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Foreword

This document contains exercises on some of the topics covered in the course
Artificial Intelligence 2: Biological methods. However, the use of evolutionary
algorithms usually involves computer programming, and is thus not so well
suited to pen-and-paper exercises. Thus, the problems given here cover mostly
the basics of genetic algorithms.

Programming-oriented problems will mostly be given in the assignments,
even though a few such problems are presented below. Those problems which
require computer programming are marked with a [C]. Answers to some of
the exercises are given at the end of the document.
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(1) ’

Figure E1: Genetic regulatory network for problem 1.2.

1. Biological basis of evolutionary algorithms

1.1

1.2

Consider a population of simple creatures, with a single chromosome
consisting of n = 1,000 base pairs. Each entry in the chromosome can
take four values (A, C, G, or T). Assume that the population size is equal
to M.

a) How many possible chromosomes are there (express you answer in
the form ¢;10°2?

b) Assuming that the chromosome length and the population size remain
constant, what is the upper limit of the number of different chromosomes
evaluated in the course of G generations?

c) If the population size is constant and equal to 10'?, how large a frac-
tion ¢ of the total number of chromosomes will be evaluated during 10°
generations, assuming that all evaluated chromosomes are different?

In biological systems, some genes regulate the activity of other genes.
A simplified model for the dynamics of genetic regulatory networks is
given by
dl’i " .
Tia+xiza(,§;wijxj+bi)’ 1=1,...,n, (E1)
=

where z; is the activity of gene ¢, 7; are time constants, and n is the num-
ber of genes in the network. The weights w;; determine the influence of

gene j on gene i, and the b; are bias terms. The sigmoid function can be

chosen as .

)= e

where c is a constant. Consider now a network of two genes, as shown
in Fig. E1. In this network, the only non-zero weights are w3, ws;, and
waye. The two bias terms b, and b, are both equal to zero, and c is equal to
1.

a) Assuming that the self-inhibitory weight of the second gene (wy») is
equal to —1, and that the network reaches a fixed-point z}' = 0.1,25 = 0.5
after a long time, determine the values of wi, and wy;.

(E2)
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Figure E2: Chromosomes for two—dimensional function optimization (Prob-
lem 2.1).

b) Assuming that 4 = 1 and » = 3, sketch the dynamics for the first
ten time units, starting from z; = z; = 0. What is the maximum value
attained by z,?

2. Basics of evolutionary algorithms

2.1

2.2

2.3

A genetic algorithm is used in order to find the optimum of the function
f(x,y) = e @05°~-05° The chromosomes encode the values of = and
y using 7—digit binary encoding, without rescaling, as shown in Fig. E2.
The fitness is taken equal to the value of the function f(x,y).

a) Decode the two chromosomes shown in of Fig. E2. What are the cor-
responding values of = and y, and what will be the fitness values for the
two individuals?

b) Perform crossover between the two chromosomes considered in a).
Assume that the crossover point is chosen as shown in of Fig. E2. Again,
decode the two resulting chromosomes and determine the values of x
and y, as well as the fitness values.

[C] Write a “minimal” GA in which the selection operator simply picks
two individuals at random, and where the reproduction operator is such
that, with probability p ~ 0.9, the individual with the higher fitness is
retained, and the other individual is replaced by a mutated copy (muta-
tion rate: py,,) of it, and vice versa with probability 1 — p. (Before any
selection is made, all individuals are evaluated once).

[C] Apply the simple GA in problem 2.2 to the problem of finding the
minimum of the function g(z, y) = 20+ ¢ —20e 01 +v*) _ o3 (cos 2ma-tcos 2my)
For the variables = and y, use 10-digit binary encoding where the first
gene determines the sign of the variable (e.g. O=positive, 1=negative),
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24

2.5

and the remaining nine genes determine the absolute value of the vari-
able, in the range [0,2[. Use f = 1/(1 + g(x,y)) as the fitness measure.
With N = 30 and py,,t = 0.05, how many individuals must be evaluated
(average of 20 runs, say), in order to achieve a fitness greater than 0.9999?

Consider a case where an individual is to be chosen from a population
with four individuals with fitness values f; = 1,f;, = 2, f3 = 3, and
f1 = 4. What is the probability that individual 2 (with fitness equal to 2)
will be selected, if the selection is performed using

a) Roulette-wheel selection?

b) Tournament selection (with tournament size equal to 2, and the prob-
ability of selecting the best individual equal to 0.75)?

Consider a population consisting of five individuals with the fitness val-
ues (before ranking) f1 = 5, fo = 7, f3 = 8, f4 = 10, and f5 = 15. Com-
pute the probability that individual 4 will be selected (in a single selec-
tion step) with (1) roulette wheel selection, (2) tournament selection, with
tournament size equal to 2, and the probability of selecting the best indi-
vidual (in a given tournament) equal to 0.75, (3) roulette wheel selection,
based on linearly ranked fitness values, where the lowest fitness value is
set to 1 and the highest fitness value set to 10.

3. Using evolutionary algorithms

3.1

3.2

3.3

Based on the Matlab program in Handout 3, write Matlab code for

a) Decoding m variables from a chromosome with n binary genes,

b) Decoding n variables from a chromosome with n real-valued genes,
¢) Roulette-wheel selection,

d) Linear fitness ranking (hint: use the sort command in Matlab),

e) Steady-state reproduction, in which the two worst individuals in the
parent population are replaced by the two offspring,

f) Creep mutations (for the case of real-numbered encoding, as in b)).

[C] Using the Matlab code from Handout 3, and the results from 3.1,
write a standard GA as described in Handout 2.

[C] Apply the standard GA from problem 3.2 to the problem of finding
the maximum of the benchmark function 5 (z1, ..., x5) (see Handout 3),
using various different parameter settings. For each parameter setting,
make 10 runs, and list your results in a table similar to Tables 3.2 and 3.3
(see Handout 3).
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3.4

3.5

[C] In his study of parameter selection for GAs, de Jong (See Handout
3), found that a population size of 200 gave better average performance
than population sizes of 50 or 100 for the minimization of

3
fl(l'l,l‘g,l'g) = Z‘T?u T; € [_5127512]7 (E3)

i=1

using a binary encoding scheme. Repeat de Jong’s experiment for pop-
ulation sizes 10, 30, 50, 100, 200, 500, using 10 genes per variable, a
crossover rate p. of 1.0, and a mutation rate of p,,,, = 0.01. What (if any)
statistically significant conclusions can be drawn from the experiment?

[C] a) Write a standard GA using 10-digit decimal encoding for the vari-
ables = and y, and find the maximum of the function g(x,y) = (sinzy +
cos(x + V3y))/v/1+ 22 + y2 on the interval x,y € [—4,4]. Use a popula-
tion size of N = 30. How does the performance of the GA vary with the
values of the crossover probability and the mutation probability? (Note:
Many runs are needed for each parameter setting in order to get a reli-
able average).

b) Use a population size of N = 10, and plot the locations in the zy—plane
of the entire population at generations 1,2,5,10,20, and 50 for a single run.

4. Properties of evolutionary algorithms

4.1

4.2

A GA is used for finding the maximum of the (very simple) function
f(z,y) = 2?4+ y?, in the interval (z,y) € [0,0.9375]. The fitness measure is
taken simply as f(z,y), without any rescaling or ranking. Assume that a
binary encoding scheme is used, with 4 genes for the variable z (the four
tirst genes) and four genes for the variable y. During decoding, the first
gene of the variable z is multiplied by 27!, the second by 272 etc. The
variable y is obtained in a similar way. In the formation of new chromo-
somes, the crossover probability p, = 0.10 is used, and the mutation rate
is set to 0.01. In generation g, the population consists of six individuals
with chromosomes 10101101, 01100111, 01110101, 01011001, 10010001,
and 10001001. Use the schema theorem to estimate the number of copies
of the schema S; = 1xxx1xxx in generation g + 1.

As in problem 4.1, a GA is used for finding the maximum of a function,
namely f(z,y) =1+ zy + 2* — y?, in the interval (z,y) € [0,0.9375]. The
fitness measure is taken simply as f(z,y), without any rescaling or rank-
ing. Assume that a binary encoding scheme is used, with 5 genes for the
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4.3

4.4

4.5

4.6

4.7

variable x (the five first genes) and five genes for the variable y. During
decoding, the first gene of the variable z is multiplied by 27!, the second
by 272 etc. The variable y is obtained in a similar way. In the formation of
new chromosomes, the crossover probability p. = 0.50 is used, and the
mutation rate is set to 0.01. In generation g, the population consists of
six individuals with chromosomes 1111101101, 0001100111, 0001110101,
1101110101, 0100110001, and 010011111. Use the schema theorem to esti-
mate the number of copies of the schema S; = 010xxxxxxx in generation
g+ 1.

Consider a population containing four individuals with chromosomes
101010, 000111, 010101, and 011011, and fitness values 1,2,3, and 4, re-
spectively. In a given selection step, assume that individual 1 (with chro-
mosome 101010) has been selected (using roulette-wheel selection) as the
tirst parent. What is the probability that the schema 10xxxx will be rep-
resented in either of the two individuals resulting from the selection of a
second parent, followed by crossover? (Crossover may occur, with equal
probability, at any of the five available crossover points).

Consider a chromosome with n binary-valued genes, and assume that it
is to be mutated using a mutation rate p. Determine the probability that
the chromsome will undergo

a) No mutation.

b) Exactly one mutation.

¢) Less than three mutations.

For the chromosome in problem 4.4, show that the average number of
mutations equals np, if the mutation rate is equal to p.

For the chromosome in problem 4.4, derive an equation for the maximum
mutation rate p, if it is required that the probability of the chromosome
undergoing more than one mutation should be less than e. Next, deter-
mine the numerical value for p in the case n = 100, ¢ = 0.001.

A simple genetic algorithm, using only roulette-wheel selection, is ap-
plied to the counting-ones problem defined in Handout 4, using random
initialization of the (infinite) population.

a) Compute analytically the probability distribution in generation 3 (after
two selection steps), and show that the average fitness equals

— _n(n+3)
fg—m- (E4)
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4.8

4.9

4.10

4.11

b) Find the probability distribution for generation 4, and show that the
average fitness equals
— (n+1D(n*+5n—2)
fa= 9
n(3+n)

(E5)

Consider again the counting-ones problem, but assume now that the
population has been initialized in such a way that

1
n+1
where n again denotes the chromosome length. Compute the average
titness value in the initial population, as well as the average fitness value

after the first selection step (assuming that crossover and mutation do
not occur).

pi(k) = (E6)

For a simple genetic algorithm, using only roulette-wheel selection, ap-
plied to the counting-ones problem with n = 50, how large must the
population be in order for the probability of finding an individual with
at least 48 ones to reach approximately 10~° in generation 3, i.e. after two
selection steps, assuming that the probability distributions derived for
infinite population size can be used also in a case where the population
size is finite (and large)?

a) Using Egs. (3.18) and (3.19) in Handout 3, compute the equilibrium
point for the average fitness for a simple genetic algorithm (i.e one that
uses only selection and single-gene mutations with p,, = 1) applied to
the counting-ones problem with n = 200. Assume an infinite population
with random initialization, and that the distribution retains its shape (but
is shifted towards higher average values) in the generations following
initialization.

b) Write a computer program that implements the simple genetic algo-
rithm as described in a), and find the equilibrium point numerically.

Consider a case where a function optimization problem is to be solved
using a GA with binary encoding and chromosome length n = 4. Thus,
each chromosome consists of the four genes g1, g2, g3, and g4, and there
are 16 different chromosomes. Assume that the fitness function is given
by

f(91,92,93,94) =3+ g1 + g2 — g3 — 9a, (E7)
so that the maximum fitness (=5) is obtained for the chromosome 1100.
Furthermore, assume that the initial distribution of chromosomes is uni-
form, i.e.

1 1
= — = — E
p1(91, 92, 93, 94) on 16’ (E8)
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for all chromosomes.

a) Assuming that standard roulette-wheel selection is performed, deter-
mine the distribution py(g1, g2, g3, 94), in the absence of mutations.

b) Again using standard roulette-wheel selection, determine ps (g1, g2, g3, 94)
if the mutation rate is equal to 1/4. Note that each chromosome may un-
dergo anything from zero to four mutations.
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Figure E3: Map for Problem 5.4. The cities are numbered from 1 to 12, and
their locations are given by two integer coordinates (z, y).

5. Advanced topics

5.1

5.2

5.3

5.4

Show that the Gray code is not unique for n = 4.

Write computer code (e.g using Matlab) for a representation that uses
Gray coding for arbitrary chromosome lengths. Given an arbitrary chro-
mosome, the decoding procedure should give the value of v variables,
encoded by m bits each (n = m*v).

Consider the TSP defined in handout 5. Assuming that permutation en-
coding is used, so that a valid N-node path is encoded as some permuta-
tion of the numbers 1,..., N, e.g. {1,4,5, 3,2} in the case N = 5.

a) Define a mutation operator for the TSP that maps valid chromosomes
(i.e. paths) onto other valid chromosomes.

b) Define a crossover operator for the TSP that maps valid chromosomes
onto other valid chromosomes.

[C] Using the crossover and mutation operators from Problem 5.3, write
an EA that solves the TSP, and apply it to the 12-city problem illustrated
in Fig. E3. The location of each city in the figure is given by two integer
coordinates. For example, city 4 is located at (z,y) = (5,2). What is the
shortest path (and how long is it?).
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5.5 Genetic algorithms can be used for optimizing polynomials, e.g. for func-
tion fitting. If the degree d of the desired polynomial is unknown, chro-
mosomes of varying length can be used. Alternatively, one may simply
set d to a high value. The latter approach has a significant drawback:
The number of terms grows very rapidly with d, making the search space
very large. For a polynomial u of n variables and degree d, use the nota-
tion

U(ZL‘l, To, ... ZL‘n) = agg...0 + A19...0T1 + Ap1...0T2 +
d
+ ...+ a110...01T2 + ...+ aopg---d,,- (E9)

Thus, as a specific example, a polynomial of two variables and degree
d = 2 would be given as

2 2
u(x1, 2) = ago + a1021 + o122 + a0y + a117122 + Ap2s. (E10)

Thus, in this case, there would be 6 parameters to determine. How many
parameters would there be in a polynomial with

a) 3 variables and degree 2,

b) 4 variables and degree 3,

¢) n variables and degree d. (Difficult).

6. Other EAs

6.1 Consider an LGP implementation with three calculation registers r; and
one constant register c;, taking the value 1. Let A denote the union of
the set of calculation registers and the set of constant registers, i.e. A =
{r1,7m2,73,c1}. The elements of this set are denoted A4;, j = 1,...,4. The
structure of the instructions in this LGP implementation is

= Aj OPk Am; (Ell)

where OP, encodes an operator such that OP; = +, OP, = —, OP5 = X,
OP, = /. Each instruction can thus be encoded by the four integers
i,7,k,m, where i € {1,3}, j,k,m € {1,4}. Consider the chromosome
C =1114211132321233124331422133.

a) Assuming that the calculation registers all contain the value 0 initially,
what will be the values contained in these registers at the end of the eval-
uation of C.

b) Can you find a faster way (i.e. one represented by a shorter chromo-
some, using the same representation as above) of achieving the same re-
sult, i.e. the same final values in the calculation registers r;?
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Answers to selected exercises

1.1 2) Npossipte = 4190 = 1.148 x 10502
b) Nevaluatea = M x G . This is an upper limit, since it is likely that some indi-
viduals have identical chromosomes.

— Nevaluted 1021 — —582
cq= N = 114810907 — 8. 711072,

1.2a) wips = —2In9, wy; = 5.

2.1 x; = 0.34375, y1 = 0.601563,f1 = 0.965867, o = 0.546875, y, = 0.15625,
o = 0.8866.

b) 1 = 0.359375, y; = 0.15625, f; = 0.871511, 5 = 0.53125, y» = 0.601563,
£y = 0.988772.

2.3 The global minimum of g(z, y) is equal to 0, corresponding to fitness f = 1.

2.5 (1) Roulette wheel selection gives p; = 2 ~ 0.222. (2) Tournament selection

gives py = £ = 0.240. (3) Roulette wheel sgelection with fitness ranking gives
pa ~ 0.276.

4.1 D(Sl) = 4, O(Sl) = 2, F(Sl,g) =2

f(S)) =0.80859, f=0.49544=T(S;,g+1)~3

4.3 The probability of finding the schema 10xxxx in either of the two individu-
als equals 43/50 = 0.86.

4.4a) p(no mutations) = (1 — p)™.

b) p(one mutation) = np(1 — p)" .

¢) p(less than 3 mutations) = (1 — p)" +np(1 — p)" + @pQ(l —p)"

4.7a) The probability distribution in generation 3 is given by

b) The probability distribution in generation 4 is given by

I n
pa(k) =2° m (k) (E13)

4.9 A population size of around 2.44 x 10° is needed.
4.10a) The computed average fitness is around 136.
b) The average from the numerical simulation will be around 125-130.
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5.3a) The mutation operator can be chosen such that it selects a gene at ran-
dom, and swaps it with another randomly chosen gene. For example, if the
second and fourth genes are chosen, the mutation operator would change the
seven—city path (5,3,7,1,4,2,6) to (5,1,7,3,4,2,6).

5.3b) One possibility (there are others) is so called order crossover, in which
substrings are exchanged between the two parents while keeping the order
among those cities which are not part of the substring. For example, con-
sider the two parents chromosomes (7,1,2,4,6,3,5) and (2,3,5,1,4,7,6). Two
crossover points are chosen randomly, for instance between genes 3 and 4 and
between genes 6 and 7. The corresponding substrings are 4,6,3 and 1,4, 7.
These are inserted in the (initially empty) offspring chromosomes which then
take the form (x,*,%,1,4,7, %) and (x, %, *,4, 6, 3, x), where the * indicates that
the element is, as yet, unknown. The first offspring will now have its empty
slots filled in using the remaining string of the first parent. Thus, the cities
1,4, and 7 are removed from the first string resulting in a substring 2,6, 3, 5.
These elements are now inserted, in order, in the chromosome of the first off-
spring, starting from the first empty slot after the substring 1,4, 7. The result-
ing chromosome is (6, 3,5,1,4,7,2). Similarly, the second offspring takes the
form (5,1,7,4,6,3,2). Note that e.g. the strings (1,2, 3) and (2, 3, 1) are identi-
cal. It is only the order of the elements that matter, not their absolute position.
5.4 The shortest path is given by (1,2,3,6,9,11,12,10,8,5,4,7). The length of
this path is 41.015 units.

5.5a) 10, b) 35, ¢) (":d) = (";d).

6.1 a) The final values are r; = 1/2,r, = 1/8, and r3 = 1/4.



