2007

CHAPTER 3. USING EVOLUTIONARY ALGORITHMS 41

were taken over 10 runs. Clearly, for this particular problem, a mutation rate
of 0.03 was by far the best.

Investigations of the type above give important insight into the problem of
parameter settings in GAs. However, one should be careful before drawing
far-reaching conclusions: the best parameter settings for a GA are problem-
dependent, and it therefore a good idea to perform an analysis of the kind
shown above before starting a set of production runs.

c© Mattias Wahde, 2007

CHAPTER 3. USING EVOLUTIONARY ALGORITHMS 42

c© Mattias Wahde, 2007

Chapter 4
Properties of evolutionary
algorithms

The operation of an EAs is very different from that of a random search: Mu-
tations, which provide new material that the evolutionary process can work
with, are random, but selection is not. But how do EAs really work? We will
now try to give at least a partial answer to this question by considering a
fundamental theorem known as the schema theorem. The importance of the
schema theorem is sometimes exaggerated – all it really does is to give an in-
dication of how the algorithms work. This, however, will be sufficient for our
purposes. Next, the problem of premature convergence will be discussed, and,
in the final section of this Handout, some analytical properties of a simple GA
will be discussed. As in Handout 2, the discussion will be centered around
GAs.

4.1 The schema theorem

Consider a GA in which binary encoding is used. A schema is defined as a
pattern consisting of fixed positions, corresponding to genes taking the values
0 or 1, and wild–card positions, for which the genes take the value x, where
x is an arbitrary value (i.e. either 0 or 1). Examples of schemata are 100xx1,
xx0xx0x1, and 11x1. The first example, 100xx1, can be used to represent all of
the strings 100001, 100011, 100101, and 100111.

With the introduction of the wild–card symbol x, each position in a schema
can take either of three values; 0,1, or x. Thus, a chromosome of length n has
a total of 3n schemata. It is also easy to show that the number of schemata
represented in a population with N individuals is between 2n and N2n.

Now, different schemata have different survival value. For instance, con-
sider an example where the chromosome encodes the two numbers x1 and x2,

43

CHAPTER 4. PROPERTIES OF EVOLUTIONARY ALGORITHMS 44

using three–digit encoding, and the task is to maximize the function f(x1, x2) =
ex1x2 . With this encoding scheme the string 101011, say, will result in x1 =
21 + 2−3 = 0.625 and x2 = 2−2 + 2−3 = 0.375. In this example, the schema
11xxxx clearly is associated with higher fitness values than e.g. the schema
0000xx. The main idea behind the schema theorem is the realization that a GA
will process schemata in such a way as to increase the number of schemata
associated with high fitness values.

Let f(S) denote the average fitness of a schema S in a population, defined
as the average fitness of those individuals whose chromosomes contain the
schema in question. Assuming that the selection of individuals is done in pro-
portion to their fitness, the probability of an individual with fitness fi being
selected, in a single selection step, is equal to fi/f , where f =

∑N
i=1 fi is the to-

tal (summed) fitness in the population. Furthermore, let f denote the average
fitness in the population, i.e. f = f/N . The number of copies of S expected in
generation g+ 1 is related to the number of copies of S present in generation g
according to

Γ(S, g + 1) = N
f(S)Γ(S, g)

f
, (4.1)

where Γ(S, g) denotes the number of copies of S in generation g. Using the fact
that N/f = 1/f , we arrive at the equation

Γ(S, g + 1) =
f(S)

f
Γ(S, g). (4.2)

Clearly, if a schema is consistently associated with an above average fitness,
i.e. if f(S)/f = 1 + α > 1, where α is a constant, the number of copies of that
schema present in the population will grow exponentially in time:

Γ(S, g + k) = Γ(S, g)(1 + α)k. (4.3)

In addition to selection, however, there are also the processes of crossover and
mutation, which tend to destroy long schemata. In order to quantify this state-
ment, let us introduce the defining length D(S) of a schema S as the distance
between the first and the last non–wild–card position in the schema. Thus, the
schema S1 = 1x10x00xxx has defining length D(S1) = 7 − 1 = 6, since the first
non–wild–card gene in the string is at position 1, and the last such gene is at
position 7. Let us also introduce the order O(S) of a schema, defined as the
number of fixed positions in the schema. With this definition, the schema S2 =
00x0110x is of order 6.

Consider now the crossover procedure. We will assume that single–point
crossover is used, with random selection of the crossover point. The probabil-
ity of destruction, during crossover, of a schema with defining length D(S) is
then given by

pd =
D(S)

n− 1
. (4.4)

c© Mattias Wahde, 2007

CHAPTER 4. PROPERTIES OF EVOLUTIONARY ALGORITHMS 45

Thus, a schema of defining length n − 1, i.e. one that lacks wild–cards al-
together, will (obviously) be destroyed with probability 1. Clearly, it is only
the defining length that matters. Wild–cards in the very beginning or end of
a string can be replaced with any symbol (0,1 or x) without destroying the
schema in question. Since crossover occurs with probability pc, the survival
probability of schema S will be equal to 1 − pcD(S)/(n− 1). In fact, the prob-
ability of survival is slightly larger than this estimate; even if a schema is de-
stroyed, it may be reassembled if the other individual has exactly the same
sequence up to and including the point where the cut is made. For example,
the schema xx011x is destroyed if the cut occurs between the third and the
fourth position. However, if the partial string xx0 (resulting from the cut) is
joined with a string of the form 111, 110, or 11x, the resulting string will be
xx0111, xx0110, or xx011x, respectively, and the schema will survive.

Finally, during mutation, a schema will be destroyed if any of its non–wild–
card genes are changed. For each gene, the probability of mutation is equal to
pmut. Thus, the probability that the schema S will not mutate in any of the fixed
positions equals (1 − pmut)

O(S).
Including the effects of crossover and mutation in Eq. (4.2), the expected

number of copies of the schema S in generation g + 1 will be

Γ(S, g + 1) ≥ f(S)

f
Γ(S, g)

(

1 − pc
D(S)

n− 1

)

(1 − pmut)
O(S) ≈

≈ f(S)

f
Γ(S, g)

(

1 − pc
D(S)

n− 1

)

(1 − O(S)pmut) ≈

≈ f(S)

f
Γ(S, g)

(

1 − pc
D(S)

n− 1
− O(S)pmut

)

, (4.5)

where, in the second step, pmut has been assumed to be much smaller than 1
and, in the final step, quadratic terms have been neglected. Eq. (4.5) can be
summarized by noting that the number of copies of a schema with low defin-
ing length, low order, and above average fitness will increase exponentially
with time. Such schemata are referred to as building blocks, and the result
obtained in Eq. (4.5) is known as the schema theorem.

Thus, we have shown that building blocks will become increasingly com-
mon in a population as more and more generations are evaluated. While this
does not, in itself, explain fully how GAs work, it is a highly relevant result.
However, a more complete theory should also prove that building blocks will
tend to join other building blocks at a rapid rate, to form chromosomes of high
fitness.

The hypothesis that building blocks are important and that a GA operates
by manipulating such elements is known as the building block hypothesis.
There is no general proof of this hypothesis, but it has nevertheless stood up to
many difficult empirical tests. There are also some theoretical indications that

c© Mattias Wahde, 2007

CHAPTER 4. PROPERTIES OF EVOLUTIONARY ALGORITHMS 46

A

Figure 4.1: Premature convergence. The vertical axis measures the fitness, and the individ-
uals are shown as black dots along the horizontal direction. In the left panel, one individual
(A) is slightly better than the others. In the right panel, the population has converged on a
suboptimal solution, close to the original location of individual A.

schema processing is efficient. For example, it can be shown that the num-
ber of schemata processed in a population of N individuals is proportional to
N3. Thus, even though each generation contain only N chromosomes, a much
larger number of schemata are considered. This result was originally obtained
by Holland [10], who referred to it as implicit parallelism.

4.2 Premature convergence

The most common problem encountered when using EAs is premature con-
vergence, in which the population converges toward a suboptimal result. This
phenomenon can be compared with inbreeding in nature, which produces less
fit individuals, at least in the long run.

Problems for which there exists a single, global optimum can be solved us-
ing a deterministic gradient-descent method. EAs, by contrast, are normally
applied to problems for which the fitness landscape has a very complex struc-
ture with many local optima. The occurrence of premature convergence can
be understood by considering a rugged fitness landscape as shown in Fig. 4.1.
Initially, the individuals are all very far from any optimum. However, some
individuals are less bad than others, and the individual marked with the letter
A in the left panel of the figure happens to be situated fairly close to a local op-
timum. Since its fitness exceeds that of the other individuals, it will produce
many offspring. Some time will pass before it dominates the population, and
during that time a lucky mutation may place some individual close to another
(and better) local optimum, or even the global optimum. However, if the bet-
ter optima are rather narrow, as in the figure, this is unlikely to occur. Instead,
the entire population will gather around the local optimum, and the result is

c© Mattias Wahde, 2007

CHAPTER 4. PROPERTIES OF EVOLUTIONARY ALGORITHMS 47

premature convergence. Any subsequent change of the population will be due
solely to mutations – crossover will only produce individuals close to the local
optimum. In fact, in order to escape from the local optimum, an individual
would have to undergo a so called macro mutation, consisting of a number
of fortuitous changes occurring simultaneously. Clearly, such a mutation is
very unlikely, indicating that the search has more or less come to an end after
convergence has taken place.

How can premature convergence be avoided? To some extent, the problem
can be mitigated by the inclusion of fitness ranking, which tends to reduce the
difference between, say, the best individual and the second best individual. In
Fig. 4.1 the ratio between the fitness of the best individual and the fitness of the
second best individual (in the left panel) is, roughly, a factor 2. If there are N
individuals, (linear) fitness ranking would reduce this ratio to N/(N − 1) → 1
for large N . On the other hand, fitness ranking is not always sufficient.

Another method for reducing the probability of premature convergence is
the introduction of a number of subpopulations. In this case, the N individ-
uals of the population are divided into Ng groups of individuals, each with
Ns = N/Ng individuals. Here, crossover and mutation occur only within the
subpopulations. However, with probability pt (the tunneling probability), a
newly formed individual is transferred to another subpopulation. In order to
maintain a constant number of individuals in the subpopulations, a randomly
selected individual is also transferred in the other direction. If the tunneling
probability is equal to 0, the subpopulation–based EA corresponds simply to
Ng independent EAs with Ns individuals each. If pt > 0, however, individuals
are occasionally moved between the groups, and the injection of new genetic
material acts to prevent premature convergence.

Finally, the risk of premature convergence can also be decreased by intro-
ducing a varying mutation rate. After convergence, the difference between the
chromosomes will be rather small. In other words, the diversity measure will
be low. Thus, if the diversity measure falls below a certain value, the muta-
tion rate can be increased. Similarly, the mutation rate can be decreased if the
diversity measure exceeds a given threshold.

4.3 Analytical properties of evolutionary algorithms

In most realistic cases, it is very difficult to study the properties of EAs from
an analytical point of view. This is so since, for example, the result of e.g.
selection involves a weighted sum over the entire population (in the case of
roulette-wheel selection). This sum must be available in closed form for an
analytical treatment to be viable, and this is rarely the case. Crossover and
mutations are also, in general, difficult to treat analytically for an arbitrary
fitness function.

c© Mattias Wahde, 2007

CHAPTER 4. PROPERTIES OF EVOLUTIONARY ALGORITHMS 48

Vose [17] and others have studied the analytical properties of simplified
GAs. In these studies, crossover and mutation were modelled by a single op-
erator M . The introduction of this operator simplifies the analysis, but, at the
same time, makes the simplified GA somewhat different from a standard GA.
In order to obtain exact results, the population size was assumed to be infinite,
which will also be the case for the analysis below, where a different simplified
GA, without crossover and with slightly simplified mutations, will be consid-
ered. As the purpose of the analysis below is to give an introduction to the
analytical properties of EAs, the analysis will mainly be based on the simplest
possible problem, namely the counting-ones problem, . In the counting-ones
problem, a binary encoding is used, i.e. the chromosomes are strings of zeros
and ones. Hereafter, a gene will be called a zero-gene or a one-gene, depend-
ing on its value. In the counting-ones problem the fitness of an individual is
simply the number of one-genes in the corresponding chromosome. Because
of the simplicity of the fitness function, the decoding step is trivial and there-
fore no distinction will here be made between an individual and its chromo-
some.

Thus, in a case with 10 genes, the chromosome 1100100001 would receive
a fitness score of 4. Note that, through the introduction of the fitness func-
tion used in this example, the search problem has been reduced to a one-
dimensional problem, since the location of the genes in the chromosome is
of no consequence in this case.

Furthermore, a case with an infinite population will be considered, for
which the relevant quantity is not the number of individuals with a certain
fitness value, but instead the probability of finding such an individual.

Now, let n denote the length of the chromosomes and assume that, in the
initial population, the chromosomes are random with equal probabilities for
the two alleles 0 and 1. Furthermore, let p1(k) denote the probability that a
chromosome in the initial generation contains exactly k one-genes. Since the
two alleles are chosen with equal probability, all possible chromosomes are
equally probable. However, it is only the number of one-genes in a chromo-
some that matters, and the number of ways in which a chromosome with k
one-genes can be generated varies with k. Consider first a chromosome with
0 one-genes. Clearly, there is only one way to generate such a chromosome.
Next, consider a chromosome with a single one-gene. The position of the 1
can be chosen in n different ways, and the number of such chromosomes is
thus equal to n. It is easy to show that, in general, a chromosome with k one-
genes can be generated in πk ways, where

πk =

(

n

k

)

. (4.6)

The total number of possible chromosomes equals 2n, and therefore the prob-

c© Mattias Wahde, 2007

CHAPTER 4. PROPERTIES OF EVOLUTIONARY ALGORITHMS 49

Generation Average fitness ps(n) (n = 100)
(s) analytical numerical
1 50.0000 49.9892 7.89 × 10−31

2 50.5000 50.5011 1.58 × 10−30

3 50.9901 51.0035 3.12 × 10−30

4 51.4708 51.5013 6.13 × 10−30

Table 4.1: Average fitness values for the counting-ones problem, with n = 100. For the nu-
merical calculations, a population size of 100,000 was used. The rightmost column shows the
(analytically computed) probability of finding, in generation s, an individual with maximum
fitness, i.e. ps(n).

ability distribution (in the initial population) p1(k) will be

p1(k) = 2−n

(

n

k

)

. (4.7)

Using Eq. (A6) in appendix A, the average fitness of the population (which
obviously equals n/2) can be computed as

f 1 =
n
∑

k=0

kp1(k) = 2−n
n
∑

k=0

k

(

n

k

)

=
n

2
. (4.8)

Selection First, the selection step will be considered by itself, i.e. neglecting
crossover and mutation. The aim is to show how selection acts on a popu-
lation to increase both the average fitness and the probability of reaching the
optimum.

In roulette-wheel selection, the probability of selection of an individual is
proportional to its fitness, i.e. to k (in this case). Thus, the probability that an
individual in the second generation contains k ones is

p2(k) =
kp1(k)

∑n
k=0 kp1(k)

=
k
(

n

k

)

∑n
k=0 k

(

n

k

) =

= 21−n k

n

(

n

k

)

. (4.9)

Using Eq. (A7) in appendix A, the average fitness in the second generation is
obtained as

f2 =
n
∑

k=0

kp2(k) =
21−n

n

n
∑

k=0

k2

(

n

k

)

=
n+ 1

2
. (4.10)

Thus, the average fitness value increases by 1/2 after the first selection step.

c© Mattias Wahde, 2007

CHAPTER 4. PROPERTIES OF EVOLUTIONARY ALGORITHMS 50

Continuing the procedure in an iterative fashion, the distributions p3(k), p4(k)
etc. can be obtained, as well as their respective averages. Unfortunately, while
ps(k) easily can be computed from ps−1(k), using the general equation

ps(k) =
f(k)ps−1(k)

∑n
k=0 f(k)ps−1(k)

, (4.11)

there is no simple, closed-form expression for ps(k) in general (even though
approximations can be found), even for this simple problem. However, the
distributions and their averages can of course be obtained numerically. Fig.
4.2 shows the distribution for the counting-ones problem in the first, second,
third, fourth, fifth, 10th, 15th, and 20th generation of a genetic algorithm with
selection only. The number of genes (n) was equal to 100, and the population
size was 100,000. Note that, in a numerical simulation, it is of course impossi-
ble to use an infinite population as in the analytical calculations above. Thus,
at some point, the effects of the finite population size will become noticeable
(usually causing the population to converge on a suboptimal solution, see be-
low). This effect is evident in the right panels of Fig. 4.2. However, in the first
generations, the effects of inbreeding are negligible, as indicated in Table 4.1,
which shows average fitness values obtained from analytical calculations and
from the numerical simulation.

As the genetic algorithm progresses from one generation to the next, not
only the average fitness increases, but also the probability of finding individ-
uals with maximum fitness (n). In the first generation, this probability equals
p1(n) = 2−n, and in the second generation it reaches p2(n) = 2−n+1, i.e. it in-
creases by a factor 2. In Table 4.1, ps(n) is shown for the first four generations.

Mutations In addition to fitness-proportional selection, genetic algorithms
also use operators that modify the chromosomes in the population. Usually,
two such operators are used, namely crossover and mutation. Crossover is
complicated to treat analytically, and will therefore not be considered here.
However, it should be noted that the complexity of an analytical treatment of
crossover is the only reason that it is left out from this analysis. In general,
crossover is an essential part of efficient genetic algorithms, and it should nor-
mally not be omitted in applications of such algorithms.

Using only selection and mutation, the steps involved in going from gen-
eration s− 1 to generation s will be

ps−1(k) →selection→ p̂s(k) →mutation→ ps(k), (4.12)

where p̂s(k) denotes the distribution after selection.
The mutation procedure must also be somewhat simplified in order for it

to be analytically tractable. Normally, the mutation procedure operates such

c© Mattias Wahde, 2007

CHAPTER 4. PROPERTIES OF EVOLUTIONARY ALGORITHMS 51

20 40 60 80 100
k

0.02

0.04

0.06

0.08

0.1
p

20 40 60 80 100
k

0.02

0.04

0.06

0.08

0.1
p

20 40 60 80 100
k

0.02

0.04

0.06

0.08

0.1
p

20 40 60 80 100
k

0.02

0.04

0.06

0.08

0.1
p

20 40 60 80 100
k

0.02

0.04

0.06

0.08

0.1
p

20 40 60 80 100
k

0.02

0.04

0.06

0.08

0.1
p

20 40 60 80 100
k

0.02

0.04

0.06

0.08

0.1
p

20 40 60 80 100
k

0.02

0.04

0.06

0.08

0.1
p

Figure 4.2: Histograms of the distribution of fitness values for the counting-ones problem,
shown at different generations. From top to bottom, the left panels show the distribution of
the number of one-genes, k, in generations 1, 2, 3, and 4, whereas the right panels show the
distributions in generations 5, 10, 15, and 20. The histograms were obtained from a genetic
algorithm using (roulette-wheel) selection only, and a population size of 100,000. The number
of genes in the chromosome was equal to 100. The effects of the finite population size begin to
be noticed at around 10 generations.

c© Mattias Wahde, 2007

CHAPTER 4. PROPERTIES OF EVOLUTIONARY ALGORITHMS 52

that it considers each gene separately, and performs a mutation with probabil-
ity pmut. Thus, in a chromosome with n genes, the number of mutated genes
can range from 0 to n, with an average of npmut. It turns out, however, that
this mutation scheme is also difficult to treat analytically. Therefore, a simpler
mutation scheme, in which at most one gene per chromosome is mutated, will
be considered here. While this scheme rules out multiple simultaneous muta-
tions, it is not too far off the mark, since the mutation rate is often chosen as
(approximately) 1/pmut so that, on average, one mutation occurs per chromo-
some.

Thus, consider a mutation procedure in which a single gene is mutated
with probability pm. If pm is set to 1, exactly one mutation will occur. If the
mutated gene is a zero-gene, it will be changed to a one-gene, and vice versa.

Now, for any given k, the contribution to ps(k) will come from three sources:
chromosomes with k one-genes that do not mutate, chromosomes with k − 1
one-genes in which a zero-gene is mutated, and, finally, chromosomes with
k + 1 one-genes in which a one-gene is mutated. Hence

ps(k) = (1 − pm)p̂s(k) + pm

(

n− k + 1

n
p̂s(k − 1) +

k + 1

n
p̂s(k + 1)

)

. (4.13)

Returning to the first generation of the counting-ones problem, with the distri-
bution after selection (now denoted p̂2(k) rather than p2(k)) given by Eq. (4.9),
the distribution after mutation becomes

p2(k) = (1 − pm)21−n k

n

(

n

k

)

+

+ pm21−n

[

(n− k + 1)(k − 1)

n2

(

n

k − 1

)

+
(k + 1)2

n2

(

n

k + 1

)]

=

= (1 − pm)21−n k

n

(

n

k

)

+ pm21−nnk + n− 2k

n2

(

n

k

)

=

= 21−n

(

k

n
+ pm

n− 2k

n2

)(

n

k

)

, (4.14)

where, in the second step, the two binomial identities (see Appendix A)
(

n

k − 1

)

=
k

n− k + 1

(

n

k

)

, (4.15)

and
(

n

k + 1

)

=
n− k

k + 1

(

n

k

)

(4.16)

have been used.
From Eq. (4.14) it is clear that, at least in the situation considered here, mu-

tations have a negative effect on individuals with above-average fitness, for

c© Mattias Wahde, 2007

CHAPTER 4. PROPERTIES OF EVOLUTIONARY ALGORITHMS 53

50 100 150 200 250 300
generation

0.2

0.4

0.6

0.8

1
Fi

tn
es

s

50 100 150 200 250 300
generation

0.2

0.4

0.6

0.8

1

Fi
tn

es
s

Figure 4.3: Typical results from a GA applied to the benchmark function φ10 defined in Eq.
(4.17). The population size was equal to 30, and the chromosome contained 100 genes (i.e. 10
genes per variable xi). Crossover was not used. The maximum attainable fitness is equal to
1. For the curves in the left panel, the mutation rate was 0.001, and for the right panel it was
0.01. The upper curve in each panel shows the maximum fitness, and the lower curve shows
the average. Note the convergence to suboptimal fitness values in the left panel.

which the term n− 2k is negative. In fact, it is commonly so that the immedi-
ate effect of a mutation is negative, particularly for fit individuals. This is not
surprising, as a random change to a fine-tuned system (whether it is a chromo-
some or something else) rarely produces a good result. However, mutations
are important since they provide new material for selection (and crossover) to
work with.

In the analytical case considered above, where the population size is infi-
nite, all possible chromosomes will be represented in the initial population,
and selection would therefore be sufficient to increase the probability p(n) of
finding the best individual. In realistic applications, however, population sizes
are usually far from infinite. The most common situation is one in which the
evaluation of an individual is very time-consuming, implying that rather small
population sizes must be used. If mutations are not used in a genetic algo-
rithm with a small population, the result is rapid inbreeding and premature
convergence. Fig. 4.3 shows the result of using two different mutation rates,
plow = 0.001 and phigh = 0.01, in a genetic algorithm with a population size of
30 applied to the benchmark function

φN(x1, x2, ..., xN) = exp (−
N
∑

i=1

x2
i)

1 + 1
N

∑N
i=1 cos(20

√
ixi)

2
, (4.17)

with N = 10. This function has a global maximum of 1 at x1 = x2 = . . . xN = 0.
As can be seen from Fig. 4.3, the run with the low mutation rate (left panel)
rapidly converges to a suboptimal fitness value, whereas the run with the
higher mutation rate maintains diversity in the population throughout the run,
as evidenced by the large difference between the average and maximum fit-
ness values. Elitism was used, i.e. an unchanged copy of the best individual

c© Mattias Wahde, 2007

CHAPTER 4. PROPERTIES OF EVOLUTIONARY ALGORITHMS 54

50 100 150 200 250 300
generation

52.5

55

57.5

60

62.5

65

67.5

70

av
er

ag
e

fi
tn

es
s

Figure 4.4: The average fitness as a function of generation for the counting-ones problem.
The curve was obtained for a run with population size 10,000 and chromosome length n = 100.
The parameter pm was set to 1, i.e. exactly one mutation was performed per chromosome.

was transferred to each new generation.

Equilibrium point for the average fitness In Fig. 4.4, the average fitness is
shown for a genetic algorithm applied to the counting-ones problem. As can be
seen from the figure, after around 100 generations, the average fitness reaches
a plateau where it remains for the rest of the run, albeit with small oscillations.
The fact that the average fitness stabilizes at some value far from the optimum
is a common occurrence regardless of the fitness function used (see also the
right panel of Fig. 4.3). In the early generations, the (immediate) negative
effects of mutations are much smaller than the positive effects of selection, but
in later generations, the two effects are approximately of the same order of
magnitude, causing the population average to reach its plateau.

In fact, for the counting-ones problem, it can be shown that the approxi-
mate level of the plateau is given by

f − f
2 − 2

n
f 2 + f 2 = 0, (4.18)

where f denotes the average fitness in the population, and f 2 the average
value of the fitness squared. Assuming that the fitness distribution keeps its
original binomial shape, i.e. takes the form

p(k) = 2−n

(

n

k − f + n
2

)

, (4.19)

the equilibrium point for n = 100 is roughly 68, rather close to the observed
values, in Fig. 4.4, of around 63-65.

c© Mattias Wahde, 2007

CHAPTER 4. PROPERTIES OF EVOLUTIONARY ALGORITHMS 55

4.3.1 Multi-dimensional fitness functions

Even though the number of genes can take any positive integer value in the
counting-ones problem considered above, the problem is one-dimensional,
since the fitness function only depends on the sum of the values of all genes.

Clearly, the general case, in which the fitness function cannot be reduced
from its most general form, i.e.

f = f(g1, g2, . . . , gn), gi ∈ {0, 1}, i = 1, . . . , n (4.20)

is more complicated but also more interesting. In this case, the effects of e.g.
mutations are often quite complex to deal with analytically since, even if only
single mutations are considered, the fitness function may change in n different
ways rather than just 2 ways as was the case for the counting-ones problem
(see Eq. 4.13).

However, the computations can, of course, be performed numerically, and
thus provide useful insights into the operation of the GA for various parameter
settings. Assuming that binary encoding is used, and that there are n genes in
the chromosome, there will be a total of 2n chromosomes of the form

Gk = g1g2 . . . gn, (4.21)

where k enumerates the chromosomes (e.g. such that k = 1 for 00 . . . 00, k = 2
for 00 . . . 01 etc. up to k = 2n for 11 . . . 11).

In order to obtain exact solutions, in the form of probability distributions
for the chromosomes Gk, it must be assumed that the population size is infinite
but other than that, no approximations need be made. The computations are
quite time-consuming though.

For example, consider mutations occuring with a probability of pmut. In the
general case, anything from 0 to n mutations may occur, even though the ex-
pected number of mutations is around npmut. During mutation, the probability
distributions for any given chromosome G will consist of contributions from
G itself (to account for cases in which no mutations occur, an event that takes
place with probability (1 − p)n), contributions for chromosomes G′ that differ
from G in only gene and for which a single mutation occurs in the gene that
differs, contributions from chromosomes G′′ that differ from G in two genes,
and for which both those genes mutate etc.

Thus, the computation time will rise rapidly with n and becomes impracti-
cal for n larger than around 10. However, for small n, an exact computation of
the kind just outlined is feasible, even though it will not be considered further
here.

c© Mattias Wahde, 2007

CHAPTER 4. PROPERTIES OF EVOLUTIONARY ALGORITHMS 56

c© Mattias Wahde, 2007

Chapter 5
Advanced topics

In the previous chapters, the basic properties of GAs have been introduced. In
this chapter, a few advanced topics will be covered, starting with a description
of encoding schemes, selection operators, and fitness measures, and contiun-
ing with a discussion of some different types of advanced GAs. It should be
noted that there is a very large number of variations on the theme of EAs.
Thus, the description below is intended as an illustration of a few advanced
topics related to EAs, and is by no means exhaustive.

5.1 Representations

5.1.1 Gray coding of binary-valued chromosomes

In the traditional, standard GA, a binary representation scheme is used in the
chromosomes. While simple to implement, such a scheme may have some
disadvantages, one of them being that a small change in the decoded value
obtained from a chromosome may require flipping many bits which, in turn,
is an unlikely event. Thus, the algorithm may get stuck simply as a result of the
encoding scheme. Consider, as an example, a ten-bit binary encoding scheme,
and assume that the best possible chromosome is 1000000000. Now, consider
a case in which the population has converged to 0111111111. In order to reach
the best chromosome from this starting position, the algorithm would need to
mutate all ten genes in the chromosome!

An alternative representation scheme, which avoids this problem is the
Gray code, which was patented in 1953 by Frank Gray at Bell Laboratories,
but which had been used already in telegraphs in the 1870s. a Gray code is
simply a binary representation of all the integers k, in the range [0, 2n], such
that, in going from k to k + 1, only one bit changes in the representation. Thus,
a Gray code representation of the numbers 0, 1, 2, 3 is given by 00, 01, 11, 10.

57

CHAPTER 5. ADVANCED TOPICS 58

Other 2-bit Gray code representations exist as well, e.g. 10, 11, 01, 00 or 00,
10, 11, 01. However, these representations differ from the original code only
in that the binary numbers have been permuted or inverted. An interesting
question is whether the Gray code is unique, if permutations and inversions
are disregarded. The answer turns out to be negative for n > 3. Gray codes
can be generated in various ways.

5.1.2 Messy encoding schemes

In the schema theorem (see Handout 4), the concept of building blocks were in-
troduced, as schemata with low defining length, low order, and above average
fitness, and it was noted that schemata in which the non-wild-card positions
are far from each other on the chromosome suffer a larger probability of be-
ing destroyed than schemata in which this is not the case. Thus, for example,
the schema S1 =1xxxxx01 is more likely to be destroyed (during crossover),
than the schema S2 =101xxxxx. Now, if S1 is associated with high fitness, it
is unfortunate that it is so easily destroyed. Note, however, that the likely de-
struction of S1 is a simply result of the encoding scheme: if the genes were
instead placed on the chromosome in such a way that the first gene in S1 was
placed last in the chromosome, the resulting schema S ′

1 = xxxxx011 would be
equivalent to S1 but would be much less likely to be destroyed.

Messy encoding schemes generate a less position-sensitive representation
of a chromosome, by associating each gene with a number determining its
position in the chromosome. Thus, the string

c1 = ((1, 0), (5, 1), (3, 0), (4, 1), (2, 1)), (5.1)

represents a messy encoding of 01011, if the first number in each pair is inter-
preted as the position of the corresponding gene, whose allele is given by the
second number in the pair. Thus, if the schema S =0xxx1 is associated with
high fitness, it has a much greater chance of surviving in the messy representa-
tion (in which genes 1 and 5 are adjacent) than in the ordinary representation.

There are also some problems associated with messy encoding schemes,
however. For example, it may happen that a string contains several copies of
a given gene position, e.g.

c = ((1, 0), (3, 1), (3, 0), (2, 1), (4, 0), . . .). (5.2)

One way of resolving such conflicts is simply to use the first occurence of a
given gene position, and discard all other occurences. For the chromosome
shown in Eq.(5.2) this procedure would give the chromosome 1110 . . ., in ordi-
nary binary encoding.

The opposite problem may also occur, in which some gene positions are
not represented on the chromosome at all.

c© Mattias Wahde, 2007

CHAPTER 5. ADVANCED TOPICS 59

Weights and bias, neuron 1 Weights and bias, neuron 2 Weights and bias, neuron 3

+1

+1

+1

1

2

3

Figure 5.1: Encoding of a simple three-neuron ANN, using a chromosome with nine real-
valued genes. Each weight and bias, shown as solid arrows in the ANN, is obtained from a
gene in the chromosome.

However, further details of messy encoding schemes are beyond the scope
of this text. The interested reader is referred to [6].

5.1.3 Variable length encoding schemes

In the standard GA, all chromosomes are of the same, fixed size, which is a
suitable state of affairs for many problems. For example, in the optimization
of a function, with a known number of variables, it is easy to specify a chromo-
some length. It is not entirely trivial, though: the number of genes per variable
must be set sufficiently high to give a representation with adequate accuracy
for the variables. However, if the desired accuracy is difficult to determine,
a safe approach is simply to set the number of genes per variable to a high
value (50, say), and then run the GA with chromosomes of length 50 times the
number of variables. Thus, there is no need to introduce chromosomes with
varying length. However, in many other situations, it is desirable, or even
essential, to use chromosomes with varying length. Indeed, during biologi-
cal evolution, many different genome sizes have resulted (in different species,
both current and extinct ones). Variations in genome length may result from
accidents during the formation of new chromosomes, such as duplication of a
gene or parts thereof (see Sect. 5.4.1 below). Clearly, in nature, there can be
no given, optimal and non-changing genome size. The same applies to arti-
ficial evolution of complex structures, such as e.g. artificial neural networks
(ANNs, see Appendix B), finite-state machines (FSMs) or artificial brains for
autonomous robots (which may take many different forms). In general, vary-

c© Mattias Wahde, 2007

CHAPTER 5. ADVANCED TOPICS 60

Weights from input elements

Neuron 1

Weights from neurons

1 2 3 m 1 2 3 n

Weights from input elements

Neuron 2

Weights from neurons

1 2 3 m 1 2 3 n

Weights from input elements

Neuron n

Weights from neurons

1 2 3 m 1 2 3 n

.
.

.

.

.

.
.

.
.

.
.

.

.
.

.

Figure 5.2: An example of a representation for an ANN. The network has m input elements,
and n neurons. Each neuron can, in principle, be connected to all other neurons, provided that
all weights are non-zero.

ing genome size should be introduced in cases where there is insufficient a
priori knowledge of the optimal size and structure of the systems being opti-
mized. Here, one such case will be studied in detail, namely ANNs.

Encoding schemes for artificial neural networks

In the standard GA, the structure to be optimized is encoded in a chromosome
of fixed length.

In the case of FFNNs (see Appendix B for the definition of network types)
with given size, the procedure is straightforward: If real-number encoding is
used, each gene can represent a network weight, and the decoding procedure
can easily be written so that it associates the weights with the correct neuron.
An example is shown in Fig. 5.1. Here, a simple FFNN with three neurons,
two in the hidden layer and one in the output layer, is encoded in a chromo-
some containing 9 genes, shown as elongated boxes. If instead binary encod-
ing were to be used, each box would represent several genes which, when
decoded, would yield the weight value.

In more complex applications, however, the encoding of information in a
linear chromosome is often an unnecessary complication, and the EA can in-
stead be made to operate directly on the structures that are to be optimized.
For such implementations, object-oriented programming is very useful. Here,
a type (i.e. a data structure) representing a neural network can be defined as a

c© Mattias Wahde, 2007

CHAPTER 5. ADVANCED TOPICS 61

list of neurons, each of which is equipped with a list of incoming connections
from input elements, as well as a list of incoming connections from neurons.
Both the latter two lists, and the list of neurons, can then be allowed to vary in
size. The encoding scheme is illustrated in Fig. 5.2.

Using EAs in artificial neural networks

When generating an ANN (see Appendix B), one of the first decisions that
must be made concerns the training algorithm. One possible choice is to use
an EA as the training algorithm. The generation of ANNs using evolutionary
algorithms has been considered extensively in the literature, see e.g. [14] and
[19] for reviews.

However, there also exists many specialized algorithms for training net-
works, such as the backpropagation algorithm, which is applicable to FFNNs.
As a general rule, whenever there exists a specialized algorithm, it is often
more efficient to use that algorithm rather than using an EA. In fact, some re-
searchers use such statements to argue against EAs (”Algorithm A is faster
than an EA on problem B..” etc.). However, EAs derive their strength from
their generality. For example, there exists specialized algorithms for e.g. func-
tion optimization using FFNNs and for solving the travelling salesperson prob-
lem (TSP, see below). However, these algorithms can only solve the problem
they were designed to solve. EAs, by contrast, can, with little modification,
solve both the two problems mentioned, and a vast array of other problems as
well. Furthermore, even in cases where there exists a specialized algorithm, an
EA may be useful in parts of the optimization process. For example, a common
problem when using backpropagation concerns the selection of the number of
neurons in hidden layers (see Appendix B). Simply put, there exists no clear
method for selecting an optimal number of hidden neurons. Usually, rules-of-
thumb or trial-and-error is used instead. A common rule-of-thumb for setting
the number NH of neurons in the hidden layer of an FFNN is

NH =
√
N INO, (5.3)

whereN I andNO denote the number of input elements and the number of out-
put neurons, respectively. However, an alternative procedure is to use an EA
to set the number of hidden neurons (and possibly also the parameters used
in backpropagation). Thus, in this case, the (very simple) chromosome would
contain genes representing the number of hidden neurons and the training pa-
rameters, and the decoding procedure would generate an FFNN as prescibed
by the chromosome, and with (initially) random connections. Next, the evalu-
ation of the individual would consist of training the FFNN using backpropata-
tion with the parameters obtained from the chromosome. The fitness measure
can be taken e.g. as the number of backpropagation training steps need to

c© Mattias Wahde, 2007

CHAPTER 5. ADVANCED TOPICS 62

achieve a given result, e.g. an FFNN representing some given function to a
certain accuracy.

Perhaps more importantly, there exists many problems for which few algo-
rithms other than EAs are suitable. Examples of such problems are the con-
struction of RNNs for time series prediction and the generation of RNNs to be
used as artificial brains in autonomous robots. In both cases, it is very difficult
to specify the optimal number of neurons in advance. The case of artificial
brains for autonomous robots is particularly difficult since the reward (if any)
for a given action generally occurs long after the action was taken. By contrast,
for backpropagation training of FFNNs, it is required that the reward is imme-
diate: for any input signal, it must be possible to judge directly the quality of
the output by means of an error function. For this reason, backpropagation
belongs to a family of training algorithms known as supervised training al-
gorithms. Incidentally, it can be mentioned that the error function must be
differentiable for backpropagation to function properly. No such restrictions
are required in the case of ANN optimization by means of EAs.

Returning to the case of the autonomous robot, there exists a credit as-
signment problem: the robot must, somehow, be able to make connections
between actions and rewards that occur much later. In the most extreme case,
there is only a single scalar feedback signal at the end of the evalution. In such
cases, supervised training algorithms are not applicable, and EAs are often
used instead1. When using an EA to optimize a structure (such as an RNN)
that may vary in size during evolution, clearly a varying chromosome size
must also be allowed, which poses some problems (not least programming
problems). In particular, there must be defined several mutation operators,
which can modify not only the weights, but also the structure of the networks.
A set of seven mutation operators (M1-M7) for RNNs is shown in Fig. 5.3. M1
and M2 modify the strength of connections between units (see Appendix B)
in the network (i.e. between neurons or from input elements to neurons) that
are already present, whereas M3-M7 modify the structure of the network: M3
adds a connection between two randomly chosen units, and M4 removes an
already present connection. M5 removes an entire neuron, and all its incoming
and outgoing weights. M6 and M7 add neurons. In the case of M6, the neu-
ron is added without any incoming or outgoing weights. Thus, two mutations
of type M3 are needed in order for the neuron to have an effect on the com-
putation performed by the network. M7, by contrast, adds a neuron with a
direct connection from an input element to one of the output neurons (shown
as filled circles in the figure). Note that many other neuron addition operators
can be defined.

In addition, crossover operators can be defined in order to combine chro-

1There are other algorithms, such as reinforcement learning [1] which are able to assign
credit to past events. However, such algorithms will not be considered in this course.

c© Mattias Wahde, 2007

CHAPTER 5. ADVANCED TOPICS 63

M1, M2 M3

M4

M6

M5

M7

Figure 5.3: Mutation operators (M1-M7). Modifications and additions are shown as bold
lines and removed items are shown as dotted lines. The mutations are (M1-M2): weight
mutations, either by a random value or a value centered on the previous value; (M3-M4):
connectivity mutations, addition of an incoming weight with random origin (M3), or re-
moval of an incoming weight; (M5-M7): neuron mutations, removal of a neuron and all
of its associated connections (M5), insertion of an unconnected neuron (zero-weight addi-
tion) (M6), and addition of a neuron with a single incoming and a single outgoing connection
(single connection addition) (M7). Figure courtesy of J. Pettersson.

mosomes of varying size, unless the equivalent of species is introduced (see
below), in which case only chromosomes of equal size are allowed in the
crossover procedure. In general, due to the distributed nature of computa-
tion in neural networks, it is difficult to define a good crossover operator,
even in cases where the networks are of equal size. This is so, since half an
ANN (say) does not perform half of the computation of the complete ANN.
More likely, any part of an ANN will not perform any useful computation
at all. Thus, cutting two networks in pieces and joining the first piece of the
first network with the second piece of the second network (and vice versa) of-
ten amounts to a huge macro-mutation, decreasing the fitness of the network,
and thus generally eliminating it from the population. However, putting this
difficulty aside for the moment, how should crossover be defined for neural
network? One possibility is to encapsulate neurons, with their incoming con-
nections into units, and only swap these units (using, e.g. uniform crossover)
during crossover, rather than using a single crossover point at any location.
This crossover procedure is illustrated in Fig. 5.4, for a case where the two
networks are of equal size.

Clearly, with this procedure, crossover can be performed with any two net-

c© Mattias Wahde, 2007

CHAPTER 5. ADVANCED TOPICS 64

Neuron 1 Weights Neuron 2 Weights Neuron 3 Weights

Neuron 1 Weights Neuron 2 Weights Neuron 3 Weights

Neuron 1 Weights Neuron 2 Weights Neuron 3 Weights

Neuron 1 Weights Neuron 2 Weights Neuron 3 Weights

Figure 5.4: A crossover procedure for neural networks. In this case, cuts are only made
between neurons.

works. However, there is a more subtle problem concerning the identity of the
weights. If the list of incoming weights to the neurons represents neuron in-
dices, crossover may completely disrupt the network. For example, consider a
case where neuron 3 takes input from neurons 1, 4, and 5. If, during crossover,
a single additional neuron is inserted between neurons 3 and 4, say, then the
inserted neuron will be the new neuron 4, and the old neuron 4 will become
neuron 5 etc., thus completely changing the numerical values of the weights,
and also limiting the usefulness of crossover.

The are biologically inspired methods for mitigating this problem, how-
ever: Consider another type of network, namely the genetic regulatory net-
works introduced in Handout 1. Here, some genes (transcription factors) can
regulate the expression of other genes, by producing (via mRNA) protein prod-
ucts that bind to a binding site close to the regulated genes. The procedure of
binding is an ingenious one: instead of say, stating that e.g. ”the product of
gene 45 binds to gene 32” (which would create problems like those discussed
above, in the case of gene insertion or deletion), the binding procedure may
say something like ”the product of gene g binds to any gene with a binding
site containing the nucleotide sequence AATCGATAG”. In that case, if an-
other gene, x say, is preceded (on the chromosome) by a binding site with the
sequence AATCGATAG, the product of gene g will bind to gene x regardless
of their relative position on the chromosome. Likewise, the connection can
be broken if the sequence on the binding site preceding gene x is mutated to,
say, ATTCGATCG. Encoding schemes using neuron labels instead of neuron
indices can be implemented for the evolution of ANNs. However, such topics
are beyond the scope of this text.

As mentioned above, crossover between networks often leads to lower fit-
ness. However, there are crossover operators that modify networks more gen-
tly. One such operator is averaging crossover, which can be applied to net-

c© Mattias Wahde, 2007

CHAPTER 5. ADVANCED TOPICS 65

1

2

3

4

 5

6

7

8

9

11

10

12

Figure 5.5: Map for the travelling salesperson problem. The cities are numbered from 1 to
12, and their locations are given by two integer coordinates (x, y).

works of equal size. Consider a network of a given size, using an encoding
scheme as that illustrated in Fig. 5.1. In averaging crossover, the value of gene
x in the two offspring, denoted x′1 and x′2 is given by

x′1 = αx1 + (1 − α)x2, (5.4)

and
x′2 = (1 − α)x1 + αx2, (5.5)

where x1 and x2 denote the values of x in the parents. α is a number in the
range [0, 1]. In case α is equal to 0 or 1, no crossover occurs, but for all other
values of α there will be a mixing of genetic material from both individuals in
the offspring. If α is close to 0 (or 1), the mixing is very gentle.

This concludes our study of encoding schemes for ANNs. However, in
Handout 7, examples of the use of such encoding schemes will be given, in the
form of a discussion of a few different applications.

Encoding scheme for the travelling salesperson problem

The travelling salesperson problem (TSP), can be formulated as follows: given
a set of N nodes, specified by their positions {xi, yi}, i = 1, . . . , N (in the two-
dimensional case), which should be visited (e.g. by a salesperson, hence the
name) once and only once, the final step of the path being a return to the starting
point, what is the shortest path? The problem is illustrated in Fig. 5.5, for the
case N = 12.

c© Mattias Wahde, 2007

CHAPTER 5. ADVANCED TOPICS 66

The TSP has several important applications, such as e.g. the placement
of components in electronic circuits, and, just as for FFNNs, there exists spe-
cialized algorithms for solving this problem. The TSP can also be solved us-
ing EAs [6], In this case, the chromosome generally contains a simple list
enumerating the cities. In order for such a chromosome to generate a valid
path, however, each city can only occur once in the chromosome. Thus, so-
called permutation encoding is commonly used, in which the chromosome
is simply a permutation (i.e. an ordering) of the numbers 1, . . . , N . Thus,
for the problem illustrated in Fig. 5.5 a typical chromosome would be e.g
c1 = {4, 6, 9, 1, 3, 7, 12, 10, 8, 5, 2, 11}. Note that, in this type of encoding, the
absolute position of the genes make no difference. Thus, for example,
c2 = {6, 9, 1, 3, 7, 12, 10, 8, 5, 2, 11, 4} encodes the same path as c1.

In TSP, operators for both mutation and crossover must be implemented
with care, to avoid generating invalid paths. Mutation operators for TSP are
usually based on the swapping of genes between different positions in the
chromosome. Thus, for example, a TSP chromosome {3, 4, 2, 1, 5} can mu-
tate to {3, 1, 2, 4, 5} by swapping the values for the second and fourth genes.
Clearly, many different mutation operators can be defined.

Crossover is more tricky, since it must combine information from two in-
dividuals while, at the same time, generating two new, valid paths. Not sur-
prisingly, several crossover operators have been defined for TSP. One of them,
order crossover is defined in the problems (see the corresponding handout).

5.1.4 Grammatical encoding

The introduction of variable-length chromosomes, as discussed above, adds
considerable flexibility to an EA, and is crucial in the solution of certain prob-
lems. One motivation for the introduction of variable-length chromosomes
was the fact that such chromosomes have more similarity with chromosomes
found in natural evolution. However, as was discussed in Handout 1, even
the variable-length chromosomes differ considerably from biological chromo-
somes. A particularly important difference is the fact that biological chromo-
somes do not, in general, encode the parameters of a biological organism di-
rectly, whereas the chromosomes used in the EAs do use such direct encoding,
i.e. an encoding scheme such that all parameters are obtained directly (possi-
bly with re-scaling) from the chromosome.

An example should be given to illustrate the state of affairs in biological
systems. Consider the human brain. This very complex computer contain on
the order of 1011 computational elements (neurons), and around 1014 − 1015

connections (weights) between neurons, i.e. around 1,000 - 10,000 connections
per neuron. Now, if every connection were to be encoded in the chromosome
the information content of the chromosome would have to be around 105 Gb,

c© Mattias Wahde, 2007

CHAPTER 5. ADVANCED TOPICS 67

S A B C D A a f b a C e h a e B c a d a E g p j a D m l a e H c p c a . . .

Figure 5.6: Grammatical encoding, as implemented by Kitano [13].

even if the strength (and sign) of each connection weight were to be encoded
using a single byte. However, the actual size of the human genome is around
3 Gb. Furthermore, the chromosome does many other things than just speci-
fying the structure of the brain. Thus, it is evident that rather than encoding
the brain down to the smallest detail, the chromosome encodes the procedure
by which the brain is formed.

In EAs, encoding schemes that encode a procedure for generating e.g. a
neural network, rather than the network itself, are known as grammatical en-
coding schemes [13], [7]. In such methods, the chromosome can be seen as a
sentence expressed using a grammar. When the sentence is read, i.e. when the
chromosome is decoded, the individual is generated, using the grammar. An
early example of grammatical encoding is the method developed by Kitano
[13] for encoding FFNNs.

In Kitano’s method, each chromosome is encoded in a string of the form
shown in Fig. 5.6. The method was applied to the specific case of FFNNs con-
taining, at most, 8 neurons. The S in the chromosome is a start symbol, which,
when read, generates a matrix of the following 4 symbols: (ABCD, in the case
shown in the figure)

S →
(

A B
C D

)

. (5.6)

The rule generating the matrix is, of course, quite arbitrary. For example, the
elements could have been placed in a different order in the matrix. S and the
symbols A, B, C, and D are non-terminals, i.e. symbols that will themselves
be read and will then generate some other structure, which may contain both
non-terminals or terminals, i.e. symbols which are not processed further. Each
capital-letter symbol (Kitano used all letters A-Z) encodes a specific matrix of
lower-case letters, taken from an alphabet (a-p) of 16 symbols that encode all
16 possible 2 × 2 matrices. Thus, rules for decoding, say, the matrices A and B
are taken from the chromosome. For the chromosome shown in Fig. 5.6 above,
the results would be

A→
(

a f
b a

)

, (5.7)

and

B →
(

c a
d a

)

, (5.8)

etc. Note that the total number of matrices of the kind shown in the right-hand
sides of Eqs. (5.7) and (5.8) equals 164 = 216 = 65, 536. The result of decoding

c© Mattias Wahde, 2007

CHAPTER 5. ADVANCED TOPICS 68

the matrices in Eqs. (5.7) and (5.8) are given by

a→
(

0 0
0 0

)

, b→
(

0 0
0 1

)

, . . . p→
(

1 1
1 1

)

. (5.9)

Thus, the first step generates a 2 × 2 matrix of capital letters, the second step
a 4 × 4 matrix of lowercase letters, and the final step an 8 × 8 matrix of 0s and
1s. This method is then used for generating a simple FFNN. The diagonal el-
ements are used for determining the presence (1) or absence (0) of a neuron,
and the off-diagonal elements (wij) in the 8×8 matrix are used for determining
the connection weights from neuron i to neuron j. Since Kitano’s aim was to
generate FFNNs, recurrent connections were simply ignored, as were connec-
tions to non-existent neurons (i.e. those neurons encoded by rows with a 0 as
diagonal element).

In the encoding scheme showed in Fig. 5.6, it is possible that the same
capital-letter symbol may appear in several rules. In this case, only the first
(e.g. leftmost on the chromosome) rule is used in the decoding scheme imple-
mented by Kitano.

Several other grammatical encoding schemes have been introduced in the
literature (see e.g. [7]), but those schemes are beyond the scope of this text.

5.2 Selection

The selection of individuals in an EA can be performed in many different ways.
So far, in this course, tournament selection and roulette-wheel selection have
been considered. Here, two additional selection methods will be introduced
briefly, namely Boltzmann selection and competitive selection.

5.2.1 Boltzmann selection

The Boltzmann selection scheme introduces concepts from physics into the
mechanisms of EAs. In this selection scheme, the notion of a temperature T is
introduced in the EA, and the basic idea behind the selection scheme is to use
T as a tunable parameter that determines the extent to which good individuals
are preferred over bad individuals during selection. The mechanism derives
its name from the fact that the equations (see below) for Boltzmann selection
are similar to the Boltzmann distribution which, among other things, can be
used for determining the distribution of particle speeds in a gas. In addition,
due to the presence of the temperature parameter T , Boltzmann selection is
related to heating and cooling (annealing) processes in physics. Boltzmann
selection can be implemented in various different ways [2]. In one version,
the selection of an individual from a randomly selected pair of individuals is

c© Mattias Wahde, 2007

CHAPTER 5. ADVANCED TOPICS 69

based on the function b given by

b(fj1, fj2) =
1

1 + e
1

T
(1

fj1

−
1

fj2

)
, (5.10)

where fj1 and fj2 are the fitness values of the two individuals in the pair. Dur-
ing selection, a random number r is generated and the selected individual j is
determined according to

j =

{

j1 if b(fj1 , fj2) > r
j2 otherwise

(5.11)

If T is low, and fj1 > fj2 , individual j1 will be selected with a probability ap-
proaching 1 as T tends to zero. On the other hand, if T is large, the selection
procedure tends to select j1 and j2 with almost equal probability, regardless
of the difference in fitness. Normally, in runs with EAs using Boltzmann se-
lection, T is initially set to a high value, allowing the EA to sample the search
space as much as possible. T is then gradually reduced, making the EA home
in on the better solutions found in the early stages of the run.

An alternative Boltzmann selection scheme selects individual j with prob-
ability pj given by

pj(fj) =
e

fj

T

∑N
k=1 e

fk
T

, (5.12)

where fk denotes the fitness of individual k and N is the number of individu-
als in the population. As in the other Boltzmann selection scheme presented
above, individuals are selected with approximately equal probability if T is
large, whereas for small T , individuals with high fitness are more likely to be
selected.

5.2.2 Competitive selection and co-evolution

In all the selection schemes presented so far, the basis for the selection has
been a user-defined fitness function, which has always been specified before
the start of an EA run. However, this way of specifying a fitness function is
very different from the notion of fitness in biological systems, where there is no
such thing as an absolute fitness measure. Instead, whether an individual is fit
or not depends not only on itself, but also on other individuals, both those of
the same species and those of other species. These ideas have been exploited
in EAs as well. In competitive selection schemes, the fitness of an individ-
ual is measured relative to that of other individuals. Such selection schemes
are often used in connection with co-evolution, i.e. the simultaneous evolu-
tion of two (or more) species. In nature, co-evolution is a frequently occurring
phenomenon. For example, predators may grow sharper fangs as a result of

c© Mattias Wahde, 2007

CHAPTER 5. ADVANCED TOPICS 70

thicker skin in their prey (and the prey, in turn, will then grow even thicker
skin etc.). In EAs, co-evolution is often implemented by considering two pop-
ulations, where the fitness of the members of the first population is obtained
from interactions with the members of the second population, and vice versa.
A specific example are the sorting networks evolved by Hillis [9]. In this appli-
cation, the goal was to find sorting networks of order n, i.e. networks that can
sort any permutation of the number 1, 2, . . . , n. In his experiments, Hillis used
one population of sorting networks, which was evolved against a population
of sequences to be sorted. The fitness of the sorting networks was measured
by the ability to sort test sequences, and the fitness of the test sequences was
measured by their ability to fool the sorting networks, i.e. to make them sort
incorrectly.

A problem with co-evolution is the issue of measuring absolute improve-
ments, given that the fitness measure is a relative one. This problem can be at-
tacked in various ways. A simple procedure (used e.g. by Wahde and Nordahl
[18] in their work on pursuit and evasion in artificial creatures) is to measure
the performance of the best individual (a pursuer, say, in the application con-
sidered in [18]) against a given, fixed individual. However, such an individual
cannot easily be defined in all applications.

Co-evolution is an interesting (and biologically motivated) idea, but it is
not applicable to all problems. In addition, the problems involved in mea-
suring co-evolutionary progress (as discussed above) have made the use of
co-evolution in EAs quite rare.

5.3 Fitness measures

In many problems, e.g. function optimization, it is easy to specify such a func-
tion. However, in other problems it may be more difficult. An example of such
a case is one in which the fitness function should take into account several,
possibly conflicting, criteria (multiobjective optimization). Another example
is constrained optimization where not all possible solutions are valid.

The selection of the fitness measure has a great impact on the performance
of an EA. For example, consider the problem of finding the maximum of the
simple function

f(x) = 1000 + sinx. (5.13)

It would be possible, clearly, to select f(x) directly as the fitness measure.
However, it would be very unwise to do so, as most individuals would obtain
a fitness value of around 1000, thus giving the EA very little to work with. On
the other hand, taking the fitness as, say, f(x)−999 would give a non-negative
fitness measure which would strongly favor good solutions.

Another example can be taken from the field of evolutionary robotics. Con-
sider the problem of evolving a gait (i.e. a means of walking) for a simple

c© Mattias Wahde, 2007

CHAPTER 5. ADVANCED TOPICS 71

ϕ1

ϕ2
ϕ3

ϕ4

ϕ5

x

y

Figure 5.7: Configuration of a five-link bipedal walking robot.

model of a bipedal robot, namely the five-link robot shown in Fig. 5.7, using,
say, a neural network as the brain of the robot. An obvious choice of fitness
measure for this problem is simply the distance walked in a given amount of
time, i.e. the position of the center-of-mass (COM) of the robot, at the end
of an evaluation. However, with this fitness measure it is usually found that
the robot will throw itself forward, thus terminating the evalution, but at least
reaching further than robots that simply collapse. Here, the problem stems
from the fact that the step from a random neural network to one that can gen-
erate the cyclical pattern needed for legged locomotion is a very large one.
Indeed, evolving a gait (for a pre-defined body shape) from random initial
conditions is a very complex task, and the EA therefore takes the easier route
of just throwing the body of the robot forward. Of course, if the EA did find
an actual gait, however bad, that could keep the robot upright while walk-
ing slowly forward, the corresponding individual would obtain a higher fit-
ness value. However, such an individual is unlikely to be present in the early
generations of the EA. In this particular case, the problem can be solved by
combining several criteria. For example, the fitness measure can be taken as a
combination of the position of the feet and the posture (e.g. the vertical position
of the COM) at the end of the evaluation.

There exists a vast literature concerning multi-objective optimization and
constrained optimization, and here only a brief introduction will be given. The
interested reader is referred to [2] and [20].

c© Mattias Wahde, 2007

CHAPTER 5. ADVANCED TOPICS 72

f2

f1

Figure 5.8: Pareto optimality. The circles represent the set of non-dominated points, i.e. the
pareto-optimal set.

5.3.1 Multi-objective optimization

It is a common occurrence that there are several criteria involved in the evalua-
tion of an individual. For example, if an EA is used for the optimization of, say,
the engine of a car, three relevant criteria are performance, cost, and weight.
These criteria are conflicting: the performance can perhaps be increased by
selecting better components. However, doing so will increase the cost of the
engine etc.

Multi-objective optimization can be approached in a variety of ways. One
way is to use the notion of pareto-optimality.

Pareto-optimality

Consider a potential solution to a an optimization problem, given by the vector
x. For this vector, the fitness criteria fi thus takes the values fi(x) i = 1, . . . , K,
where K is the number of optimization criteria. x is said to be pareto-optimal
if there exists no individual y such that fi(y) ≥ fi(x) for all i, and fj(y) > fj(x)
for at least one j, j = 1, . . . , K. The set of such solutions form the pareto-
optimal set, and the vectors belonging to this set are also referred to a non-
dominated. In general, the pareto-optimal set consists of more than one ele-
ment.

The notion of pareto-optimality is illustrated in Fig. 5.8. The points shown
as circles form the pareto-optimal set, among the available points.

c© Mattias Wahde, 2007

CHAPTER 5. ADVANCED TOPICS 73

Multiple evaluations

In many problems in evolutionary robotics, it is common that each individual
must be evaluated in a variety of situations, to prevent the EA from finding
solutions that only perform well in certain specialized situations. Thus, in
such cases, the robot will be evaluated in a variety of different situations, and
each evaluation will result in a partial fitness value. Thus, when a robot has
been completely evaluated, there will be a vector of partial fitness values, from
which a scalar fitness value must be obtained. One way of doing so is to take
the average of the partial fitness values as the fitness of the individual, i.e. to
define the fitness f as

f =
Ne
∑

i=1

fi, (5.14)

where Ne is the number of evaluations, and fi is the partial fitness obtained
from evaluation i. However, taking the average does not always lead to good
results. For example, in a navigation task involving autonomous robots, it
was found in [16] that this fitness measure was quite slow in eliminating bad
individuals. This was so, since an individual could compensate for bad per-
formance in one evaluation by performing better (perhaps as a result of a for-
tuitous starting configuration) on other evaluations.

An alternative procedure is to use the minimum partial fitness value as the
final fitness value of the individual, i.e.

f = min
i
fi. (5.15)

In the robotic navigation problem considered in [16], this fitness measure gave
much better overall performance, since individuals that performed very badly
on even a single evaluation would be given low fitness, and would thus be
eliminated from the population.

Regardless of the weighting procedure used, however, it is important to
give the EA some positive feedback even for bad solutions (which usually
dominate the population in early generations). Thus, for example, if a robot is
given the task of navigating from point A to point B in an environment with
moving obstacles, the fitness for a given evaluation can be taken as e.g. the
distance to B at the time of the first collision, or at the end of the evaluation
time, whichever event occurs first. With this fitness measure, there will be a
smooth road for the EA, from very bad solutions towards better solutions.

5.3.2 Constrained optimization

In unconstrained optimization, the variables of the problem are allowed to
take any value among the possible values. By contrast, in constrained opti-
mization, this is not the case. For example, the problem of finding the max-

c© Mattias Wahde, 2007

CHAPTER 5. ADVANCED TOPICS 74

 3 23 40 7 9 11 39 15 4 1 16 21 14 37 23 11 22 7

 subject 1 subject 2 subject 1 subject 2
 class 1 class 2 class 1 class 2

Teacher 1 Teacher M

Figure 5.9: A chromosome for a simple scheduling problem.

imum of a function f(x1, x2) over the set of real numbers is a case of uncon-
strained optimization. Adding a set of conditions hi(x1, x2) = 0, i = 1, . . . , Nc,
where Nc is the number of conditions, turns the problem into a case of con-
strained optimization. Constraints can be of two kinds. Soft constraints are
allowed to be broken, but there is a cost (i.e. in terms of lower fitness, if an EA
is used), involved in breaking them, whereas hard constraints may not be bro-
ken: if a hard constraint is broken, the corresponding solution is considered
not to be valid, and is either given a low fitness value or is never evaluated. In
the latter case, there must be a screening of newly formed individuals, in or-
der to remove those solutions that are not valid, much as in biological systems,
where a developing embryo dies e.g. if its genome contains a mutation which
would lead to disastrous results in the phenotype. In practice, the screening of
individuals is implemented as an extra loop in the stage where new individ-
uals are formed: if, after selection, crossover, and mutation, a newly formed
individual is deemed not valid, it is simply discarded, and the selection step is
repeated.

As an illustration of fitness assignment for constrained optimization, con-
sider the problem of generating, by means of an EA, a schedule for the teachers
at a school. The hard constraints in this case are that students and teachers can
only be at one location at a time, and that a lecture room can only be used for
one class at a time. Soft constraints may concern e.g. the interval between suc-
cessive lectures in the same subject, to allow time for homework. Both teachers
and students may also have preferences regarding suitable lecture times. There
may be several conflicting constraints, and the fitness function must be chosen
in such a way as to produce the best possible solution, taking into account as
many as possible of the soft constraints (and all of the hard constraints).

A simple encoding scheme for school scheduling is shown in Fig. 5.9. The
scheme simply encodes the lecture times for each teacher, numbered from 1
to 40, where 1 corresponds to the first lesson on Monday morning and 40 to
the last lesson on Friday afternoon. The genes thus take integer values in the
range [1, 40].Obviously, the subjects taught by each teacher are known, and so
need not be encoded in the chromosome. The students are assumed to belong,
at all times, to a given fixed class.

Fig. 5.9 shows the (unrealistic) case in which each teacher has only two

c© Mattias Wahde, 2007

CHAPTER 5. ADVANCED TOPICS 75

subjects and two classes, four times a week. The length of the corresponding
chromosome equals 8M , where M is the number of teachers.

When the chromosomes are decoded, the schedule for each teacher is ob-
tained immediately, and the schedule for each class can also easily be found.
Schedules for the occupancy of the various lecture rooms are not included in
the encoding scheme considered here.

The fitness measure can now be defined as

f = αnc, (5.16)

where nc is the number of collisions or violations of hard constraints, and α is
a constant in the range]0, 1[.

Since the chromosomes are of fixed length, crossover can easily be imple-
mented. Mutations are also easy to implement, and can be made more useful
by only mutating those genes that lead to constraint violations.

5.4 EAs with mating restrictions

In nature, there are restrictions on mating, the most obvious one being that
individuals of one species generally do not mate with individuals of another
species. However, mating restrictions exist even within species, as a result
of, for example, geographical separation between individuals. In addition, to
prevent inbreeding, biological organisms are designed to avoid mating with
close relatives. The concept of mating restriction has been exploited in EAs as
well, and some brief examples will now be given.

5.4.1 Species-based EAs

In biology, one introduces the notion of species, to classify animals (and plants).
Members of the same animal species are simply those that can breed2 and have
offspring, or more correctly fertile offspring3. Speciation, i.e. the generation of
new species commonly occurs in nature, often as a result of physical separa-
tion (allopatry) of groups of individuals belonging to the same species. After
many generations, the descendants of those individuals may have evolved to
become so different (genetically) that members from one group can no longer
breed with members of the other group, should they meet. This is so, since
evolution will fine-tune animals (i.e. their genomes) to prevailing conditions.
In addition, random accidents such as mutations, occur during recombination
of chromosomes and, if beneficial, such accidental changes may spread rapidly

2For species that reproduce asexually, this definition can obviously not be used.
3For example, a female tiger and a male lion (or vice versa) can have offspring (called a

liger), but the offspring is sterile.

c© Mattias Wahde, 2007

CHAPTER 5. ADVANCED TOPICS 76

Figure 5.10: One version of mating restriction in ANNs: only networks with equal structure
are used in the crossover procedure

in a population, thus making it genetically different from another population
in which the same random change has not taken place. In addition to mu-
tations, gene duplication may also take place: it is common to find several
copies of the same gene in a genome. In fact, it is believed [4] that at least two
complete genome duplications have occurred in early vertebrates. Evidence for
this quadrupling of the genome can be obtained from studying a complex of
genes known as hox4. The hox gene complexes are a set of transcription fac-
tors (see Handout 1) which are active during development of an animal, and
which are responsible for determining the identity of different regions of a
body, i.e. whether a part is to become a limb or something else. In many verte-
brates (e.g. mammals), there are four hox gene complexes, suggesting that two
genome duplications have occurred.

Some EAs also use the concept of species. In such EAs, individuals are
only allowed to mate with individuals that share some properties, either on the
genotype level or the phenotype level. One of the simplest speciation schemes
is to allow crossover only between individuals for which the Hamming dis-
tance of the chromosomes, defined as the number of genes for which the two
chromosomes have different alleles (assuming a binary representation), does
not exceed a pre-specified maximum value D.

In other EAs, the properties of the objects being optimized may provide a
natural basis for mating restriction. For example, in the optimization of ANNs,
a simple mating restriction procedure is to allow crossover only between indi-
viduals with identical structure, as illustrated in Fig. 5.10.

In general, one of the main ideas behind the introduction of species is to

4The hox genes belong to a larger family of genes called homeobox genes. Mutations to
homeobox genes can cause visible phenotypic changes. An example is the fruit fly Drosophila
Melanogaster, in which an extra set of legs may be placed in the position normally occupied
by antennae, a result of mutations in homeobox genes

c© Mattias Wahde, 2007

CHAPTER 5. ADVANCED TOPICS 77

Figure 5.11: Mating restriction in a grid-based EA. The selected individual, represented
by the dark, central square in the figure, is only allowed to mate with one of its immediate
neighbors, shown as white squares.

maintain diversity in the population.

5.4.2 Subpopulation-based EAs

In subpopulation-based EA, the population of N individuals is divided into
Ns groups with ν = N/Ns individuals each. Mating is only allowed to take
place between individuals in the same subpopulation. Such EAs are also called
island models , for obvious reasons.

The idea behind subpopulation-based EAs is to prevent situations in which
an EA rapidly converges towards a local optimum (a situation known as pre-
mature convergence, making it difficult to reach the global optimum, as illus-
trated in Fig. 4.1. In a subpopulation-based EA, it is less likely that, in the
initial generation, all the best individuals in the subpopulations are located
close to the same local optimum.

However, if no interaction is allowed between individuals of different sub-
populations, a subpopulation-based EA simply amount to running Ns EAs
with ν individuals each. Thus, in some cases tunneling is allowed with some
small probability pt. Tunneling can be achieved simply by swapping two indi-
viuals between subpopulations.

5.4.3 Grid-based EAs

In grid-based EAs, also known as diffusion models, individuals are placed in
a regular pattern as shown in Fig. 5.11, and mating restrictions are introduced
based on the placement of individuals on the grid. When an individual i on
the grid is to be replaced by a new individual, parents are selected only in

c© Mattias Wahde, 2007

CHAPTER 5. ADVANCED TOPICS 78

the neighborhood of the individual i. In the figure, the neighborhood contains
eight individuals, but other neighborhood sizes are, of course, possible as well.

The topology of the grid can be chosen in many different ways. A common
procedure is to use periodic boundary conditions, in which the two edges of
a square grid are joined to form a toroidal space.

5.5 Experiment design

In many applications, the task is to find a system (e.g. a neural network) that
can represent a given data set. For example, a neural network can be evolved
to represent the mapping (x1, x2, . . . , xn) → f(x1, x2, . . . , xn). Another common
example is data classification, in which a data set is to be divided into two (or
more) classes, based on some criteria available in the data. The task of the
EA is then to generate a classifier capable of doing so. For example, in binary
classification (i.e. classification into two classes), linear classifiers of the form

α1c1 + α2c2 + . . . αncn > β, (5.17)

can be evolved, where αi and β are constants and ci are some attributes avail-
able in the data set. With this type of classifier, an object (in the data set), with
attributes (c1, c2, . . . , cn) belongs to class I (say) if the inequality in Eq. (5.17) is
satisfied, and to class II if it is not.

In all applications of the kinds described above, it is important to define
both a training data set and validation data set. The training data is used
when generating the representation, i.e. while running the EA. Now, if all the
data is placed in the training set, it is often so that a very good representation
of the data can be found. However, in that case, there is no way to investigate
whether the representation indeed focuses on important aspects of the data,
or whether it just manages to represent the noise in the data (a phenomenon
known as overfitting). In order to investigate the quality of a representation,
the validation data set is used. This data set should not be made available to
the EA during training. If, during validation, it is found that the performance
of the evolved system is similar to its performance on the training data set,
one may conclude that a useful representation of the data set (i.e. one with
predictive value) has been found.

Note that a validation data set can also be used for determining when to
terminate the training process. It is commonly so that the errors (i.e. the in-
verse of the fitness) over both the training data set and the validation data
set fall rapidly in the beginning of the training procedure. However, at some
point, the error over the validation data set (which, again, is not made avail-
able to the training algorithm) usually starts rising. If the rising trend in the
validation error persists, the training should be terminated, and the evolved

c© Mattias Wahde, 2007

CHAPTER 5. ADVANCED TOPICS 79

system for which the validation error was minimal can be taken as the best
result obtained.

There are no strict rules for dividing a data set into training and validation
parts. A common rule of thumb, however, is to use around 80% of the data for
training, and the remaining 20% for validation [8].

c© Mattias Wahde, 2007

CHAPTER 5. ADVANCED TOPICS 80

c© Mattias Wahde, 2007

Chapter 6
Versions of evolutionary algorithms

6.1 Evolutionary algorithms: different versions

During its development, the study of EAs has spawned a number of versions
of the basic algorithm, which are all based on the same general principles but
still differ, to some extent, from each other. In this chapter, a brief discussion
of the various different versions of EAs will be given. The most important are

• Genetic algorithms,

• Genetic programming,

• Evolution strategies,

• Evolutionary programming.

Within each category, there exists also a number of different versions, putting
a complete survey beyond the scope of this text.

6.2 Genetic algorithms

In genetic algorithms (GA), the variables of the problem are encoded in strings
of genes, normally consisting of binary numbers or decimal numbers in the
range [0, 1]. A population of such strings is generated, the chromosomes are
decoded and the corresponding individuals are evaluated. Thereafter, new in-
dividuals are formed through selection, crossover, and mutation. It is possible
to use a variable mutation probability, but its value is set externally, and is thus
not encoded into the bit strings. In a standard GA, all strings are of the same
length, and are therefore easy to manipulate, for instance when performing
crossover between two chromosomes.

81

CHAPTER 6. VERSIONS OF EVOLUTIONARY ALGORITHMS 82

*

 3 +

 z *

 5 *

 z z

IfObjectInView

ChangeSpeed Turn

 1 30

Figure 6.1: Two GP trees. The tree to the left can be decoded to the function f(z) = 3(z +
5z2). The tree to the right tells a robot to increase its speed by one unit if it sees an object, and
to turn by 30 degrees if it does not see any object.

6.3 Genetic programming

After GAs, genetic programming (GP) is probably the most widely used type
of evolutionary algorithms, and several different versions have been devel-
oped. In the original formulation of GP, which will be described first, tree-
based representations were used for the individuals. In later versions, such as
linear GP, simple, linear chromosomes have been used instead.

6.3.1 Tree-based genetic programming

As the name implies, tree-based GP is used for evolving combinations (trees)
of elementary instructions, i.e. computer programs rather than strings of dig-
its. Very often, GP is implemented using the LISP programming language,
whose structure fits well with the tree–like structure of individuals in standard
GP. However, GP can also be implemented in other programming languages.
In tree-based GP, trees consisting of elementary operators and terminals are
generated. The elementary operators require a number of input arguments,
whereas the terminals take no inputs. For example, the operator + requires
two arguments, whereas the operator sin() requires one. The standard GP be-
gins with the selection (by the user) of a suitable set of elementary operators
and terminals. In a problem involving function approximation, a possible set
of operators is {+,−,×, /, exp(), sin(), cos(), ln()}, and the terminals could be
chosen as the set of real numbers and the variable x. If the problem instead is
to evolve a search strategy for an autonomous robot, the operators could con-
sist of the set { IfObjectInView(,), Turn(), ChangeSpeed()}, where the operator

c© Mattias Wahde, 2007

CHAPTER 6. VERSIONS OF EVOLUTIONARY ALGORITHMS 83

Figure 6.2: The crossover procedure in GP.

IfObjectInView takes two arguments, one saying what to do if an object is vis-
ible, and one saying what to do if no object is visible. The terminals would
be the real numbers encoding the magnitudes of the changes in direction and
speed, as well as the Stop action.

When a GP run is started, a population of random trees (individuals) is
generated. Two examples are shown in Fig. 6.1. The tree in the left panel of
the figure can be decoded to yield f(z) = 3(z + 5z2) which, using LISP–like
notation, also can be written as (∗, 3, (+, z, (∗, 5, (∗, z, z)))). The tree in the right
panel gives the following control system for an object–seeking robot IfObject-
InView(ChangeSpeed(1),Turn(30)), which simply means that the robot will in-
crease its speed by one unit if it sees an object, and change its direction of
motion by 30 degrees (clockwise, say) if it does not see an object. The IfObject-
InView operator is the root of the tree.

Normally, some limits are set on the size of the trees in the first generation,
by setting a limit on the number of elementary operators or the depth of the
tree (i.e. the number of branchings from the root to the terminal furthest from
the root). When GP trees are generated, it is vital to ensure that they are syn-
tactically correct so that each elementary operator has the correct number of
inputs.

After the initial trees have been generated, they are evaluated one by one.
In the case of a function approximation problem, the difference (e.g. mean–
square) between the correct function and the function provided by the GP tree
would be measured, and the fitness would essentially be the inverse of the
difference.

When all trees have been evaluated, new trees are formed through selec-
tion, crossover, and mutation. The crossover operator differs from that used
in GAs. In GP, the two trees that are to be crossed over are split at random lo-
cations, and the subtrees below these locations are swapped between the two.
The procedure, which clearly leads to trees of varying size, is illustrated in Fig.
6.2.

The mutation operator can change both terminals and elementary oper-

c© Mattias Wahde, 2007

CHAPTER 6. VERSIONS OF EVOLUTIONARY ALGORITHMS 84

ators, but must be implemented in such a way as to maintain the syntactic
correctness of the trees.

6.3.2 Linear genetic programming

Unlike tree-like GP, linear GP (LGP) is used for evolving linear sequences of
basic instructions defined in the framework of an imperative programming
language.1 Two central concepts in LGP are registers and instructions. Reg-
isters are of two basic kinds, variable registers and constant registers. The
former can be used for providing input, manipulating data, and storing the
output resulting from a calculation. As a specific example, consider the ex-
pression

r3 := r1 + r2; (6.1)

In this example, the instruction consists of assigning a variable register (r3) the
sum of the contents in two other variable registers (r1 and r2). As a second
example, consider the instruction

r1 := r1*c1; (6.2)

Here, a variable register r1 , is assigned its previous value multiplied by the
contents of a constant register c1 . In LGP, a sequence of instructions of the
kind just described are specified in a linear chromosome. The encoding scheme
must thus be such that it identifies the two operands (i.e. r1 and c1 in the sec-
ond example above), the operator (multiplication, in the second example), as
well as the destination register (r1). An LGP instruction can thus be repre-
sented as a sequence of integers that identify the operator, the index of the
destination registers, and the indices of the registers used as operands. For
example, if only the standard arithmetic operators (addition, subtraction, mul-
tiplication, and division) are used, they can be identified e.g. by the numbers
1,2,3, and 4. The set of all allowed instructions is called the instruction set
and it may, of course, vary from case to case. However, no matter which in-
struction set is employed, the user must make sure that all operations generate
valid results. For example, divisions by zero must be avoided. Therefore, in
practice, protected definitions are used. An example of a protected definition
of the division operator is

ri :=

{

rj/rk if rk 6= 0,
rj + cmax otherwise,

(6.3)

1In imperative programming, computation is carried out in the form of an algorithm con-
sisting of a sequence of instructions. Typical examples of imperative programming languages
are C, Fortran, Java, and Pascal, as well as the machine languages used in common micropro-
cessors and microcontrollers. By contrast, declarative programming involves a description of
a structure but no explicit algorithm (the specification of an algorithm is left to the support-
ing software that interprets the declarative language). A web page written in HTML is thus
declarative.

c© Mattias Wahde, 2007

CHAPTER 6. VERSIONS OF EVOLUTIONARY ALGORITHMS 85

Instruction Description Instruction Description
Addition ri := rj + rk Sine ri := sin rj

Subtraction ri := rj − rk Cosine rj := cos rj

Multiplication ri := rj × rk Square ri := r2
j

Division ri := rj/rk Square root ri :=
√
rj

Exponentiation ri := erj Conditional branch if ri > rj

Logarithm ri := ln rj Conditional branch if ri ≤ rj

Table 6.1: Examples of typical LGP operators. Note that the operands can be either variable
registers or constant registers.

where cmax is a large (pre-specified) constant. Note that the instruction set can,
of course, contain operators other than the simple arithmetic ones. Some ex-
amples of common LGP instructions are shown in Table 6.1. The usage of the
various instructions should be clear except, perhaps, in the case of the branch-
ing instructions. Commonly, these instructions are used in such a way that the
next instruction is skipped unless the condition is satisfied. Thus, for example,
if the following two instructions appear in sequence

if (r1 < r2)
r1 := r2 + r3;

(6.4)

the value of r1 will be set to r2+r3 only if r1 < r2 when the first instruction
is executed. Note that it is possible to use a sequence of conditional branches
in order to generate more complex conditions. Clearly, conditional branching
can be augmented to allow e.g. jumps to a given location in the sequence of in-
structions. However, the use of jumping conditions can raise significantly the
complexity of the representation. As soon as jumps are allowed, one faces the
problems of (1) making sure that the program terminates, i.e. does not enter an
infinite loop, and (2) avoiding jumps to non-existent locations. In particular,
application of the crossover and mutation operators (see below) must then be
followed by a screening of a newly generated program, to ascertain that the
program can be executed correctly. Jumping instructions will not be consid-
ered further here.

In LGP, chromosomes are used, similar to the those employed in a GA. An
example of an LGP chromosome is shown in Fig. 6.3. Note that some instruc-
tions (e.g. addition) need four numbers for their specification, whereas others
(e.g. exponentiation) need only three. However, in order to simplify the rep-
resentation, one may still represent each instruction by four numbers, simply
ignoring the fourth number for those instructions where it is not needed. Note
that the four numbers constituting an instruction may have different range.
For example, the operands may involve both variable registers and constant
registers, whereas the destination register must be a variable register. In the
specific example shown in Fig. 6.3, there are three variable registers available

c© Mattias Wahde, 2007

CHAPTER 6. VERSIONS OF EVOLUTIONARY ALGORITHMS 86

1 2 1 4 1 3 2 2 3 1 2 3 5 1 5 1 1 1 1 4

Operator (range [1,5])

Destination register (range [1,3])

Operand 1 (range [1,6])

Operand 2 (range [1,6])

Figure 6.3: An example of an LGP chromosome.

Genes Instruction Result
1, 2, 1, 4 r2 := r1 + c1 r1 = 1, r2 = 2, r3 = 0
1, 3, 2, 2 r3 := r2 + r2 r1 = 1, r2 = 2, r3 = 4
3, 1, 2, 3 r1 := r2 × r3 r1 = 8, r2 = 2, r3 = 4
5, 1, 5, 1 if (r1 > c2) r1 = 8, r2 = 2, r3 = 4
1, 1, 1, 4 r1 := r1 + c1 r1 = 9, r2 = 2, r3 = 4

Table 6.2: Evaluation of the chromosome shown in Fig. 6.3, in a case where the input register
r1 was initially assigned the value 1. The variable registers r2 and r3 were both set to 0, and
the constant registers were set as c1 = 1, c2 = 3, c3 = 10. The first instruction (top line) is
decoded from the first four genes in the chromosome etc. The resulting output was taken as the
value contained in r1 at the end of the calculation.

(r1, r2, and r3) and three constant registers (c1, c2, and c3), as well as five op-
erators, namely addition, subtraction, multiplication, division, and the condi-
tional branch instruction ’if (ri > rj)’. Let R denote the set of variable registers,
i.e. R = {r1, r2, r3}, and C the set of constant registers, i.e. C = {c1, c2, c3}. Let
A denote the union of these two sets, so that A = {r1, r2, r3, c1, c2, c3}. The set
of operators, finally, is denoted O. Thus, in the set O = {o1, o2, o3, o4, o5}, the
first operator (o1) represents + (addition) etc. An instruction is encoded using
four numbers. The first number, in the range [1,5], determines the operator
as obtained from the set O and the second number determines the destination
register, i.e. an element from the set R. The third and fourth numbers deter-
mine the two operands, taken from the set A. For some operators, only one
operand is needed. In such cases, the fourth number is simply ignored, as
mentioned above.

Before the chromosome can be evaluated, the registers must be initialized.
In the particular case considered in Fig. 6.3, the constant registers were set as
c1 = 1, c2 = 3, and c3 = 10. These values then remained constant throughout
the entire run, i.e. for all individuals. The variable registers should be initial-
ized just before the evaluation of each individual. The input was provided

c© Mattias Wahde, 2007

CHAPTER 6. VERSIONS OF EVOLUTIONARY ALGORITHMS 87

Figure 6.4: An illustration of crossover in LGP. The two parent chromosomes are shown in
the upper part of the figure, and the two offspring chromosomes are shown below. Note that
two crossover points are selected in each chromosome.

through register r1, and the other two variable registers (r2 and r3) were ini-
tialized to zero. The output could in principle be taken from any register(s).
In this case, r1 was used. The computatation obtained from the chromosome
shown in Fig. 6.3, in a case where r1 (the input) was set to 1, is given in Ta-
ble 6.2.

The evolutionary operators used in connection with LGP are quite similar
to those used in an ordinary GA. However, two-point crossover is commonly
used (instead of single-point crossover), since there is no reason to assume that
the length of original, random chromosomes would be optimal. With two-
point crossover, normally applied with crossover points between (rather than
within) instructions, length variation is obtained. The crossover procedure is
illustrated in Fig. 6.4.

6.4 Evolution strategies

Evolution strategies (ES) were invented in Germany, and were initially devel-
oped independently of GA and GP (which are mainly American inventions).
Nowadays, the different versions of EAs have borrowed properties from each
other, and the differences are therefore less marked than before. Here we will
introduce a standard evolution strategy lacking most of the bells and whis-
tles. Originally, ES used real number encodings, and new individuals were
formed using only a mutation operator. For simplicity, let us consider a func-
tion maximization task for a function g = g(x1, . . . , xn). The evolution strategy
operates as follows: The population consists of only one individual, which is

c© Mattias Wahde, 2007

CHAPTER 6. VERSIONS OF EVOLUTIONARY ALGORITHMS 88

represented by a pair of vectors {(x1, . . . , xn), (σ1, . . . , σn)}, where (x1, . . . , xn)
are the variables of the problem and (σ1, . . . , σn) is a variance vector which is
used when forming new individuals.

An individual is evaluated by simply computing g(x1, . . . , xn). Then, the
vector (x1, . . . , xn) is varied (mutated) according to

xi → x′i = xi +N(0, σi), i = 1, . . . , n, (6.5)

where N(0, σi) is a Gaussian random number with expectation value 0 and
standard deviation σi. When the vector (x′1, . . . , x

′

n) has been found, the new
individual is evaluated by computing g(x′1, . . . , x

′

n). If the result is better than
g(x1, . . . , xn), i.e. gives a higher value, the old individual is replaced by the
new one. If not, the old individual is kept and a new mutation of (x1, . . . , xn)
is made according to Eq. (6.5).

An important property of ES is adaptation of the variance vector. A rule
of thumb is that the ratio Γ of the number of successful mutations (those that
give g(x′1, . . . , x

′

n) > g(x1, . . . , xn)) to the total number of mutations should be
1/5. If Γ exceeds 1/5 over a period of five updates, i.e. if more than one of the
five mutations are successful, the values of the elements of the variance vector
(which we here assume are equal) are increased by a constant α > 1, otherwise
they are decreased by a constant β < 1.

In later versions of ES, self–adaptation was introduced for the elements
of the variance vector. In this case, the values σi all undergo independent
mutations. Other additions, which will not be considered here, have been the
introduction of larger populations and crossover operators.

6.5 Evolutionary programming

Evolutionary programming (EP) was developed in the 1960s, with the specific
aim of generating machine intelligence. Initially, EP was implemented using
FSMs. In later years, generalizations and extensions have been made, and EP
is today used also in e.g. function optimization problems.

In EP, a population of random FSMs is generated, usually with some limits
on the sizes of the FSMs, just as for the initial generation of trees in GP. The
task of the FSMs is to provide the best action (for a robot, say), given infor-
mation of all previous events. The events consist of the presentation of input
symbols from an input alphabet. As a response to the input, the FSM produces
an output (e.g.a move). The performance of each FSM is evaluated, and new
FSMs are formed through selection and mutation. The mutation operator can
have different effects: it may change the starting state of the FSMs, the transi-
tion conditions, the transition targets, as well as the number of states. The EP
is allowed to run until the robot must respond to some external event. At this
point, the best FSM from the population is allowed to make the response for

c© Mattias Wahde, 2007

CHAPTER 6. VERSIONS OF EVOLUTIONARY ALGORITHMS 89

the robot. Then, the input symbol which triggered the response is added to
the list of symbols experienced by the robot, and the population continues to
evolve (this time using an input sequence which is one step longer than before
the response) until a new response is called for.

c© Mattias Wahde, 2007

CHAPTER 6. VERSIONS OF EVOLUTIONARY ALGORITHMS 90

c© Mattias Wahde, 2007

Appendix A: Binomial identities

In this appendix will be derived some relations involving binomial coeffi-
cients, which are needed in the discussion concerning analytical properties of
GAs. Using the equation

(a+ b)n =
n
∑

k=0

(

n

k

)

akbn−k (A1)

where the binomial coefficient
(

n

k

)

is defined as

(

n

k

)

=
n!

k!(n− k)!
. (A2)

and setting a = x, b = 1, the equation

(1 + x)n =
n
∑

k=0

(

n

k

)

xk (A3)

is obtained. Setting x = 1, it is easy to see that

n
∑

k=0

(

n

k

)

= 2n. (A4)

Differentiating Eq. (A3) with respect to x, one obtains

n(1 + x)n−1 =
n
∑

k=0

k

(

n

k

)

xk−1. (A5)

Again setting x = 1, the result

n2n−1 =
n
∑

k=0

k

(

n

k

)

(A6)

91

92 Appendix A: Binomial identities

is obtained. Multiplying both sides of Eq. (A5) by x, and differentiating again,
the identity

n
∑

k=0

k2

(

n

k

)

= n(n + 1)2n−2 (A7)

is generated. Continuing the procedure one step further, the equation

n
∑

k=0

k3

(

n

k

)

= n2(n+ 3)2n−3. (A8)

is obtained. Using this iterative procedure the sum

sp =
n
∑

k=0

kp

(

n

k

)

, (A9)

can be derived for any p, given sp−1, even though a simple closed-form expres-
sion of sp cannot be generated for arbitrary p.

From the definition of the binomical coefficients, the following equations
can also be derived

(

n

k − 1

)

=
n!

(k − 1)!(n− k + 1)!
=

k

n− k + 1

n!

k!(n− k)!
=

=
k

n− k + 1

(

n

k

)

, (A10)

and
(

n

k + 1

)

=
n!

(k + 1)!(n− k − 1)!
=
n− k

k + 1

n!

k!(n− k)!
=
n− k

k + 1

(

n

k

)

. (A11)

Appendix B: Artificial neural
networks

The aim of this appendix is to give a very brief introduction to neural net-
works. For a more thorough introduction see [8]. Artificial neural networks
(ANNs) are computational structures (loosely) based on the structure and func-
tion of biological neural networks that appear in the brains of animals. Basi-
cally, an ANN is a set of interconnected elements, called neurons.

Neurons

The main computational element in neural networks, the neuron, is illustrated
in Fig. B1. In essence a neuron receives weighted inputs, either from other
neurons (or from the neuron itself, in some networks, see below), or from in-
put elements, sums these inputs, adds a bias to form an internal signal, and
produces an output by passing the internal signal through a squashing func-
tion. ANNs may operate either in discrete time or continouous time. In the
former case, the output at time t of neuron i in a network, denoted xi(t) is
computed as

xi(t) = σ

∑

j

wijzj + bi

 , (B1)

where wij are the connection weights, zj the input signals to the neuron and
bi is the bias. In the continuous case, the output at time x(t) is typically given
by the differential equation

τiẋi + xi = σ

∑

j

wijzj + bi

 , (B2)

where τi are time constants. Typically, the zj are inputs from other neurons (or
even the neuron i itself), thus joining the equations for different neurons into a

93

94 Appendix B: Artificial neural networks

wn

w2

w1

b

S s

Figure B1: A schematic illustration of a neuron from an ANN.

set of coupled non-linear differential equations. Other equations are also pos-
sible, of course. In any case, the neuron equations presented above represent
very strong simplifications of the very intricate functionality of actual biologi-
cal neurons. The squashing function can be chosen in various different ways.
Two common choices are the logistic function

σ(z) =
1

1 + e−cz
, (B3)

which restricts the output to the range [0, 1], and the hyperbolic tangent

σ(z) = tanh cz, (B4)

which restricts the output to [−1, 1]. In both functions, c is a positive constant,
which determines the steepness of the squashing function. If c is set to a very
large value, σ(z) approaches a step function.

Network types

The two main types of neural networks are feedforward neural networks
(FFNNs) and recurrent neural networks (RNNs). In the former, neurons are
arranged in layers, and signals flow from the input to the first layer, from the
first layer to the second layer etc., until the output layer is reached. By contrast,
in RNNs, any neuron may be connected to any other neuron. RNNs often op-
erate in continouous time, using Eq. (B2) to represent neurons. The difference
between FFNNs and RNNs is illustrated in Fig. B2. For the FFNN, shown in
the left panel of the figure, the input signals are denoted Ij, the neurons in the
middle layer (the hidden layer) xH, and the neurons in the output layer xO.
Assuming the network operates in discrete time, which is common in FFNNs,
the corresponding network equations will be

xH
i = σ

∑

j

wIH
ij Ij + bi

 , (B5)

Appendix B: Artificial neural networks 95

Figure B2: Different types of ANNs: the left panel shows a feedforward neural network
(FFNN), and the right panel a recurrent neural network (RNN).

where wIH
ij are the weights connecting input element j to neuron i in the hid-

den layer, and

xO
i = σ

∑

j

wHO
ij xH

j + bi

 , (B6)

where wHO
ij are the weights connecting the hidden layer to the output layer.

Note that the first (leftmost) layer (the input layer in the FFNN) does not con-
sist of neurons: the elements in this layer, indicated by squares to distinguish
them from neurons that are indicated by circles, simply serve to distribute the
input signals to the neurons in the hidden layer. No squashing function is as-
sociated with the elements in the input layer. In general, the term units will be
used to refer to either input elements or neurons.

An RNN is shown in the right panel of Fig. B2. Here, neurons are not
arranged in layers, and the output of a typical neurons is given by

τiẋi + xi = σ

∑

j

wijxj(t) +
∑

j

wI
ijIj(t) + bi

 , (B7)

wherewij are the weights connecting neurons to each other, andwI
ij are weights

connecting input j to neuron i. Again, the inputs are shown as squares in the
figure, and the neurons are shown as circles. Since an RNN is not arranged in
layers, there are no natural output neurons. Instead, some neurons are sim-
ply selected to be the output neurons. The number of such neurons varies, of
course, from problem to problem.

Training an ANN

In a neural network, the computation is intertwined with the structure of the
network (i.e. the number of neurons, and their connections to each other). If
the structure is changed, the computation changes as well. Thus, in order for a
network to perform a given type of computation, both the number of neurons
and the network weights must be set to appropriate values, a process known as
training. There are various algorithms for training neural networks. The most

96 Appendix B: Artificial neural networks

common algorithm, applicable to FFNNs, is the backpropagation algorithm
[8].

Bibliography

[1] Sutton, R.S. and Barto, A.G. Reinforcement Learning: An Introduction, MIT
Press, 1998

[2] Bäck, T., Fogel, D.B., and Michalewicz, Z. (Eds.), Handbook of Evolutionary
Computation, Institute of Physics Publishing and Oxford University Press,
1997

[3] Clark, W.R. and Grunstein, M. Are we hardwired? The role of genes in human
behavior, Oxford University Press, 2000

[4] Davidson, E.H. Genomic regulatory systems - development and evolution, Aca-
demic Press, 2001

[5] Dawkins, R. Climbing Mount Improbable, Penguin Books, 1997

[6] Goldberg, D. Genetic Algorithms in Search, Optimization, and Learning,
Addison-Wesley, 1989

[7] Gruau, F. Automatic definition of modular neural networks, Adaptive Behav-
ior 3, pp. 151-183, 1995

[8] Haykin, S. Neural networks - A comprehensive foundation, Prentice-Hall,
1994

[9] Hillis, W.D., Co-evolving parasites improve simulated evolution as an optimiza-
tion procedure, Physica D, 42, pp. 228-234, 1990

[10] Holland, J. H. Adaptation in Natural and Artificial systems, University of
Michigan Press, 1975 (2nd Ed.: MIT Press, 1992)

[11] de Jong, K. A. An analysis of the behavior of a class of genetic adaptive systems,
Doctoral dissertation, University of Michigan, 1975

[12] Kandel, E. R. The molecular biology of memory storage: A dialog between genes
and synapses, Bioscience Reports 24, pp. 477-533, 2004

97

98 Appendix B: Artificial neural networks

[13] Kitano, H. Designing neural networks using genetic algorithms with graph gen-
eration system, Complex Systems 4, pp. 461-476, 1990

[14] Mitchell, M. An introduction to genetic algorithms, MIT Press, 1996

[15] Ptashne, M. A genetic switch: Phage λ and higher organisms, 2nd ed., Cell
press and Blackwell scientific publications, 1992

[16] Savage, J., Marquez, E., Pettersson, J., Trygg, N., Petersson, A., and
Wahde, M. Optimization of Waypoint-Guided Potential Field Navigation Us-
ing Evolutionary Algorithms To appear in: Proc. of IROS2004, 2004

[17] Vose, M. D. The simple genetic algorithm, MIT press, 1999

[18] Wahde, M. and Nordahl, M. Co-evolving pursuit-evasion strategies in open
and confined regions, In: Proc. of Artificial Life VI, pp. 472-476, 1998

[19] Yao, X. Evolving artificial neural networks, Proceedings of the IEEE, 87, pp.
1423-1447, 1999

[20] Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs,
3rd Ed., Springer, 1996

