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Some abbreviations (see also p. iii)

= ANN = Atrtificial neural network
= BBR = Behavior-based robotics
= EA =  Evolutionary algorithm

= ER =  Evolutionary robotics

= GA =  Genetic algorithm

= RNN = Recurrent neural network

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Introduction to evolutionary

robotics (ER)

= Subfield of robotics, in which evolutionary algorithms (EAS)
are used for generating robotic brains (or bodies, or both).

= Method: behavior-based robotics (BBR).

= In BBR, robotic brains are built in a bottom-up fashion
(more about this later).
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= ER Deals mostly with autonomous robots, i.e. robots that
move freely in unstructured environments, without human
supervision.

= Unstructured environments: Environments that chang
rapidly and in an unpredictable way (maps unreliable...)

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Example: Cleaning behavior

Reference [137] pp. 3-5
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Initialize population
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Fithess measure

The mean squared distance (measured from the center of
the arena) at the end of the evaluation.

NOTE: No direct credit assignment for
individual actions!
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Results (simulation)
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Validation in a physical robot

An essential step!
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Optimization methods

= [axonomy:

= Deterministic algorithms (essentially classical optimization
algorithms)

= Stochastic algorithms (evolutionary algorithms, ant colony
optimization, particle swarm optimization)

= Classical optimization algorithms (e.g. gradient
descent, Newton’s method, interior point methods
etc.) are applicable in many problems in science
and engineering

pp. 38-39
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Optimization methods

= Classical optimization methods are particularly useful in
convex problems.

= However, there are many problems for which classical
optimization methods are not suitable,
e.g. problems in which..

= ..the value of the objective function (the quantity being
optimized) can only be obtained as a result of e.g. a time-
consuming simulation.

= ..the number of variables is itself variable during optimization
(e.g. in the optimization of recurrent neural networks for
autonomous robots).

= In these cases, stochastic optimization methods are more
appropriate.

pp. 38-39
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Stochastic optimization

= Many different classes of algorithms exist, e.qg.
= Evolutionary algorithms
= Particle swarm algorithms
= Ant colony optimization
= Tabu search
= Simulated annealing
etc etc.

= Here, we shall only consider evolutionary
algorithms.

= PS.. I'm writing a book, “Stochastic optimization

algorithms” (completed around Jan. 2008..)
pp. 38-39
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Basics of evolutionary algorithms

EAs are methods for search and optimization, inspired by
darwinian evolution.

Central concepts: gradual, hereditary change as a response to
challenges (to survival) from the environment.
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pp. 6-21
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Fundamental concepts

= Genome

= Populations
= Species

= Fitness

= Selection

= Reproduction
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Initialize population

Basic v
—> Decode chromosome | —§ | Evaluate individual
No

All
individuals
evaluated?

Satisfactory
result obtained ?

—> Terminate run

______________
- ~
-

Perform crossover| —Pp | Mutate

Insert the two new
individuals in the
population

Replace entire parent
population by offspring p_ 1 1

Mattias Wahde, PhD, associate professor, Chalmers University of Technology

e-mail: mattias.wahde@chalmers.se  www: www.me.chalmers.se/~mwahde




CHALMERS

Detailed description

= Consider the case of function maximization, applied to the
function

| |
Vp(x, 29, ..., 2Ty,) = 2—#%(1[) szjztzua(f\/n er )

= (Maximum = 1, at x;=x,=... = x,=0).

p. 12-13
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Initialize population

Step 1 |

= Identify variables (in this case: x;, i=1,...,n).
= Select an encoding scheme (e.g. binary)

010110111010111011000101011010011010111100010100101101| mmm

N— e —
" N

Xy X;

= Initialize N such chromosomes randomly.
= Each entry is called a gene.
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Decode chromosome | —9 | Evaluate individual

N

Step 2

All
individuals
evaluated?

No

= Decode chromosome => individual, in this case the
variables x..

= Evaluate the individual: requires fithess measure. In this
case, use simply the function value f(x;,%,, ... ,X,).

p. 14-15
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Step 3: selection and
reproduction

------------
- = ~ n
- L 4

Select two individuals | — | Perform crossover| —Pp | Mutate

New
population
complete?

Insert the two new
individuals in the
population

p. 15-19
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Step 3 . 1 Select two individuals

= Select individuals in proportion to fitness.

= Two common methods: roulette-wheel selection and
tournament selection

p. 15-19
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Roulette-wheel selection

= Each individual occupies a space, proportional to its fitness,
on a roulette-wheel:

= In practice, select smallest
j such that

Z}I:l .fsﬁ ~

(f; = fitness of individual i)
p. 15-19
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Tournament selection

= Choose m individuals randomly
from the population. Next, select
the best one with probability
Prour-(Otherwise pick one of the
others, randomly).

p. 15-19
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Step 3 = 2 Perform crossover

s Crossover:

= Randomly selected crossover point.
= Carried out only with probability p..

p. 15-19
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Ste D 3.3 Mutation

= Randomly change a few genes (probability p,,,. per gene):

101110100010110001000001100011010110011100010100101101

101010100010010001000001100011010111011100010100101101

p. 15-19
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= The procedure is repeated until N new individuals have
been formed:

No New

population Insert the two new

individuals in the
population

Replace entire parent
population by offspring

= The parent population is then discarded, and the
evaluation of the first generation is complete.

p. 15-19
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= The process of evaluation,
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Important aspects of EAs

= Flexibility (no gradient, credit for individual actions etc.
needed).

= Efficiency (can cope with very large and complex search
spaces).

= Versatility (applicable in almost all problems involving
optimization).

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Some difficulties

= Selecting a representation (i.e. whether or not to use
chromosomes at all etc.)

= Selecting a fitness measure
= Premature convergence

= Convergence to suboptimal solutions may occur (applies to
all stochastic optimization methods)

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Biological evolution vs. EAs

= EAs are strongly simplified compared to biological
evolution:

= In EAs there is rarely any gene regulation, cell division
etc. Chromosomes are used as lookup tables.

p. 8-10
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Genetic information in biology
Transcription

TACAAGCGATGATCGAGGGATCTATA
RNA transciptase) 11 b

|

AUGUUCGCUACUAGCUCCCAGAUAU

MRNA
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Translation
AUGUUCFCUACUAGCUCCCAGAUAU

start Giu Ser etc..

= The amino acid sequence forms a protein.
= Gene regulation:

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Examples of EAs

EAs
O

[ IfObjectinView |

[ChangeSpeed ] [Turn]

30
\
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(Linear) genetic programming

= Used for evolving programs consisting of linear sequences

of basic instructions.

= Applicable in cases where the target structure is unknown.

Instruction Description | Instruction Description
Addition ry = 15 + 1 | Sine Ti 1= 8inTy
Subtraction ry = 1; — 1 | Cosine Tj 1= COST;
i 5 b 9
Multiplication  r; :— r; x ry, | Square Ti i=T;
Division T = T;/Th Square root T V’“’Fj
Exponentiation r; :— e’ Conditional branch  if r; > r;
Logarithm r; = Inr; Conditional branch if r; < r;

Table 2.1: Examples of typical LGP operators. Note that the operands can be either variable

registers or constant registers.

pp. 22-25

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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4113223123515 1]1'114

1 21
AA A
Operand 2 (range [ 1.6])

Operand 1 (range [1.6])

— Destination register (range | 1,3])

— Operator (range [ 1,5])

Figure 2.9: Au example of an LGP chromosome.

Genes Instruction Result

1,2,1,4 To =11 + ri = l.rg = 2,19 = 0
1,3,2, 2 Tg = T9 + T9 = 1.1 = 2,19 — 4
3,1,2,3 T T X T N =819 = 2. 19 — 4
5, 1, 5, 1 if I':T'1 > o) | S, T9 2.1 |
1,1,1,4 r =11+ N =9 79 =2 19 — 4

Table 2.2: Evaluation of the chromosome shown in Fig. 2.9, in a case where the input register
r1 was initially assigned the value 1. The variable registers ro and rq were both set to 0, and
the constant registers were set as o l,eg = 3,09 = 10. The first instruction (top line) is
decoded from the first four genes in the chromosome etc. The resulting output was taken as the
value contained in rq at the end of the calculation.
-- pp. 22-25
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Optimization of structures
of variable size

= Particularly relevant for ER: Artificial neural networks
(ANN).

= Distributed systems for computation, (loosely) based on
biological neural networks.

= Two kinds: feedforward networks (FFNN) and recurrent
networks (RNN).

= There exists many training methods for neural networks,
e.g. backpropagation.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Recurrent neural networks
(RNNs)

= For autonomous robots, few dedicated neural-
network methods are applicable: no input-output-
examples (only an overall evaluation).

= Alternative: use stochastic optimization (e.g. EAs)

pp. 94-97
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Recurrent neural networks
(RNNs)

= Neuron model:

b

Mattias Wahde, PhD, associate professor, Chalmers University of Technology

pp. 94-97
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Recurrent neural networks
(RNNs)

= Network equations (see Appendix A):

Tiai(t) + i (t) = o (Z w;;x;(t) + z u] Lit)y+0b )

J

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Evolution of RNNs

= For a given architecture, it is easy to implement an EA that
optimizes the network parameters:

I I I I I I I I I |
> >« >

Weights and bias, neuron 3

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Evolution of RNNs

= Often difficult to specify architecture a priori, particularly in
ER.

= Skip the step of chromosomal encoding, and let the EA
operate directly on the RNNs.

= Crossover often has a negative effect on RNNs (distributed
computation).

= Allow variations in network architecture.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Evolution of RNNs

= Mutation operators:

M1, M2
o, =

fdbal s

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Best sensory preprocessing systeny ~Best ANN

Example:
One-legged hopping

Best sensony preprocessing systent Best RHNN

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Evolutionary robotics

= ER: generating robotic brains using EAs.
= Note: robotic brain rather than control system.

= ER is normally used in connection with BBR.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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BBR vs. Classical Al

Sensors
Sense

Eéwnid ubstaclea

Model

v ( Wander ] ( Follow wall ]

Plan

¢ @harge batteryj
=t k‘b Actuators
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Classical Al

s ~1950s -

= Focused on high-level reasoning
(i.e. human-level intelligence).

= Uses complex world models.
= Successful in subfields of robotics
(e.g. navigation, image recognition etc.).
= Not well suited for generating autonomous robots

capable of handling rapidly changing
environments.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Behavior-based robotics (BBR)

s ~1980s -

= Builds robotic control systems (robotic brains) in a
bottom-up fashion, starting from simple behaviors.

= Examples of behaviors: avoid obstacles, follow wall, charge
batteries etc.

= More generous definition of intelligence, e.g.
the ability to survive and to strive to reach other goals, in
an unstructured environment,

= Rooted in ethology.

= Well suited for unstructured environments.
p. 40-42

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Behavior-based robotics (BBR)

= In practice, robotic brains often merge the two approaches
(classical AI and BBR).

= BBR: Basic, survival-related behaviors
= Classical AI: Reasoning and other complex behaviors.
= Critique of BBR: "Only applicable to toy problems’. True?

= ...S0 far, yes (to some extent). Can the BBR-approach be
extended, to generate more complex robotic brains?...

= ...Probably, yes, but that will involve solving the problem of
behavior selection, i.e. activation of behaviors at the
correct moment.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Behavior-based robotics (BBR)

= [Two important problems in ER:

(1)  Evolution of elementary behaviors.

(2) Evolution of complete robotic brains,
either by directly evolving complex
behaviors, or through behavioral
organization.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Behavior-based robotics
(BBR)

= Note that the definition of behaviors and actions is
somewhat fuzzy.

= Normally, a behavior is a sequence of actions.

= In some cases, the distinction between behaviors is not
altogether clear, either.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Basic flow of an ER investigation
\'[

) Evaluatein |
' simulation .

Initialize population

Form individual '
b Evaluate in
physical robot

All
individuals

<4—| Assign fitness

Satisfactory

result obtained? —>» | Terminate run o
¢ No ¢ /

Validate results in
Generate new population physical robots
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Simulations vs. evolution

In hardware

= Simulations are generally faster than evolution in
hardware.

= Problem: Reality gap [53], since

(1) Difficult to capture all aspects of reality in a
simulation

(2) Real environments are noisy, on all levels.

(3) Differences exist even between supposedly
identical sensors.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Evolution in hardware

= Problems:
(1) Time-consuming.

(2)  Power supply. Powered floor possible [33], but slow
charging. Another possibility: use capacitors [102].

(3) Many applications require continuous monitoring.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Evolution in hardware

= Most common approach: use a single robot, upload each
brain, and evaluated consecutively [34], [94].

= Alternative: Embodied evolution [33], [140]. Exchange
of genetic material between physical robots, using IR
transmission.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Improving simulations

= General guidelines [59]:

(1) Base simulations on empirical data rather
than e.qg. artificial sensor models.

(2) Include the correct amount of noise.

(3) Use a noise-tolerant representation, e.q.
ANNS.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Evolution of single behaviors

A few examples:

= Wandering,

= (Simple) navigation,

= Walking,

= Box-pushing,

= Motion of a robotic arm

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Wandering

= Floreano and Mondada [34].
= Evolution in hardware (Khepera).

= Simple, ANNs as robotic brain. Some recurrent
couplings in output layer.

s Fithness measure:

¢ =V (1 — |_\f|) (1 —2)
p. 47-48

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Wandering

= Long generation time (40 min.) due to evolution in
hardware.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Wandering

= Jakobi et al. [59] considered a similar problem.

= They found that the factor (1-i) was unnecessary in a
cluttered environment.

= Implicit fithess measure.

= Note: limitations on fitness measures if evolution in
hardware is used.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Wandering

= Miglino et al. [87] evolved wandering
behavior.

= Robots were placed in a 26x26 grid,
with the central 20x20 squares white
and the rest black.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Wandering

= Adaptation to particular conditions were found (common ER
problem).

= Solution: use multiple starting configurations.

= Validation in physical robots: results were improved when
noise was added to simulations (more about this later...)

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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pp. 52-56

ion.

t

= Savage et al. [117] used an EA to evolve potential field
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Navigation

= In potential fields navigation, goals are represented by
attractive potentials, and obstacles are represented by
repulsive potentials. Examples:

p ) _EK—KDJE
X — Kg)'g O = ke '

e
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in the field

= The robot follows the gradient of the f

= Problem
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Navigation

= Local optima can be circumnavigated by the introduction of
waypoints, e.g. small attractive potentials.

= Problem: how should waypoints be placed.

= Possible solution: Voronoi diagrams.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Navigation

= Additional problems: depth and width of potentials (goals,
obstacles, waypoints), waypoint removal, robot speed.

= These parameters were evolved in [117].

= Goal: navigate from point A to point B, as fast as possible,
without collisions.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Navigation

= 20 different arenas were used.

10.0s
" WA ®
®
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Navigation

= Fitness on a given arena:

fY = ~ Z Vi % = min f;,

LV
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Navigation _
Run | No. of reached |Fitness
= Results: # |qgoals type
= Focusing on the worst | 1 ﬁm f
evaluation gives more | » / 18 \ £
robust results. 3 \ 14 } f
4 19 f
5 20 fi
6 | [20] f
7 | |20 f
8 \20/ A
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Navigation

= Validation on Khepera robot: qualitatively similar results,
but problems with positioning (solution: lower speed).

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Navigation

= Evolution of basic navigation, using RNNs as robotic
brains: ER Simulator, v1.0

= Note! Strongly simplified: single, deterministic evaluation
used.

= Only intended as a demo.

fi-

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Humanoid robots

= A special case of autonomous
robots.

= Humanoid shape =>

= Easy adaptation to environments
designed for people.

= Capability of walking in stairs etc.

= Easier to accept, on a social
level (less intimidating etc.)

= ...but more difficult to control
(not statically balanced etc.)

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Optimization of bipedal gaits

Figure 3.26: A Kondo robot in action. This particular gait is statically stable and consists of
six states, shown from the front and from the side.

p. 83-84
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Box-pushing

= Sprinkhuizen-Kuyper et al. [120] considered different fitness
measures for box-pushing.

= External vs. internal: the latter dependent only on
information available to the robot.

= Local vs. Global: the latter takes into account only the
difference between the final state and the initial state.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Box-pushing

Gce

.

= Best results were obtained with a glo
measure.

hal external fithess

. , |
farp = d(Br, By) — EJLB*J'- Ry)

= Thus, the EA did best when it was least constrained.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Motion of a robotic arm

= An example involving a stationary robot

p. 62-63

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Motion of a robotic arm

= Moriarty and Miikkulainen [91] evolved obstacle
avoidance for an OSCAR-6 robotic arm.

= Supervised training methods (such as
backpropagation) are difficult to apply in an arena with
obstacles (no evident error signal for each move).

Mattias Wahde, PhD, associate professor, Chalmers University of Technology

e-mail: mattias.wahde@chalmers.se  www: www.me.chalmers.se/~mwahde



CHALMERS

Motion of a robotic arm

= Moriarty and Miikkulainen evolved two neural networks, a
primary network and a secondary network.

= The primary network handled general approach to the
target position, whereas the secondary network handled

fine-tuned movements close to the target.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Motion of a robotic arm

Input Layer Output Layer

Relative Distance X — O
Relative Distance Y — O
Relative Distance £ — O
Front Sensor i+ X)  — O
Back Sensor (- X)  — O +
Left Sensor (+ 1Y) _ O
Fight Sensor (- Y) = O

Above Sensor (+ Z) — O

Below Sensor (- Z)  — O

O L Fotation
O of Joint 1
O L Fotation
of Jaint 2
O | Rotation
O of Joint 2
O— Stop Arm

O
O
O
O
O
O
O
O = (O |
O
O
O
O
O
O
O

Mattias Wahde, PhD, associate professor, Chalmers University of Technology

e-mail: mattias.wahde@chalmers.se  www: www.me.chalmers.se/~mwahde




CHALMERS

Motion of a robotic arm

= The evaluation used a global, external fithess measure
(percentage of original distance covered).

= 400 training cases (obstacle configuations) and 50
validation cases were used.

= The results obtained were within industry standards (< 1cm
deviation).

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Evolution of complex
behaviors and behavioral
organization (selection)

= In the architectures used in BBR, a complete robotic brain
is built up from a set of simple behaviors.

= The goal is to arrive at robots capable of complex
behaviors.

pp. 63-79
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= Essentially three different approaches have
been tested:

(1) Evolution of complex behavior without explicit
behavioral selection.

(2) Evolution of a behavioral repertoire of simple
behaviors, which are then combined using
some (nhon-evolutionary) method for behavioral
organization.

(3) Evolving the behavioral organizer.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Behavioral organization

= The issue of behavioral organization (also known as

behavioral selection or action selection has been
studied extensively in ethology.

= Two main methods: arbitration methods (only one

behavior active at each instant), and cooperative
methods.

= Examples: Subsumption, DAMN, Potential fields navigation
etc.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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The problem of behavior
organization

Behavioral repertoire Current state

¢ Active behavior

Behavioral .
organizer

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Behavior selection

= Example: a delivery task

= Need to reach the goal as fast as
possible, but...

...must avoid collisions.
...must avoid running out of energy.

...must select an appropriate path —
perhaps the shortest path is blocked?

= ...what if there are two goal positions?
The order in which they ought to be
reached may depend on events that
occur during navigation.

« etc. etc.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Evolution of complex
behavior without explicit
behavioral selection.

= Incremental evolution (Gomez and Miikkulainen [44]):
make the task gradually more complex.

= Applied to the problem of prey capture.

Fs <e=== Speed of prey
N
Head start of prey w= |

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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= E10, was difficult to generate by direct evolution.

= However, the sequence E%9,, E®2, ... E1-V, was readily
evolved.

100

80

60

Fitness

40

20

Mattias Wahde, PhD, associate professor, Chalmers University of Technology

e-mail: mattias.wahde@chalmers.se  www: www.me.chalmers.se/~mwahde



CHALMERS

= Similar results were obtained by Wahde and Sandholt [137],
who evolved robotic brains for floor sweeping and obstacle
avoidance.

100} ]
C /

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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= Floreano and Mondada [34] evolvec

homing navigation (to

an energy source, indicated by a light).

= It was found that good results coulc
the fithess measure simpler, thus al
more freely.

be found by making
owing the EA to explore

= From [34] it is also evident that analyzing robotic brains in

the form of ANNs is very difficult.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Evolution of a behavioral

repertoire

= Kim and Cho [65] evolved four behaviors for a task similar to
that considered by Floreano and Mondada.

= Behaviors: Move in a straight line, follow light, avoid
obstacles, and charge batteries.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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= Behavioral organization was achieved using Maes’
[78] method of activation networks.

sensors nodes goals

-----------
__________

In battery charging area

Following light Charging battery

Moving in straight I@

Obstacles are close e "7 T .

Near battery charging area

Full battery

Light level is low

Not zero battery

........
My

Nothing around the robot L-

Avoiding obstacles
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= The robotic brain obtained by Kim and Cho [65] was easier
to interpret than an ANN.

= However, the method of activation networks (and most
other methods for behavioral organization) requires the
user to set many parameters by hand. Very difficult!

= Alternative: Evolve the behavioral organization system.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology

e-mail: mattias.wahde@chalmers.se  www: www.me.chalmers.se/~mwahde



CHALMERS

Issues

= Achieving complex overall behavior.
= Avoiding manual parameter-tuning.
= Making use of the ethological background of BBR.

= Animals are equipped with extremely fine-tuned systems
for behavior selection.

= There exists a sequence from the simplest organisms
(e.g. bacteria) up to more complex ones.

= These considerations lead us to the Utility function (UF) method for
behavior selection...

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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The concept of utility

= Utility (formalized by von Neumann and Morgenstern in
1943) has been used frequently in the theory of rational
decision-making.

= Given a choice between different actions A, a rational agent
will selection the action associated with highest utility:

A; = argmax U(A;)

'hl"l.
= Thus, essentially, utility acts as a common currency in
decision-making.
= The problem is to set appropriate utility functions.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Rational agents and utility

= Rational agents display transitivity of choice.

s A, > A, A, > A; => A, > A,. (Order of preference).

= Rational agents select actions as /f they were maximizing a
quantity we can call utility:

A,

., = argmax U(A;)

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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A biological example

= The motion of E. Coli bacteria (towards a food source) can
be modelled using two simple behaviors:

= B, Straight-line navigation
= B, Tumbling
= Let B, be activated if U; > U, = 0.
= U (t) = V(t) = X(t), where X(t) is the food concentration and

Vo) +aV (t) = bX ().
dt
= In this case, setting values of @ and b fully specifies U, and
U..

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Figure 2.2: The motion of simulated E. Coli bacteria based on the behavior switch defined
above. 100 bacteria were simulated, and the parameters a and b were both equal to 1. The
attractant had a gaussian distribution, with its peak at the center of the image. The threshold
was set to 0. The left panel shows the initial distribution of bacteria, and the right panel shows

the distribution after 10 simulated seconds, using a time step of 0.01.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Evolving behavioral organization:

The utility function (UF) method

= Main research topic in my group.
= General reference: Wahde [131] (and this tutorial).

= The utility function method is an arbitration method, based
on evolutionary optimization of utility functions.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Example: floor-sweeping

= Robot with two behaviors: floor-sweeping and battery
charging.

= Only floor-sweeping gives fitness increase, but battery
charging is still sometimes necessary — its utility rises as the
battery energy falls.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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The Utility function method

= A method for behavior selection in autonomous robots,
based on optimization of utility functions.

= In the UF method, each behavior B, is associated with a
utility function U..
= Behaviors are divided into task behaviors (that yield

fitness increase) and auxiliary behaviors (no fithess
increase).

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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The Utility function method

= The utility functions depend on the state of the robot,
defined by external variables (such as sensor readings) and

internal variables (corresponding to signalling substances,
such as hormones). Example:

S 9 9
Uisis.p) = ajo0 + ai1os + aiop + aians” + ain1sp + aqogop’,

= Expansions (Fourier or polynomial) are normally used.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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The Utility function method

= Behavior selection is simple:

= V1.0 (for navigation tasks): the behavior with highest
utility is active.

= V2.0 (under development): all processes (behaviors) with
U > 0 are active. In case of conflicts (e.g. several
behaviors attempting to access the same motor) the
behavior with highest utility is given command.

= The problem, of course, is to determine the utility functions!

S 9 9
Uisis.p) = ajo0 + ai1os + aiop + aians” + ain1sp + aqogop’,

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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The utility function method

46 48 50 52 54 56
time
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Setting utility functions

= In the UF method, utility functions are optimized using
simulations.

= The UF method has been implemented in Delphi.

= The implementation (called UFLibrary) comprises (at
present) around 25,000 lines of code.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Simulation procedure

Define robotic Define arena Store

body and brain and Run simulation performance
simulation setup measure

Behaviors (fixed)
¢ navigation
¢ obstacle avoidance
e etc. etc.

Utility functions

Uils,p) = aioo + ai108

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Optimization procedure

Previous

slide!
P
Random initial ‘ Initialize population \,[

utility functions ¢ - [RNAte D |

simulation

Form individual

o » |Evaluatein | |
physical robot

No

All
individuals

-<¢— | Assign fitness

Satisfactory

result obtained? —» | Terminate run

¢ No ¢
. Validate results in
Selection p Generate new population physical robots

crossover, mutation
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Usage example 1: simple

exploration

Task: to explore the
arena, while avoiding
collisions and keeping
the battery non-empty.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Behavior hierarchy

Robotic brain

|
| | |
Bl | | B2 || B3

B3.1

B3.2

B1 = navigation, B2 = obstacle avoidance,
B3 = energy maintenance,
B3.1 = locate charging station, B3.2 = charging

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Evolved utility functions

Moil ity

0 £ 3 [ g 10

LIFlity

demo
UFLibDemo.exe
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Usage example 2: locomotion

= Pettersson and Wahde [107]" evolved a behavioral
organization system for a locomotion task involving four
behaviors:

Robot with Moving
Arena border 3 sensors obstacle

AN A

\

I

x  Pettersson, |. and Wahde, M. Application of the utility function method for behaviaral arsanization in
a locomotion task, IEEE Trans. Ev. Comp., 9(5), pp- 506-521, 2005

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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= Behaviors: move forward, move backward, stop, and charge
batteries.

= In this particular case, the behaviors were also evo/ved (not
a requirement).

= Each behavior consisted of an RNN.
s Fitness: distance moved in the initial forward direction.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Results

= Successful behavioral organizers were evolved (limitation:
quality of behaviors).

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Results

= A simplified model was tried as well:

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Results

= Backward motion when needed (despite negative
fitness contribution).

Available energy: 36 46500 J

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Current projects

= The transportation robot

= A robot for transportation and

delivery in hospitals, factories,
supermarkets etc.

= The tour guide robot

= A robot that will function as
a tour guide in museums.

= This project was started
recently

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Transportation robot

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Transportation robot

= An application of the UF method

= Objective: to deliver objects
reliably between two arbitrary
points in a given arena.

= Sensory modalities:

= touch sensors

= laser range finder (4.0m range)
= Wheel encoders

An early prototype..

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Similar robots

= TUG, Univ. Of Maryland
= HOSPI (Matsushita)

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Transprtatipn robot

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Transportation
robot

= Example: a delivery task

= Need to reach the goal as fast as
possible, but...

...must avoid collisions.
...must avoid running out of energy.

...must select an appropriate path —
perhaps the shortest path is blocked?

= ...what if there are two goal positions?
The order in which they ought to be
reached may depend on events that
occur during navigation.

« etc. etc.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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The transportation robot

= Results from simulations

S

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Prototype (under development)

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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B
.

Prototype (under development)

|
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Prototype (under development)

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Main points: (UF method)

Behavioral organization is one of the main obstacles in
the struggle to achieve complex autonomous robots.

With the utility function method, we are able to generate
complex behavioral organizers without hand-coding.

The first version of the utility function method was
essentially limited to navigation behaviors (involving only
motor behaviors). Currently a new version of the UF
method (v2.0) is being developed. In this version, not
only motor behaviors but also purely cognitive processes
will be allowed.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Work in progress: UF,

v2.0

= This method comprises three main ideas:
= Rapid definition of behaviors, within a single framework.

= Accurate simulation of robots, as well as optimization of
behavior selection (and, possibly, individual behaviors).

=« Direct translation of simulation results to microcontroller
code.

Mattias Wahde, PhD, associate professor, Chalmers University of Technology
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Typical usage Simulation (possibly

including optimization)

Idea )

Robotic brain
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Thank you very much for
your attention!

= Contact information, see below.
= Home page for the Adaptive
systems research group:

http://www.me.chalmers.se/~mwahde/AdaptiveSystems.html

= Regularly updated list of conferences:

http://www.me.chalmers.se/~mwahde/ConferenceList.php
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