Chapter

Ant colony optimization

Ants are among the most widespread living organisms on the planet, and they
are native to all regions except Antarctica and certain islands (such as, for ex-
ample, Greenland). Ants display a multitude of fascinating behaviors, and one
of their most impressive acheivements is their amazing ability to cooperate in
order to achieve goals far beyond the reach of an individual ant. An example
is the dynamic bridge-building exhibited by some species of ants. When such
ants encounter a gap (between two trees, say) that is too wide to be crossed
by a single ant, they form a bridge using their own bodies. Another example
is the collective transport of heavy objects, exhibited by many species of ants.
In this case, groups of ants cooperate to move an object (i.e. a large insect)
that is beyond the carrying capacity of a single ant. While perhaps seemingly
simple, this is indeed a very complex behavior: First of all, the ant that dis-
covers the object must realize that the object is too heavy to transport without
the help of other ants. Next, in order to obtain the help of additional ants, the
tirst ant must carry out a process of recruitment. It does so by secreting a sub-
stance from a poison gland, attracting nearby ants (up to a distance of around
2 m). Then, the transport must be coordinated regarding e.g. the number of
participating ants, their relative positions around the object etc. Furthermore,
there must be a procedure for overcoming deadlocks, in cases where the trans-
ported object becomes stuck. Studies of ants have shown that their capability
for collective transport is indeed remarkable: As an example, groups of up to
100 ants, carrying objects weighing 5,000 times the weight of a single ant have
been spotted [7].

The complex cooperative behaviors of ants have inspired researchers and
engineers. For example, the dynamic bridge-building mentioned above has in-
spired research on rescue robots. In this application, the scenario is as follows:
Freely moving robots are released in a disaster area to search for injured or un-
conscious victims of the disaster. If, during the search, a robot encounters an
insurmountable obstacle, it may recruit other robots to form a bridge, or some
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other suitable structure, to pass the obstacle, and then continue the search.
Ants are also capable of remarkably efficient foraging (food gathering).
Watching ants engaged in this behavior, one may believe that the ants are
equipped with very competent leaders and are capable of communicating over
long distances. However, neither of these assertions would be true: Ants self-
organize their foraging, without any leader, and they do so using mainly short-
range communication. In fact, the essential features of ant foraging can be
captured in a rather simple set of equations that underlie the ant colony opti-
mization (ACO) algorithms that will be studied in this chapter. However, we
shall begin with a brief discussion of the biological background for ACO.

4.1 Biological background

In general, cooperation requires communication. Even though direct commu-
nication (e.g. by sound) occurs in ants, their foremost means of communica-
tion is indirect. Ants are able to secrete substances known as pheromones,
and thus to modify the environment in a way that can be perceived by other
ants. This form of indirect communication through modification of the local
environment is known as stigmergy and it is exhibited not only by ants but by
many other species (e.g. termites) as well.

During foraging, ants traverse very large distances, in some cases up to
100 m, before returning to the nest carrying food. This is an amazing feat, con-
sidering that the size of a typical ant is of order 1 cm. How is it achieved? The
answer is that, upon returning to the nest, an ant will deposit a trail of phe-
romone. Other ants that happen to encounter the pheromone scent, are then
likely to follow it, thus reinforcing the trail. The trail-making pheromones
deposited by ants are volatile hydrocarbons. Hence, the trail must be contin-
ually reinforced in order to remain detectable. Therefore, when the supply of
food (from a given source) drops, the trail will no longer be reinforced, and
will eventually disappear altogether. The local communication mediated by
pheromones is thus a crucial component in ant behavior.!

The stigmergic communication in ants has been studied in controlled ex-
periments by Deneubourg et al. [3]. In their experiments, which involved ants
of the species L. humile (Argentine ants), the ants” nest was connected to a food
source by a bridge, shown schematically in Fig. 4.1. As can be seen from the
tigure, an ant leaving the nest is given a choice of two different paths, at two

n fact, pheromones have many other uses as well, both in ants and other species. A
fascinating example is that of slave-making ants: about 50 of the 12,000 or so species of ants,
are slave-makers, i.e. they invade the nests of other ants and capture their workers. The exact
invasion procedure varies between species, but some species are capable of using pheromones
in a kind of chemical warfare: Releasing their pheromones, they cause members of the other
species to fight among themselves, allowing the invading species to go about its business.
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Figure 4.1: A schematic view of the experimental setup used by Deneubourg et al. [3].

points (A and B) along the way towards the food source. The second half of the
path might seem unnecessary, but it was included to remove any bias: Thus,
at the first decision point, the short path segment is encountered if a left turn is
made whereas, at the second decision point, an ant must make a right turn in
order to find the short path segment. Furthermore, the shape of the branches
(at the decision points A and B) was carefully chosen to avoid giving the ants
any guidance based on the appearance of the path: Both branches involved an
initial 30° turn, regardless of which branch was chosen.

Thus, the first ants released into this environment made a random choice
of direction at both decision points: some ants would take a long path (A-C;-
B-Ds-E), some a short path (A-C,-B-D;-E), and some a path of intermediate
length. However, those ants that happened to take the shortest path, in both
directions would, of course, return to the nest before the other ants (assuming
roughly equal speed of movement). Thus, at this point, ants leaving the nest
would detect a (weak) pheromone scent upon reaching A, and would there-
fore display a preference for the shorter path. Upon their return, they would
then deposit pheromone along this path, further reinforcing the trail. In the
experiment, it was found that, a few minutes after the discovery of the food
source, the shortest path was clearly preferred.

In addition to the experiment, Deneubourg et al. also introduced a simple
numerical model for the dynamics of trail formation, which we will now con-
sider briefly. Since the model deals with artificial ants, there is no need to use
the elaborate path considered in the experiment with real ants. Thus, a sim-
plified path with a single decision point in each direction, shown in Fig. 4.2,
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Figure 4.2: A simplified setup, used in numerical experiments of ant navigation.

can be used. The numerical model accounts for the fact that L. humile deposit
pheromones both on the outbound and the inbound part of the motion. Thus,
upon arriving at decision point 1, while moving towards to food source, an ant
chooses the short path with a probability p7, empirically modelled as

S = (C+5)"
L(CH S)m+ (C+ L)™'

(4.1)

where S; and L; denote the amount of pheromone along the short and long
paths, respectively, at the decision point, and C' and m are constants. Further-
more, before proceeding, the ant deposits a unit of pheromone on the chosen
branch. Since the ants must choose one of the two paths, the probability of p¥
of selecting the long path equals 1 — p{. Similarly, while inbound (i.e. moving
towards the nest), arriving at decision point 2 the ant chooses the short path
with probability
s (C + Sy)™
PO S+ (Ot L™

and then again deposits a unit of pheromone on the chosen branch.

In the experiments with real ants, traversing a short branch (e.g. A-C,-B in
Fig. 4.1) took around 20 s, whereas an ant choosing a long branch would need
20r s, where r is the length ratio of the two branches. It was found that a good
fit to experimental data (for various values of r in the range [1,2]) could be
found for C' = 20 and m = 2.

(4.2)
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Figure 4.3: Construction graphs for ACO. Left panel: A typical construction graph for TSP.
Right panel: A chain construction graph.

4.2 Antalgorithms

Given the biological background of ACO, i.e. the foraging behavior of ants
it is, perhaps, not surprising that ACO algorithms operate by searching for
paths (representing the solution to the problem at hand) in a graph. Thus,
applying ACO is commonly a bit more demanding than using a GA or PSO
since, in order to solve a problem using ACO, it is necessary to formulate it as
the problem of finding the optimal (e.g. shortest) path in a given graph, known
as a construction graph. Such a graph, here denoted G, can be considered as a
pair (N, E), where N are the nodes (vertices) of the graph, and £ are the edges,
i.e. the connections between the nodes. In ACO, artificial ants are released onto
the graph (G, and move according to probabilistic rules that will be described in
detail below. As the ants generate their paths over G, they deposit pheromone
on the edges of the graph. Thus, each edge e;;, connecting node j to node i
is associated with a pheromone level 7;;. The exact nature of the construction
graph G varies from problem to problem.

The left panel of Fig. 4.3 shows a typical construction graph for one of the
most common applications of ACO, namely the travelling salesman problem
(TSP). The aim, in TSP, is to find the shortest path that visits each city once
(and only once) and, in the final step, returns to the city of origin. For TSP the
number of possible paths, which equals (n — 1)!/2 where n is the number of
nodes, grows very rapidly as the size of the problem is increased. In standard
TSP, the nodes n; € N, represent the cities, and the edges e;; the (straight-line)
paths between them. Thus, for this problem, the construction graph has a very
straightforward implementation: It is simply equivalent to the physical graph
in which the actual movement takes place. In fact, because of its straightfor-
ward interpretation, TSP is an ideal problem for describing ACO, and we will
use it in the detailed description of ACO algorithms below.

However, in many problems, the construction graph is an abstract object,
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and functions merely as a vehicle for finding solutions to the problem at hand.
The right panel of Fig. 4.3 shows a chain construction graph, which generates
a binary string that can then be used e.g. as the input to a Boolean function. A
chain construction graph that generates a binary string of length L consists of
3L+1nodes and 4L edges. Starting from the initial node n,, either an up-move
or a down-move can be made, the decision being based on the pheromone
levels on the edges e, and e;3. If an up-move is made (to n,), the first bit of
the string is set to 1, whereas it is set to 0 if a down-move (to n3) is made.
The next move, to the center node ny, is deterministic, and merely serves as a
preparation for the next bit-generating step, which is carried out in the same
way as the first move. Thus, upon reaching the end of the chain, the artificial
ant will have generated a string consisting of L bits.

Since the introduction of ACO by Dorigo [4, 5], several different versions
have been developed. Here, we will consider two versions, namely Ant Sys-
tem (AS) and Min-Max Ant System (MMAS), and we will use the special case
of the TSP to describe the algorithms.

4.2.1 Ant System

Ant system was the first ACO algorithm introduced [5]. In order to solve the
TSP over n nodes, a set of M artificial ants are generated and released onto
the construction graph. The formation of a candidate solution to the problem
involves traversing a path that will take the ant to each city (node) once, and
then return to the origin. Thus, each ant starts with an empty candidate solu-
tion S = () and, for each move, an element representing the index of the current
node is added to S. In order to ascertain that each node is visited only once,
each ant maintains a memory in the form of a tabu list L7 (S), containing the
indices of the nodes already visited. Thus, initially, the node of origin is added
to L7. Asmentioned above, each edge e¢;; of the graph is associated with a phe-
romone level 7;;. In any given step, an ant chooses its move probabilistically,
based on a factor depending on the pheromone level as well as the distances
between the current node and the potential target nodes. More specifically, the
probability of the ant taking a step from node j to node i is given by
a,.B
pleyls) = ="
2er; ¢ Lr(S) TRy

(4.3)

where, in TSP, n;; = 1/d;;, where d,; is the (Euclidean) distance between node
j and node i. « and [ are constants that determine the relative importance
(from the point of view of the artificial ants) of the pheromone trails and the
problem-specific information 7,;. In each step of the movement, the current
node is added to the tabu list L. When all nodes but one have been visited,
only the as yet unvisited node is absent from the tabu list, and the move to that
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node therefore occurs with probability 1, as obtained from Eq. (4.3). Next, the
tour is completed by a return to the city of origin (which is obtained as the first
element of L7).

Eq. (4.3) specifies, albeit probabilistically, the movement of the ants, given
the pheromone levels 7;;. However, the equation says nothing regarding the
variation of pheromone levels. In order to complete the description of the
algorithm, this crucial element must also be described. In AS, an iteration
consists of the evaluation of all M ants. At the end of each iteration, all ants
contribute to the pheromone levels on the edges of the construction graph. Let
D,,, denote the length of the tour generated by ant m. The pheromone level on
edge ¢;; is then increased by ant m according to

= if ant m traversed the edge e;;
m __ Dm, ©j7
ATij = { 0 otherwise. @4
The total increase in the pheromone level on edge ¢;; is thus given by
M
m=1

Obviously, with Eq. (4.5), pheromone levels will increase indefinitely. How-
ever, taking a cue from the properties of real pheromone trails, AS introduces
pheromone evaporation, and the complete update rule thus takes the form

Tij — (]_ — ,O)Tij + ATija (46)

where p €]0, 1] is the evaporation rate. Note that Eq. (4.6) is applied to all edges
in the construction graph. Hence, for edges e;; that are not traversed by any
ant, the pheromone update consists only of evaporation. AS is summarized in
Algorithm 4.1.

The free parameters in AS are the constants «, 3 and p, as well as M (the
number of ants). The optimal values of these parameters will, of course, vary
between problems. However, experimental studies have shown that, over a
large range of problems, the values « = 1, 8 € [2,5], p = 0.5, and n = M
(i.e. the number of nodes in the construction graph) yield adequate perfor-
mance A remaining issue is the initialization of the pheromone trails. In AS, it
is common to initialize the pheromone levels as 7;; = 7y = n/ D", where D"l
is the length of the tour obtained by, at each step, moving to the nearest (as yet
unvisited) node.

4.2.2 Max-Min Ant System

MMAS, introduced by Stiitzle and Hoos [9], is a version of AS that attempts to
exploit good candidate solutions more strongly than AS. While MMAS shares
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1. Initialize pheromone levels:
Tig = T0, V(’L,j) S [1,”]

2. For each ant m, select a random starting node, and add it to the (initially
empty) tabu list L. Next, build the tour S. In each step of the tour, select
the move from node j to node i with proability p(e;;|S), given by:

( |S) 7'.‘3'.77.6.
s — ij i )
yURSY ZekﬁLT(S) T,?jn,fj

In the final step, return to the node of origin, i.e. the first element in L.
Finally, compute and store the length D,, of the tour.

3. Update the pheromone levels:

3.1. For each ant m, determine A7/ as:

Apm = if ant m traversed the edge e;;,
T g m .
K 0 otherwise,

3.2. Sum the A7]? to generate A;;:
ATZ‘]' = 27],\”/[:1 ATZT
3.3. MOdlfy Tij-
Tij < (1 — p)Tij + ATZ']'.

4. Repeat steps 2 and 3 until a satisfactory solution has been found.

Algorithm 4.1: Ant system (AS), applied to the case of TSP. See the main text for a complete
description of the algorithm.

many features with AS, there are also important differences between the two
algorithms. First of all, in MMAS, only the ant generating the best solution is
allowed to deposit pheromone. The best solution can either be defined as the
best in the current iteration or the best-so-far. Thus, in MMAS, letting D, denote
the length of the best tour,

Ari; = A 4.7)

ij

where 7Y

;i = 1/Dy if the best ant traversed the edge e;; in its tour, and 0 oth-
erwise. Note that, as in AS, pheromone levels are updated for all edges, ac-
cording to Eq. (4.6), even though only n edges receive a non-zero Art;;. Thus,
the edges that are not in the tour of the best ant are subject only to pheromone
evaporation.

Second, since the strong exploitation of good solutions may lead to stagna-
tion, where all ants essentially follow the same trail, in MMAS limits are intro-
duced on the pheromone levels. Thus, after the pheromone update according
to Eq. (4.6), the levels are modified such that if 7;; > 7,.x then 7;; < 7. and,
likewise, if Ti; < Tmins then Tij < Tmin-
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A third difference between MMAS and AS concerns the pheromone initial-
ization. In MMAS, pheromone levels are initialized to the maximum value
Tmax, 1-€. initally,

Tij = Tmax V(4,J) € [1,n], (4.8)

The choice of 7,,.x is based on estimates of the theoretical upper limit of the
pheromone levels under the update rule given in Egs. (4.6) and (4.7). In fact,
it can easily be shown (see Appendix C) that an upper bound of the phero-
mone deposited on any edge e;; is given by 1/(pD*), where D* is the length
of the optimal tour. Obviously, during the optimization procedure D* is not
yet known. Therefore, 7. is set to 1/(pD,), the length of the current best tour.
Whenever a new best tour is found, 7.« is updated using the new value of D,,.
Tmin 18 Often chosen through experimentation.

Furthermore, for MMAS, it is possible to prove (see Appendix C) that, as
the number of iterations tends to infinity, the probability of finding the optimal
solution tends to 1.

Note that, despite the pheromone limits, it is not uncommon that the MMAS
algorithm gets stuck on a suboptimal solution. Thus, a useful approach is to
restart the algorithm, using the most recent available estimate of D* (i.e. the
current D), whenever no improvements are detected over a number of itera-
tions. It should also be noted that, at least for TSP with large (> 200) values of
n, better results are obtained by alternating the definition of the best solution.
Thus, the best in the current iteration is used when updating the pheromones,
for a number of iterations, after which a switch is made to the best so far etc.

4.3 Applications

In view of their biological background, it is not surprising that ACO algo-
rithms have been applied to a variety of problems involving routing. The
TSP, described above is perhaps the foremost example, but ACO algorithms
have also been used for solving other routing problems involving, for exam-
ple, telecommunication networks [8]. Here, however, we shall consider two
other applications, starting with machine scheduling.

4.3.1 Single-maching scheduling

In the general problem of job shop scheduling, n jobs, consisting of a finite
sequence of operations, are to be processed on m machines, in the shortest
possible time, while fulfilling constraints regarding the order of precedence be-
tween the different operations in the jobs. This is an example of a scheduling
problem, for which ACO algorithms have been developed. Here we shall con-
sider another scheduling problem, namely the single-machine total weighted
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tardiness problem (SMTWTP). In this problem, the aim is to schedule the or-
der of execution of n jobs, assigned to a single machine. Let ¢; denote the
processing time of job j, and d; its due date (i.e. the deadline). The tardiness
T; of ajob j is defined as

T; = max(0, ¢; — d;), 4.9)

where ¢; is the actual completion time of the job. Thus, jobs that are com-
pleted on time receive a tardiness of 0 whereas, for jobs that are not completed
on time, the tardiness equals the delay. The aim of the single-machine total
tardiness problem (SMTTP) is to minimize the total tardiness 7T}, given by

Tiot = Y Tj, (4.10)
j=1

whereas, in the weighted problem (SMTWTP), the goal is to minimize the
weighted total tardiness, defined as

,I‘tot,w = ijirj (411)
j=1

In this problem, any permutation of the n jobs is a feasible solution. Thus, in
order to generate a solution using an ACO algorithms, the ants must build a
sequence of jobs, such that each job is executed exactly once. As in TSP, the
ants base their choice on a combination of two factors: the pheromone level
7,; involved in placing job ¢ immediately after job j, and a problem-specific
factor n;; (see Eq. (4.3)). In TSP, the latter factor involved the inverse of the
distance between the nodes j and i. In SMT(W)TP, by contrast, the problem-
specific factor involves a measure of time, instead of distance. Several different
measures have been used in the literature, e.g.
1

= 7 (4.12)
J
a measure referred to as the shortest processing time (SPT), which is effecient
in cases where most jobs are late. Other measures involve the due date; the
simplest such measure

Nij = d’ (4.13)
is referred to as earliest due date (EDD). The two measures above are obvi-
ously simple to obtain, but may not be the most efficient, since they do not
take into account the growing sequence of scheduled jobs. An alternative is to
use the modified due date (MDD), defined as

1
max(TF + ¢;,d;)’
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where T denotes the total processing time of the jobs already scheduled. In
order to use this measure, the factors 7,; must, of course, be updated after each
addition to the job sequence.

Using any of the measures 7;; above, an ACO algorithm (e.g. AS, as de-
scribed above) can easily be set up to solve the SMT(W)TP. However, it should
be noted that, for this particular problem, it is common to use another ver-
sion of ACO, known as ant colony system (ACS) which, however, is beyond
the scope of this text. In addition, the candidate solutions to the SMT(W)TP
obtained by the artificial ants are usually enhanced by local search. This pro-
cedure, which can be applied either to all candidate solutions in the current it-
eration or (to reduce the amount of computation) only to the best candidate so-
lution of the current iteration, involves searching for neighbouring candidate
solutions, using e.g. interchange, in which all n(n — 1)/2 interchanges of pairs
of jobs are considered. Thus, for example, if the job sequenceis (1, 6,4, 7, 3,5, 2)
(in a simple case involving only seven jobs), an interchange of the second and
tifth jobs in the sequence resultsin (1, 3,4, 7,6, 5, 2). An alternative procedure is
insertion, in which the job at position 7, in the sequence is extracted and rein-
serted in position i;. Thus, again considering the sequence (1,6,4,7, 3,5, 2), ex-
traction of the second job, followed by reinsertion in the fifth position, results
in the sequence (1,4,7,3,6,5,2). Obviously, the two processes of interchange
and insertion can also be combined.

In cases with small n (up to around 50), classical integer programming tech-
niques, such as the branch-and-bound method can be counted on to solve
the SMT(W)TP. However, for larger n, ACO-based methods become useful. It
should be noted that the level of difficulty in solving randomly generated in-
stances of SMT(W)TP is strongly variable: For some instances of the problem
the best solution can be found quite easily whereas, for others, finding the best
solution can be very challenging. Thus, in order to investigate performance,
a given method must be tested against multiple instances of the problem. A
procedure for generating instances of SMTTP is given in [1]. Here, the process-
ing times ¢; for the n jobs are integers chosen from the uniform distribution in
the range [1, n], and the due dates d; are also integers taken from the uniform
distribution in the range D given by

: (4.15)

n Co n Co
D= ti(l—c—— ti(1— —
Su(a-3) En(i-ars)

where ¢, is the tardiness factor and c; is the relative range of due dates. The
complexity of the problem varies with ¢; and c¢,. In [1], these parameters were
both taken from the set {0.2,0.4, 0.6, 0.8, 1.0}. For each of the 5 x5 = 25 possible
combinations, five instances of the problem were generated for n = 50 and
n = 100. Using ACO the optimal (or, rather, best known) solution was found
in 124 out of 125 cases for n = 50, and in all 125 cases for n = 100. In [2], similar
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results were reported for the SMTWTP. These two studies show that, for the
SMT(W)TP, ACO algorithms generally outperform other stochastic methods.

4.3.2 Cooperative transportation using autonomous robots

As mentioned in the introduction to this chapter, many species of ants are ca-
pable of cooperative transportation of objects, a process that has inspired robo-
tics researchers to investigate cooperative behaviors in autonomous robotics.
Ants participating in cooperative transport appear to coordinate their motions
based on stigmergy, i.e. indirect communication, something that also makes
the procedure suitable for robotic applications by avoiding the problem of di-
rect communication between the participating robots. In fact, however, little is
known about the detailed processes involved in ant movement coordination,
and therefore cooperative transport may turn out to be an instance where the
connection between biology and robotics goes both ways, i.e. where robotics
may also inspire further biological research

Cooperative transportation using autonomous robots has been studied by,
among others, Kube and Zhang [6] using both simulations and actual robots.
In those experiments, a group of identical autonomous (wheeled) robots were
given the task of locating a box near the centre of an arena, and then, coop-
eratively, push the box to the edge of the arena. Of course, the box was too
heavy to be pushed by a single robot: In order for the box to move, a mini-
mum of two robots, pushing in roughly the same direction, was required. The
problem is illustrated schematically in Fig. 4.4, and it was solved in the frame-
work of behavior-based robotics, in which the control system of a robot is
built in a bottom-up fashion from a set of elementary behaviors. Starting with
simulation experiments, Kube and Zhang delevoped a robotic control system
consisting of five elementary behaviors, namely Find (for locating the box),
Slow (for slowing down, so as to avoid rear-end collisions with another robot),
Follow (for following another robot), Avoid (for avoiding collisions), and Goal
(for directing a robot towards the box). In addition, a structure for behavior
selection, i.e. for timely activation of the various behaviors was generated. A
full description of this mechanism will not be given here. Suffice it to say that
the experiments were successful, resulting in reliable cooperative transport of
the box (in a more or less random direction, depending on the exact distri-
bution of robots around the box). Building upon the lessons learned in the
simulation experiments, Kube and Zhang were also able to transfer their re-
sults successfully to real robots, Furthermore, the problem of deadlocks was
considered. Each robot was equipped with a counter, measuring the time ¢
elapsed since the latest move. In case the box got stuck, such that the robots
kept pushing without generating any movement, ¢t would, of course, eventu-
ally exceed a threshold 7', at which point the robot would change the direction
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Figure 4.4: Schematic illustration of a box-pushing task, in which three wheeled robots are
attempting to move a large, rectangular box towards the edge of the arena. The arrow indicates
the approximate instantaneous direction of motion.

of the applied force. If this also failed, repositioning was tried, i.e. the robot in
question would move to a different location around the perimeter of the box,
and continue pushing.

Even though this simple box-pushing task may not appear to be very rel-
evant at first glance, the mere fact that successful cooperative transport could
be generated is important, as it paves the way for more complex, real-world
applications, for example in rescue missions. In such cases, a swarm of robots
would be released in a disaster area (resulting from e.g. an earthquake or a fire)
to search for disaster victims. A robot discovering an injured person would
then recruit other robots to the scene, and the group of robots would coopera-
tively move the person to safety.

In addition to the experiments described by Kube and Zhang, other stud-
ies of ant-inspired cooperative robot behaviors have been carried out within
the framework of the Swarm-bot project [10] This project involved the devel-
opment of a fairly simple, cost-effective robot, that could be mass-produced
for use in multi-robot applications. Several tasks, such as dynamic bridge-
building in order to pass a large obstacle, were considered within the frame-
work of the Swarm-bot project.
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Appendix C: Convergence proof

Pheromone limits in MMAS

Proposition For the Min-Max Ant System (MMAS) algorithm, the maximum
pheromone level 7., on any edge e;; is bounded (asymptotically) by f*/p,
where f* is the fitness of the optimal solution (i.e. 1/D* in the case of TSP).

Proof Let 7y denote the initial amount of pheromone on the edges of the con-
struction graph. In any given iteration, the maximum amount of pheromone
that can be added to an edge ¢;; equals f*. Thus, after the first iteration, the
maximum pheromone level equals (1 — p)7 + f*, and after the second genera-
tion it equals (1 — p)?7 + (1 — p) f* + f*. In general, after the K" iteration, the
maximum amount of pheromone equals

Tmax(K) = (1 — p)KTo + Z(l - p)kflf*. (C1)
k=1

Since p €]0, 1], in the limit X' — oo, we obtain

Tmax — f*/p7 (CZ)
using the well-known result
> (1—=p) Tt =1/p. (C3)
k=1

Convergence proof

Theorem Let p(K) be the probability that the optimal solution (for TSP) is
encountered (using MMAS) at least once in the first K generations. Then

lim p(K) = 1. (C4)

K—o0

Proof In MMAS, pheromone levels are bounded from below by 7,,, and
from above by 7.« In fact, the proposition above shows that, due to phero-
mone evaporation, an explicit upper bound is not even needed. Consider now
the construction of a tour by a given ant. We can determine a lower bound
for the probability ? of traversing any edge e,;, by setting the pheromone level

2For simplicity the problem-specific factor 7;; will be dropped (i.e. set to 1) in the proof.
However, as long as 0 < min < 7ij < fmax < 00, V(4,§) € [1,n], the proof still holds even
with 7;; included.
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on that edge to 7,,;,, and the pheromone level on all other edges to 7,.x. The
probability p,, of traversing e;; is thus bounded from below by p,,, given by

Tin (CS)

n— 1)7-01 +Tr?1in.

max

Pmin Z Pw =
(

Thus, any tour (including an optimal tour S5*) will be generated with a proba-
bility pg fulfilling
Ps 2 p?nin' (C6)

Thus, the probability of at least one ant finding an optimal solution is bounded
from below by

p(K) =1~ (1-ps)~. (C7)
Thus, evidently,
I}im p(K) =1. (C8)
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