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1. Introduction to the Utility function (UF) method 
 
The utility function method (hereafter: the UF method) [see refs. 1-6] is a method for 
behavioral organization (behavioral selection) in behavior-based autonomous robots, 
based on evolutionary optimization. The method provides a general solution to the 
difficult problem of activating behaviors at appropriate times.  
 
1.1  Behavioral selection in the UF method 
 
The UF method is an arbitration method, i.e. a method in which one and only one 
behavior is active (i.e. controls the robot) at each instant of time. The selection of the 
active behavior is based on a quantity called utility: The active behavior is simply the 
one with the highest current utility value. In the UF method, each behavior is associated 
with a utility function that determines, for any given state (situation) the utility of the 
behavior. Note that the UF method does not generate the actual behaviors: it merely 
attempts to solve the problem of selecting between the available behaviors. 
 

Clearly, the behavioral selection will thus depend on the exact shape of the utility 
functions. In very simple cases involving, say, the selection between two behaviors in a 
robot moving in a simple arena, it is sometimes possible to specify the shape of the utility 
functions by hand. However, in more complex cases, involving robots equipped with 
many behaviors, it is all but impossible to specify the utility functions by hand. Thus, in 
the UF method, the utility functions are determined using an evolutionary algorithm 
(hereafter: EA) which maintains a population of robots, each equipped with a given set of 
behaviors, which in turn are associated with utility functions. Each robot is evaluated for 
a certain period of time, in one or several arenas.  

 
As with all EAs, a fitness measure is needed in order to compare the performance 

of the individuals in the population. Here, another problem presents itself: In general, it is 
a daunting task to specify a fitness measure for a robot equipped with many different 
behaviors, since this requires that one be able to weigh different behaviors against each 
other, for all situations that might occur. By contrast, in the UF method, the specification 
of the fitness measure is simpler, at least in situations where the robot is given one 
specific task. Consider, for example, the case of a floor-sweeping robot equipped with 
two behaviors: floor-sweeping (B1) and battery charging (B2). Of course, as a user of the  



robot, one would want the robot to execute B1 (the task behavior, using UF 
nomenclature) continuously. However, a robot carrying its own energy source must, of 
course, charge its batteries from time to time, i.e. it must also execute the auxiliary 
behavior B2 so that, after charging its batteries, it may again proceed with B1 and thus 
gain fitness. In the UF method, the user need only specify a fitness measure for the task 
behavior. By contrast, none of the auxiliary behaviors (of course there is often more than 
one such behavior) have any impact at all on the fitness of the robot. How, then, can the 
robot sometimes choose B2 over B1, even though the former provides no fitness increase 
whereas the latter does? Clearly, what is needed is some way of determining at what 
situations it is beneficial to execute B2. This requires a common currency for comparing 
behaviors, and that is exactly what the utility values (obtained from the utility functions) 
provide: The utility functions are the common currency used for finding, in any given 
situation, the most useful behavior. Thus, to summarize, it is the user’s task to specify the 
fitness measure (e.g. one point of fitness gained for each square meter of floor sweeped, 
in the example above), whereas it is the task of the UF method to determine the utility 
functions (using an EA) that will maximize the fitness of the robot. 

 
1.2 State variables and utility functions 
 
In the UF method, several types of state variables are defined, namely external variables 
(such as e.g. sensor readings), internal physical variables (such as e.g. the reading of a 
sensor measuring the battery level), and internal abstract variables. The internal 
abstract variables are readings of (artificial) hormone variables. Variables of this type 
are, just like hormones in biological systems, used for internal signalling. As will be 
shown below, the internal abstract variables are often used to prevent dithering, i.e. rapid 
and counterproductive switching between behaviors. When the UF method is to be 
applied to a given behavioral organization task, the user must specify an ansatz for each 
utility function (one for each behavior). While any utility function may, in principle, 
depend on all of the available state variables, it is common that such functions only 
depend on a small subset of the state variables. In the present version of the method, the 
utility functions are pth degree polynomials. Thus, a typical ansatz (with p=2) for, say, a 
utility function depending on the two variables E and x would be 
 
U(E,x) = a00 + a10E + a01x + a20E2 + a11EX + a02 x2 ,    (1) 

 
where the aij are the coefficients that are to be determined by the EA. 
 
1.3 A simple example 
 
For most of the remainder of this tutorial, a simple example involving the organization of 
two behaviors will be considered. The example is indeed very simple, since the aim has 
been to provide a clear and accessible illustration of how the UF method works, rather 
than trying to describe a realistic application. Thus, consider the example of a very simple, 
two-wheeled, differentially steered robot (e.g. a guard robot), whose task it is to move as 
far as possible along a circular path. The robot, which is illustrated in Fig. 1, is equipped 
with two behaviors, namely Circular navigation (B1) and Battery charging (B2).  



B1

 
 

Fig. 1 The motion of the robot (seen from above) while executing B1. 
 
In the first behavior, the robot sets the torque of its two motor to slightly different values, 
thus executing a circular motion, as illustrated in Fig. 1. In B2, the robot simply sets the 
torque of the two motors to zero, eventually reaching a standstill. It is assumed that the 
charging of the batteries (taking place e.g. via a conducting floor) starts after a time tc 
after the motor torques have been set to zero, and then continues until B1 is activated. If 
the batteries become full, no further charging occurs, but the robot does not start to move 
until B1 is again activated.  
 
 The evaluation of the robot continues during a time interval of length T, unless 
the robot runs out of battery energy, in which case the evaluation is terminated 
immediately. For this robot, B1 is the task behavior, for which a fitness measure should 
be specified. In this simple case, the distance moved while executing B1 is a suitable 
fitness measure. However, since the robot consumes energy while executing B1 it must, 
from time to time also activate B2. In order to do so, it must be able to determine the 
utility of B1 and of B2, at all times. Clearly, in this simple case, the battery energy E is a 
very important variable. Thus, for B1, the following ansatz can be made for the utility 
function: (making the somewhat arbitrary choice p=2 for the polynomial degree) 
 
U1(E) = a00 + a10E + a20E2        (2) 
 
Now, since the selection of a behavior (for activation) depends only on the relative utility 
values of the available behaviors (i.e. the behavior with the highest utility value is 
activated), one might be tempted to set U2 � 0 in this case. However, this would lead to a 
more subtle problem: Assume that the coefficients determining U1 has been set such that 
U1 decreases as the battery energy falls. If U2 were identically zero, B2 would become 
active as soon as U1 dropped below zero, provided that the coefficients were such that it 
does.  
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Fig. 2 Utility variation and behavior activation. In the left panel U2 is identically zero, resulting in 
behavioral dithering (as indicated by the rectangles at the bottom of the figure: A black rectangle 
indicates that B1 is active and a white one that B2 is active). By contrast, in the right panel, U2 
depends on an internal abstract variable x. 
 
To be specific, consider the case in which the battery energy is normalized to the range 
[0,1], and where U1 is given as U1 = -0.5+E2, so that B2 would become active at E = 
0.707… . As soon as B2 becomes active, the battery energy would rise, resulting in U1 
becoming positive, and thus activating B1. However, at this point, E would again fall, 
thus directly making U2 > U1, again activating B2 etc. Put differently, the robot would 
find itself dithering endlessly between B1 and B2. This situation is illustrated in the left 
panel of Fig. 2. Clearly, a different ansatz is needed for U2, and this is where the concept 
of abstract internal variables becomes useful. Consider a variable x that takes the value 1 
whenever B2 is active and the value 0 whenever B1 is active1. Now, ansatz of the form 
 
U2 (x) = b00 + b10x + b20x2        (3) 
 
can be made for U2

2. Now, as U2 becomes larger than U1, as a result of a drop in battery 
energy, x (and, therefore, U2) would make an instantaneous jump. Provided that the 
coefficients in Eq. (3) have been set appropriately, this would make U2 much larger than 
U1, thus keeping B2 active for some time, as illustrated in the right panel of Fig. 2. 
 
 
 

 

 
 

                                                 
1 The variation of x could be more complex. However, this simple specification will suffice for the present 
example. 
2 Clearly, the ansatz U2 = b10x would be sufficient in this case.. However, the form (2) was chosen since it 
is more general, i.e. it would be applicable even in cases where x varied in a more complex way.  



2. Introduction to UFLibrary_v1.0.1 
 
The UFLibrary, which provides a general implementation of the UF method, has been 
written in Delphi object-oriented Pascal, and is provided, as the name implies, in the form 
of a program library rather than a stand-alone application. The rationale behind this 
approach is that, since each new scientific investigation generally differs significantly 
from previous ones, a stand-alone, non-modifiable application will in general be less 
useful than a library. The drawback, of course, is that the use of a library will require 
some programming on the part of the user.  
 

The aim with UFLibrary has been to place all common structures (such as the 
mechanisms of behavioral selection) in the library, and thus to minimize the effort needed 
from the user. Nevertheless, the problem of behavioral organization is a complex one, 
and the UFLibrary is therefore far from trivial to use. Thus, in this tutorial, a simple step-
by step example will be given, involving the organization of the two simple behaviors 
(B1 and B2) described above. 

 
2.1 General usage issues 
 
Even though the UFLibrary simplifies the problem of behavioral selection, there are 
several steps that must be carried out in any given behavioral organization task. At a first 
glance, the procedure described below may seem rather complex. However, in several 
cases (namely steps (1), (3), (5), and (7)), pre-defined templates can be used, thus 
minimizing the effort required by the user. 
 
Specifically, the user must 
 
(1) Provide, in the form of source files written in Pascal, the constituent behaviors 

that are to be included in the behavioral repetoire of the robot. The specification 
of a behavior can usually be based on a predefined template, thus limiting the 
work to writing a few procedures. Of course, it is also possible to use the baseic 
pre-specified behaviors provided in the UFLibrary. 

(2) Specify a fitness measure. As described above, often the execution of a single 
behavior (the task behavior) will be associated with a fitness increase, the fitness 
variation for all other behaviors being zero. 

(3) Provide a robot definition file (specifying the physical parameters of the robot, 
as well as its sensors and motors) and a brain definition file (specifying which 
behaviors are to be included in the behavioral repertoire, as well as any user-
defined parameters included in the behaviors). Examples of such definition files 
will be given below.  

(4) Provide an ansatz for each utility function. Again, the UFLibrary does most of the 
work: The user need only specify which variables are to be included in each 
polynomial, as well as the polynomial degree p. 



(5) Provide an arena definition file, specifying the location of walls, obstacles, etc. 
in the arena in which the robot will operate. An example of an arena definition file 
will be given below. 

(6) Specify a termination criterion, e.g. terminating an evaluation in case of collisions 
(collision handling is taken care of by UFLibrary, limiting the specification of this 
particular termination criterion to a few lines of code). 

(7) Write and compile the actual application (executable file). Also in this case, the 
user may employ pre-defined source files, as illustrated in the example below. 
The user has full flexibility to specify e.g. what data should be extracted from the 
evaluation of each individual (e.g. the variation of utility with time, the fitness of 
the robot, the motion of the robot etc.) 

 
 

3 A simple example: Circular navigation 
 
3.1  Problem description 
 
Consider again the example introduced above, namely that of an autonomous robot 
moving in a large, obstacle-free arena. Assume that the task of the robot is simply to 
guard the area around the center of the arena, by moving in circles around it, and assume 
further that the robot carries its own energy supply (e.g. a battery) that must, from time to 
time, be charged. In this simple example, it will be assumed that the robot is able to 
charge it batteries simply by stopping (e.g. by making use of a conducting floor) As 
mentioned above, it will be assumed that charging starts only after tc seconds of 
execution of B2 (the battery charging behavior).  
 
 The robot will be equipped with two behaviors: CircularNavigation (B1) and 
BatteryCharging (B2). Since the UF method is an arbitration method, only one 
behavior can be active at any given time. Thus, the robot must find a way to select 
between the two available behaviors. Its goal is to move a far as possible in a given time. 
Since there is a delay in the activation of the charging, and since the robot only needs to 
stop, in any, location, to begin charging behavioral selection is quite simple in this case: 
A rational approach, if the robot starts with a full battery, is simply to move until the 
battery is almost empty, and then to stop and charge the batteries until they are full (the 
possible exception being the final part of the evaluation, where it might be beneficial for 
the robot only to charge the batteries partially). 
 

In the particular case considered here, a hormone variable measuring the 
equivalent of hunger (i.e. lack of energy) will be introduced in such a way that it forces 
the robot to keep B2 active for some time before B1 can again become active. Thus, the 
ansatz given in Eq. (3) will be used for U2, with x representing the reading of the 
hormone variable H. For U1, the ansatz in Eq. (2) will be used. 
 
 Thus, the task of the EA will be to find appropriate values for the coefficients aij 
and bij in order to activate behaviors in a timely fashion. Since x is an artificial variable, 
i.e. a variable that is unrelated to physically measurable quantities, its variation with time 



 
 

 
 

Fig. 3 The main window of the UFLibBasicDemo application. 
 

  
(and other variables) must be specified as well. In UFLibrary_v1.0.1, it is the user’s task 
to specify this variation, and it should therefore be kept as simple as possible (In future 
versions of the UF method and thus of UFLibrary, the variation of hormone variables will 
be evolved together with the utility functions). Here, the variation of H (and thus of x) 
will be as specified in Sect. 1 above: H is exactly 0 whenever B1 is active, and exactly 1 
whenever B2 is active. The fitness measure will be taken simply as the distance moved 
while executing B1. 
 
In Sect. 3.3 below, source code for the example described above will be analyzed in 
detail. However, before the writing of source code is considered, a simple illustration will 
be given of the compilation and execution of a program based on the UFLibrary. 
 
3.1.1 A note concerning Delphi versions 
 
In order for it to be possible to use the UFLibrary, the user must, of course, have Delphi 
object-oriented Pascal installed on the computer. Furthermore, the user must be careful to 
use the correct version (depending on the Delphi version used) of the UFLibrary. The 
examples associated with this tutorial are provided for Delphi v.5 and Delphi v.6. Names 
of folders files will be given in bold italics below, whereas names of files and will be 
given in bold face. Menu selections in Delphi and in the example program will be given 
using underline. 
 
3.2  Compiling and running the program 
 
The source code for the application and the two behaviors CircularNavigation and 
BatteryCharging is provided with this tutorial. As a first step, the addition of behaviors to 
an application, as well as the compilation of the program, will be illustrated. First, open 
the folder BasicDemo, and double-click on the blue Delphi project icon, named 
UFLibBasicDemoProject.dpr in order to start the project. The window shown in Fig. 3 
should appear. By default, three Delphi units (source files) have been added to this 
project, namely the files Main.pas, UFEvolution.pas, and BasicRobotSimulation.pas. 
By selecting View – Project Manager, and clicking on the + symbol the user may view 
the files available in the project.  
 
 



 
 

 
 

Fig. 4 The Pre-defined behaviors folder 
 

 
Now, select Project – Add to Project, and browse to the folder Pre-defined behaviors, as 
shown in Fig. 4 below. Next, add the two behavior units CircularNavigation.pas and 
BatteryCharging.pas to the project.  
 

The next step is to compile the project. For this to be possible, it is necessary to 
tell Delphi where it can find the UFLibrary. The UFLibrary is contained in two files 
called UFLibraryxx.dcp (this is the Delphi compiled package, needed for the 
compilation) and UFLibraryxx.bpl (this is the file needed when running the application, 
corresponding to a dll, using standard Windows terminology). xx indicates the version 
number. Thus, in Delphi 5, xx = 50 etc. Now, select Project – Options… in the main 
Delphi window, and then select Packages. The window shown in Fig. 5 appears (Note: 
the figure shows the appearance of the Project – Options… window for Delphi 5. For 
other versions of Delphi, it will look slightly different). Check the Build with runtime 
packages check box. Select Add, and browse to the location of the UFLibrary (i.e the 
folder immediately above Pre-Defined behaviors, see Fig. 6). Click Open and then OK 
(twice). Now the application should be complete. In order to compile it, press F9 or select 
Run – Run in the Delphi main window. The application starts by showing the main 
window. In the Runs menu, select Evolution of behavioral organizer. Now, the window 
shown in Fig. 7 appears. Press Initialize and then Run, without modifying any of the 
parameter values. The program will now run the evolutionary algorithm, evaluating 
successive generations, each of which consists of 50 individuals evaluated for 50 seconds 
(or until a collision occurs). 

 



 
 

 
 

Fig. 5. The Project – Options… window,  shown for Delphi 5. 
 

 

 
 

Fig. 6. Adding the UFLibrary dcp file (in the case Delphi5). 
 



Let the program run until the maximum fitness value (shown in the lower left 
corner of the window) reaches 10 or more. This should take less than 30 seconds on a 
computer equipped with a P4 processor with a clock frequency of 2.5GHz or above. Then 
press Pause. Once the current generation has been completed, the program pauses. When 
this has occurred, press the Inspect button. Now, the robot can be seen in action, 
switching between a circular motion (in B1) and standing still to charge the batteries (in 
B2). A typical screenshot from such a run is shown in Fig. 8. 
 
 Now, press End, and then Close. Exit the program by selection File – Exit in the 
main window, and then inspect the BasicDemo folder. As can be seen, a new folder, 
named after the exact time at which the program was started, has been added. Open this 
folder. It should contain two files, namely an evaluation file called Robot_Gen_n.txt 
(where n is the generation after which the Inspect button was pressed), and a run 
summary called Run_Results_Summary_YYYY_MMMDD_HH_NN_SS.txt, where 
the string YYYY_MMMDD_HH_NN_SS indicate the date and time at which the run 
was started. 

 
 

 
  

Fig. 7. The window used when evolving the behavioral organizer. 
 



 
 

 
 
Fig. 8. A screenshot showing the robot in the arena, at the end of an evaluation. 
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Fig. 9. The actual utility functions obtained using the UFBaseApplication executable. The solid line 
shows U1, and the dashed line represents U2. 

 
 

The latter file contains a list of the run parameters, as well as the maximum and 
average fitness values measured during the run. The file Robot_Gen_n.txt contains the 
evolved utility functions, as well as their variation with time, the position and angle of 
heading of the robot (as functions of time), and the battery energy (also as a function of 
time). In Fig. 9, the actual utility functions obtained for an individual with fitness > 10. In 
the figure, U1 and U2 are shown as solid and dashed lines, respectively. Initially, B1 is 
active, since U1 > U2. At around t = 3.0, U1 dips below U2, so that B2 becomes active. 
The internal abstract variable x is then set to 1, resulting in an upward jump in U2. The 



charging of the battery begins after a short delay tc, and U1 then begins to rise until, at 
around t=12.5, it again exceeds U2, thus activating B1. 
 
3.3  Writing behavior source files and definition files 
 
The program will now be studied in greater detail, by going through the source units for 
the behaviors, and then analyzing the definition files. Thus, as the next step, select Project 
– Remove from Project…, and remove the two source files CircularNavigation.pas and 
BatteryCharging.pas from the project. Next, open the folder BasicDemo. As discussed 
above, in this folder, there are three source files (all of which carry the suffix .pas), 
namely Main.pas, BasicRobotSimulation.pas, and UFEvolution.pas. Main.pas and 
UFEvolution.pas are each associated with a Delphi form (window), contained in the files 
Main.dfm and UFEvolution.dfm, respectively. In addition, the folder also contains the 
UFLibrary (as two files, UFLibraryxx.bpl and UFLibraryxx.dcp), GLScene (for 3D 
graphics, contained in the files GLScenen.bpl and GLScenen.dcp), where xx and n 
indicate the Delphi version used (for e.g. Delphi 5, xx = 50, and n = 5). The folder also 
contains the two files vcl50.bpl and vcljpg50.bpl, which are needed by the UFLibrary 
(but which are normally already present on the computer, provided that Delphi is 
installed). 

 
Note: None of the three .pas files mentioned above are necessary for using the 

UFLibrary. They are provided as templates for rapid application development, but can 
easily be replaced by files generated by the user. For example, there is, in principle, no 
need to generate a separate form for running the evolutionary algorithm: This could be 
done directly under the main.dfm window, should the user wish to do so. Next, take some 
time to study the three .pas files: 
 
(1) Main.pas 
    

This is the main window of the application. All it does is to open a form of type 
TUFEvolutionForm, in which the actual evolution takes place.  
 

(2) UFEvolution.pas 
 

This file contains several procedures. Note, however, that there is no need to look 
at these procedures in detail at this point, and neither is it necessary to modify any 
of them. In fact, the UFEvolution.pas unit can be used with any UF experiment. 
However, if the user should generate a custom class for robot simulation with a 
different name than TBasicRobotSimulation (see below), the corresponding 
changes must of course be made also in UFEvolution.pas (i.e. all occurences of 
TBasicRobotSimulation must be modified to T<name>RobotSimulation, where 
<name> is the custom name provided by the user). 

 
Anyway, consider briefly the most important procedure in this source file, namely 
the RunButtonClick procedure. This procedure contains the main loop used by 
the evolutionary algorithm (EA). Basically, the EA loops over all individuals in 



the population, generates a robot simulation and sets the corresponding arena 
(SetArena(fArena); For a description of arena files, see below), decodes the 
chromosome of the current individual (fEA.Population[i].DecodeGenome), 
sends the individual to the robot simulation (SetAgent(fEA.Population[i]);), 
sets up a collision manager that handles collisions between the robot and objects 
in the arena, and then evaluates the individual, time step by time step, until the 
simulation is complete, i.e. until either the alloted time has been used up, or the 
robot collides with an obstacle. When all individuals have been evaluated, a new 
generation is formed (fEA.MakeNewGeneration). 
 

(3) BasicRobotSimulation.pas 
 
 This unit defines a class TBasicRobotSimulation, which is derived from 
 the class TRobotSimulation, defined in the UFLibrary package. The 
  TRobotSimulation class contains three virtual procedures, i.e. procedures 
  that can be modified in a descendant class derived from it. In the base 
  class TRobotSimulation, there are two termination criteria: the evaluation 
  of the robot (i.e. the simulation is terminated if the maximum time is 
  reached or if the robot collides with an obstacle. However, in the example 
  considered here, the evaluation should also be terminated if the battery 
  energy level drops to 0. Thus, a new class, i.e. TBasicRobotSimulation, is 
  needed. For clarity, all three termination criteria have been included in the 
  CheckTerminationCriteria procedure in this class. An alternative way 
  would have been to replace the first two criteria with a call to the 
  procedure inherited from the TRobotSimulation class, i.e. by writing the 
  procedure as    
 
 
  procedure TBasicRobotSimulation.CheckTerminationCriteria; 

begin  
  inherited;  
  if (TRobot(fAgent).Body.Battery.Level <= 0.0) then 

        begin 
                 fIsComplete := True; 
                 fTerminationType := ttBatteryDepleted; 
                end; 
            end; 
  
 
  The procedure UpdateFitness, which does nothing in the base class, can 
 be used in cases where one wishes to modify the fitness of the individual 
 continuously during an evaluation. This is not the case here, so the 
  procedure is empty also in the derived class. Finally, in the base class, the 
  procedure FinalizeFitness sets the fitness simply to the distance travelled 
  by the robot. This is a suitable fitness measure also for the example 
  considered here (since the robot moves actively only when executing B1), 
  and therefore the procedure in the descendant class simply calls the 
  corresponding procedure in the base class. 



 
The next steps are (1) to generate the source code for the actual behaviors, and 

then (2) to specify the general structure of the robotic body and brain, as well as the arena, 
in the form of text files. 
 
3.3.1  Writing behaviors 
 
The base class from which all specific behavior classes are derived is the TBehavior class. 
In order to write a specific behavior, the user must, as a minimum, provide source code 
for the Step procedure, which determines the actions take by the robot while executing a 
single time step using the behavior in question. In addition, source code for the 
constructors Create and CreateAndSet, the function Copy, the procedures 
LoadFromDefinition, and (in certain cases) the destructor Destroy, must be provided. 
Furthermore, for some behaviors (e.g. the battery charging behavior, see below), the 
procedures Enter, Initialize, and Exit must be provided as well However, as we 
shall see, only a few lines of code are needed for each routine, at least in this simple 
example. 
 
 

 
 

 
 

Fig. 10. The folder User-defined behaviors, after making copies of TemplateBehavior.pas. 
 

 
Now, Use the explorer to open the folder User-defined behaviors. Here, a 

template for behaviors is provided in the source file TemplateBehavior.pas. Make two 
copies of this template file, and rename them to CircularNavigation.pas and 
BatteryCharging.pas. Thus, after this step, the folder User-defined behaviors should 



look as in Fig. 10 above. Next, open one of the files, e.g. CircularNavigation.pas, using 
the File – Open command in Delphi. Since the file is a direct copy of 
TemplateBehavior.pas, the name of the unit is still TemplateBehavior. Thus, as a first 
step, change the name of the unit to CircularNavigation, so that the first line reads 
 
unit CircularNavigation; 
 

The class implementing the circular navigation behavior should preferably be 
called TCircularNavigation. Thus, change all occurrences of the word 
TTemplateBehavior to TCircularNavigation. The easiest way of doing so it to select 
Search – Replace in Delphi, specifying the change as shown in Fig. 11 below, and 
pressing Replace All. 
 

In the template file, the defined class is of type TBehavior. In the present case we 
are about to write a specific type of behavior, namely a motor behavior, for which a class 
(derived from TBehavior) is available, namely TMotorBehavior. This class differs from 
TBehavior only in one respect: it contains a vector for storing the motor outputs 
generated by the behavior. Our behavior for circular navigation will be derived from 
TMotorBehavior. Thus, change the class header to read 

 
 

 
 

Fig. 11. Replacing all occurences of  TTemplateBehavior by TCircularNavigation. 

 
 
type TCircularNavigation = class(TMotorBehavior) 
 
Inspecting the interface part of the class TCircularNavigation, we find (as indicated 
above) that six routines must be written: 
 
type TCircularNavigation = class(TMotorBehavior) 
 private 
 public 
  constructor Create; override; 



  constructor CreateAndSet(B: TBehavior); override; 
  function Copy: TBehavior; override; 
  procedure LoadFromDefinition(ObjDef: TObjectDefinition); override; 
  procedure Step(TimeStep: real); override; 
  destructor Destroy; override; 
 end; 
 

Let us now write these six routines. The Copy function is already complete as it is: the 
only change needed is to set the right class name, which was just done (see above). The 
constructor Create must set the number of output variables used by the motors of the 
robot, since the base class TBehavior (and thus TMotorBehavior) has no way of 
knowing exactly how many motors are present in the robot under study. In this case we 
shall use a differentially steered, two-wheeled robot with two motors. Thus, add a line to 
the constructor Create so that it reads 
 
constructor TCircularNavigation.Create; 
begin 
  inherited; 
  fOutputVariables.SetSize(2); // added line! 
end; 
 
The part “// added line” is a comment that can, of course, be omitted. fOutputVariables 
is a field in the base class TMotorBehavior, of type TVector, for which the SetSize 
procedure is defined. Thus, the line just added sets the number of output variables to two. 
 

Next, the Step procedure should be written. This is the procedure that determines 
the actual behavior of the robot, and it will, of course, vary from behavior to behavior. In 
connection with the writing of the Step procedure, it is common that one must define 
local variables needed for the implementation of the behavior. These can range from 
simple constants to complex objects. For the particular case of the circular navigation 
behavior, only two motor outputs are needed: one for the left motor (ML) and one for the 
right motor (MR). If the motor outputs are set to constant values, the robot will execute a 
clockwise motion if ML > MR and a counterclockwise motion otherwise (shown in Fig. 1). 
Clearly, most behaviors will be made more advanced than this, but for the present 
example, two constant motor outputs will be sufficient.  

 
Note: the motor outputs will be fed to DC motors (implemented in the class 

TDCMotor in UFLibrary), which expect signals in the range [-1, 1]. The procedure for 
actually setting the numerical values, through the text files defining the robot, will be 
described below). 

 
Thus, as the next step, add two fields of type real, fLeftMotorOutput and 

fRightMotorOutput, to the interface of the TCircularNavigation class, so that it reads:  
 
type TCircularNavigation = class(TMotorBehavior) 
 private 
  fLeftMotorOutput: real; 
  fRightMotorOutput: real; 
 public 



  constructor Create; override; 
  constructor CreateAndSet(B: TBehavior); override; 
  function Copy: TBehavior; override; 
  procedure LoadFromDefinition(ObjDef: TObjectDefinition); override; 
  procedure Step(TimeStep: real); override; 
  procedure Exit; override; 
  destructor Destroy; override; 
  property LeftMotorOutput: real read fLeftMotorOutput; 
  property RightMotorOutput: real read fRightMotorOutput; 
 end; 
 
Note the addition of the properties at the end of the class interface: The fields for the 
motor outputs, fLeftMotorOutput and fRightMotorOutput will be invisible outside the 
unit CircularNavigation (since they are defined as private). However, the two 
properties LeftMotorOutput and RightMotorOutput can be read (but not written to) by 
any unit containing CircularNavigation in its uses clause. Next, proceed to the 
implementation part of the Step procedure, and modify it to read:  
 
 
procedure TCircularNavigation.Step(TimeStep: real); 
begin 
  inherited; 
  fOutputVariables[1] := fLeftMotorOutput; 
  fOutputVariables[2] := fRightMotorOutput; 
end; 
 
This Step procedure will set the left and right motor outputs to constant values. In this 
simple case, it would have been possible to set the constant motor outputs in the Enter 
procedure, which is defined in the base class TBehavior. However, the preferred way 
of setting torque values (even constant ones), is to use the Step procedure. 
 

The CreateAndSet constructor can now be written. Its purpose is to generate an 
exact copy of the behavior, which is needed e.g. when creating new individuals in the 
evolutionary algorithm used for optimizing the utility functions. In this case, there are 
two fields defined in the behavior, namely the motor outpus fLeftMotorOutput and 
fRightMotorOutput. Thus, CreateAndSet takes the form: 
 
constructor TCircularNavigation.CreateAndSet(B: TBehavior); 
 
var 
  CB: TCircularNavigation; 
 
begin 
  inherited; 
  CB := TCircularNavigation(B); 
  fLeftMotorOutput := CB.LeftMotorOutput; 
  fRightMotorOutput := CB.RightMotorOutput; 
end; 
 
Note that an explicit typecast must be used, since the input variable (B) is of type 
TBehavior. The next step is to write the procedure LoadFromDefinition, which is used 



when reading the parameters of a behavior (e.g. the parameters LeftMotorOutput and 
RightMotorOutput in this case) from the text file defining the brain of the robot (see 
below). The general nomenclature for reading a field in a LoadFromDefinition 
procedure is 
 
<fieldname> := ObjDef.PropertyAsFloat('Name of field in text file'); 
 

Similar procedures are defined for reading variables in the form of integers 
(PropertyAsInteger), strings (PropertyAsStrings), and vectors (PropertyToVector). 
When the file is read, the field in question in identified by its name as written in the text 
file (Example are shown below). Thus, in principle, any name or descriptive string 
(without spaces) can be used for identifying a field. The preferred way, however, is to use 
the name of the corresponding property, as defined in the class interface. In this case, the 
LoadFromDefinition procedure will take the form: 
 
procedure TCircularNavigation.LoadFromDefinition(ObjDef: TObjectDefinition); 
begin 
 inherited; 
 fLeftMotorOutput := ObjDef.PropertyAsFloat('LeftMotorOutput'); 
 fRightMotorOutput := ObjDef.PropertyAsFloat('RightMotorOutput'); 
end; 

 
 Finally, the destructor Destroy should be written. In this case, the only fields that 
need to be destroyed are fLeftMotorOutput and fRightMotorOutput, which are of type 
real and are thus handled by the default destructor associated with all Delphi objects. 
Thus, the destructor need not be changed. The behavior CircularNavigation is now 
complete. Save the file, and take a moment to check that your code looks exactly as the 
source code for CircularNavigation provided in the folder Pre-defined behaviors. 
 

Next, the source code for the battery charging behavior should be written. Thus, 
open the file BatteryCharging.pas located in the user-defined behaviors folder (see Fig. 
10 above). If this file does not yet exist, simply make a copy of TemplateBehavior.pas, 
and rename it to BatteryCharging.pas. The class implementing the battery charging 
behavior should be called TBatteryCharging. Thus, change all occurrences of the word 
TTemplateBehavior to TBatteryCharging, using the method shown in Fig. 11 above. 
Also, change the first line of the unit to read 
 
unit BatteryCharging; 
 
The battery charging behavior will also make use of the motors, and should therefore be a 
motor behavior. Thus, change the first line of the class interface to read 
 
type TBatteryCharging = class(TMotorBehavior) 
 

Furthermore, the battery charging behavior will make use of some Delphi units 
(contained in the UFLibrary) which are not listed in the uses clause of the template 
behavior. Thus, modify the uses clause to read 
 
 



 
uses 
  Definitions 
  , Behaviors 
  , ObjectDefinition 
  , Variables 
  , Motors 
  , Matrices 
  , EnergySource 
  , Sensors 
  , Hormones 
  , BatterySensor 
  ; 

 
(The four last units have been added). 
 
 The six routines Create, CreateAndSet, Copy, LoadFromDefinition, Step, and 
Destroy should now be written. Just as in the case of the CircularNavigation behavior, 
the Copy procedure needs no further change. The constructor Create is identical to the 
one used in CircularNavigation: 
 
constructor TBatteryCharging.Create; 
begin 
  inherited; 
  fOutputVariables.SetSize(2); 
end; 
 
 In the battery charging behavior, the robot need only stop in order to begin 
charging the battery, and charging will begin a certain time after activation of the 
behavior. However, the charging behavior must also be given the information needed to 
identify the battery and its corresponding sensor (measuring the energy level in the 
battery).  Thus, modify the interface part of the class definition to read 
 
 
type TBatteryCharging = class(TMotorBehavior) 
 private 
  fBatteryPointer: TEnergySource; 
  fCorrespondingBatteryName: string; 
  fChargingStartTime: real; 
 public 
  constructor Create; override; 
  constructor CreateAndSet(B: TBehavior); override; 
  function Copy: TBehavior; override; 
  procedure LoadFromDefinition(ObjDef: TObjectDefinition); override; 
  procedure Initialize(Sensors: TSensors; Hormones: THormones); override; 
  procedure Enter; override; 
  procedure Exit; override; 
  procedure Step(TimeStep: real); override; 
  destructor Destroy; override; 
  property BatteryPointer: TEnergySource read fBatteryPointer; 
  property CorrespondingBatteryName: string read fCorrespondingBatteryName; 
  property ChargingStartTime: real read fChargingStartTime; 
 end; 

 



 
Note that the battery charging behavior is slightly more complex than the navigation 
behavior, in that it contains three additional procedures: Initialize, Enter, and Exit. 
The Initialize procedure is called (from TBrain) once and for all when the robotic 
brain is created. Its task is to map sensor and hormone variables onto state variables (i.e. 
the scalar variables used in the utility functions) and input variables (i.e. variables used 
e.g. in the Step procedure of each behavior). The Enter procedure, by contrast, is called 
every time the corresponding behavior becomes active, and the Exit procedure is called 
every time an active behavior is de-activated. Here, the purpose of Initialize procedure 
is to map the fBatteryPointer field to the battery sensor. Thus: 
 
procedure TBatteryCharging.Initialize(Sensors: TSensors; Hormones: THormones); 
override; 
 
var 
  i: integer; 
 
begin 
  inherited; 
  fBatteryPointer := nil; 
  for i := 1 to Sensors.NumberOfSensors do 
  begin 
    if (Sensors[i] is TBatterySensor) then 
    begin 
      if (TBatterySensor(Sensors[i]).CorrespondingBatteryName = 
        fCorrespondingBatteryName) then 
      begin 
        fBatteryPointer := TBatterySensor(Sensors[i]).CorrespondingBattery; 
        Break; 
      end; 
    end; 
  end; 
end; 

 
As a precaution, the Initialize procedure begins by setting the fBatteryPointer to 
nil. Next, it loops through all sensors (even though, in the present case, there is only one 
sensor available, namely the battery sensor), identifies the battery sensors via its name, 
and sets the corresponding pointer. 
 
 In many cases, e.g. the circular navigation behavior, there is no need to add 
explicitly any of the three procedures Initialize, Enter, and Exit. However, the 
battery charging behavior is associated with a hormone variable (“hunger”), whose value 
must be set. In future versions of UFLibrary, the variation of hormone variables will be 
evolved together with the utility functions. However, in the current version, hormone 
variables must be set by hand. In the simple application considered here, the hunger 
hormone will be set to 1 upon activation of BatteryCharging and to 0 upon de-activation 
of the same behavior. In the navigation behavior, the hunger hormone will remain at 0 at 
all times. The value of the hormone will be made available to the utility function of B2 in 
the form of an internal abstract state variable (see Sect. 1.2 above), which must thus be 
present in the definition file of the robotic brain. Here, it will be assumed that the first 
state variable in B2 corresponds to the hunger hormone. Thus, the Enter and Exit 
procedures take the form: 



procedure TBatteryCharging.Enter; 
 
begin 
  inherited; 
  TInternalAbstractVariable(fStateVariables[1]).HormonePointer.Level := 1.0; 
end; 
 
procedure TBatteryCharging.Exit; 
 
begin 
  inherited; 
  TInternalAbstractVariable(fStateVariables[1]).HormonePointer.Level := 0.0; 
end; 
 

Note the typecast, which identifies state variable 1 as an internal abstract variable. Note 
also that the definition file for the robotic brain cannot be written completely 
independently of the battery charging behavior, since the latter explicitly identifies the 
first state variable as an internal abstract variable measuring the level of a hormone (In 
furture versions of UFLibrary, state variables will be identified by name rather than their 
index). Now, the Step procedure can be written. Put simply, this procedure will stop the 
motors of the robot, so that charging can begin 
 
procedure TBatteryCharging.Step(TimeStep: real); 
begin 
  inherited; 
  fOutputVariables[1] := 0.0; 
  fOutputVariables[2] := 0.0; 
  if (fBehaviorTime > fChargingStartTime) then 
   begin 
    if fBatteryPointer <> nil then 
     begin 
      fBatteryPointer.Charge(TimeStep); 
     end; 
   end; 
end; 

 
As is evident from the source code for the Step procedure, charging only begins when 
the behavior time (which is updated by the Step procedure in the base class TBehavior) 
exceeds fChargingStartTime3. Note that the discharging of the battery is taken care of 
by the Move procedure in the class TDifferentiallySteeredBody (which, in turn, is 
derived from the base class TBody), and consists of two parts: a discharge rate at rest, and 
a speed-dependent discharge rate. Clearly, in order for the battery to be charged by the 
charging behavior, the charge rate must exceed the discharge rate at rest. All charging 
rates are defined in the definition file for the body of the robot, see below. Now, the 
CreateAndSet and LoadFromDefinition procedures can be written: 
 
constructor TBatteryCharging.CreateAndSet(B: TBehavior); 
 
var 
 BC: TBatteryCharging; 
 
begin 
  inherited; 
  BC := TBatteryCharging(B); 

                                                 
3 The behavior time is set to zero each time the behavior is activated. 



  fCorrespondingBatteryName := BC.CorrespondingBatteryName; 
  fChargingStartTime := BC.ChargingStartTime; 
end; 

 
Note that the fBatteryPointer is set by the Initialize procedure. This is so, since, 
during the creation of a robot, the body must first be initialized in order to identify the 
sensors, implying that the fBatteryPointer cannot be set already at the time of creation 
of the battery charging behavior. The LoadFromDefinition procedure takes the form 
 
procedure TBatteryCharging.LoadFromDefinition(ObjDef: TObjectDefinition); 
 
begin 
  inherited; 
  fCorrespondingBatteryName := 
    ObjDef.PropertyAsString('CorrespondingBatteryName'); 
  fChargingStartTime := ObjDef.PropertyAsFloat('ChargingStartTime'); 
end; 
 

Finally, the destructor should be written. In addition to calling the default constructor 
inherited from TObject, it needs to set the fBatteryPointer to nil: 
 
destructor TBatteryCharging.Destroy; 
 
begin 
  fBatteryPointer := nil; 
  inherited; 
end; 

 
The battery charging behavior is now complete. Take some time to make sure that it is 
identical to the battery charging behavior provided in the file BatteryCharging.pas in 
the folder Pre-defined behaviors. Now, when the behaviors have been completed and 
saved, they can be added to the application. In order to do so, select Project – Add to 
project… in the main Delphi window. Browse to the folder User-defined behaviors, and 
add the two files CicularNavigation.pas and BatteryCharging.pas.  

 
3.3.2  Writing the definition files 

 
While the actual code for the program has now be completed, there are a few components 
missing before the program can actually be run. These components are: 
 

(1) A definition file for the robot, specifying its physical properties (i.e. its 
mass, moment of inertia, height etc.), its motors, and its sensors. 

(2) A definition file for the brain of the robot. This file should define the 
general structure of the brain, i.e. it should specify the behavioral 
repertoire and the parameters for each behavior. 

(3) An arena file, defining the environment in which the robot will operate. 
 
Writing these files from scratch is rather cumbersome. Fortunately, however, they can 
often be based on existing templates. For the present example, we will contend ourselves 
with a brief analyis of the files needed for the program to run. 
 



 
 
object Robot: TRobot 
   
  object Body: TDifferentiallySteeredBody 
    Position = 1.0 1.5 0.0 
    Mass = 10.0 
    Radius = 0.20 
    MomentOfInertia = 0.005 
    WheelRadius = 0.1 
    WheelWidth = 0.02 
    Height = 1.0 
    Alpha = 1.25 
    Beta = 0.39 
 
    object Battery: TEnergySource 
      MinEnergy = 0.0 
      MaxEnergy = 1.0 
      InitialEnergy = 1.0 
      DischargeRateAtRest = 0.02  
      DischargeRateInMotion = 0.30 
      ChargeRate = 0.10 
    end 
     
    object Motor1: TDCMotor 
      MaximumVoltage = 12.0 
      TorqueConstant = 0.0333 
      BackEMFConstant = 0.25 
      ArmatureResistance = 0.62 
      CoulombFriction = 0.008 
      ViscousFriction = 0.02 
      GearRatio = 4.0 
      GearEfficiency = 1.0 
      MaxTorque = 1.00 
    end 
     
    object Motor2: TDCMotor 
      MaximumVoltage = 12.0 
      TorqueConstant = 0.0333 
      BackEMFConstant = 0.25 
      ArmatureResistance = 0.62 
      CoulombFriction = 0.008 
      ViscousFriction = 0.02 
      GearRatio = 4.0 
      GearEfficiency = 1.0 
      MaxTorque = 1.00 
    end 
     
    object BatterySensor1: TBatterySensor 
      CorrespondingBatteryName = 'Battery' 
    end 
 
  end   # Body 
 
  object Brain: TBrain 
    DefinitionFile = '..\Brains\UFLibBasicDemoRoboticBrain.txt' 
  end 
 
end #Robot 
 

Fig. 12. The robot definition file. 
 



The robot definition file 
 
To begin with, open the folder Data and then the folder Robots. Next, open the file 
UFLibBasicDemoRobot.txt. The contents of the file are as shown in Fig. 12 above. In 
general, definition files (both for the body and for the brain of a robot) contain nested 
structures beginning with the phrase  
 
Object <objectname>: T<objectclassname> 

 
and ending with the word End. In this case, the object Robot (of type TRobot) contains an 
object Body (of type TDifferentiallySteeredBody, which is a descendant class of 
TBody), which, in turn, contains definitions of the physical parameters of the robot and of 
the battery sensor and the two motor. Finally, the lines 
 
object Brain: TBrain 
    DefinitionFile = '..\Brains\UFLibBasicDemoRoboticBrain.txt' 
end 

 
indicate the location of the brain definition file. For clarity, the definition of the brain is 
normally placed in a separate file, even though it is theoretically possible to place it 
directly in the robot definition file (in which case the brain definition will, of course, no 
longer be needed). Separating the brain definition file from the definition of the body also 
makes it easy to replace the brain definition file by changing a single line in the robot 
definition file. 
 
Most of the parameters listed in the robot definition file are self-explanatory. The battery 
discharges according to 
 
dE/dt = -c1 - c2 v,         (4) 
 
where E is the battery energy, v is the speed of the robot, i.e. the modulus of the velocity 
vector v. The constant c1 corresponds to the DischargeRateAtRest defined in the robot 
definition file, and c2 corresponds to the DischargeRateInMotion. The discharging of 
the battery is taken care of by the procedure TEnergySource.Discharge, When the 
battery is charging, the equation for its energy changes to 
dE/dt = -c1 - c2 v + c3,         (5) 
 
where c3 corresponds to the parameter ChargeRate in the robot definition file. Note the 
difference between the actual battery, and the battery sensor, defined close to the end of 
the robot definition file: the battery is needed for the robot to move, and the battery 
sensors (if available) allows the robot to monitor the state of the battery. 
 
The brain definition file 
 
Turning now to the definition file for the robotic brain, return to the folder Data, open the 
folder Brains and then the file UFLibBasicDemoRoboticBrain.txt. The contents of the 
file are as shown in Fig. 13 below. 



 
 
object Brain: TBrain 
 
  object Hormones: THormones     
    
    object Hunger: THormone 
      MinimumLevel = 0.0 
      MaximumLevel = 1.0 
    end 
 
  end #Hormones 
 
  object Behaviors: TBehaviorList 
    Level = 1 
     
    object Navigation: TCircularNavigation 
      LeftMotorOutput = 0.9 
      RightMotorOutput = 0.1       
 
      object StateVariables: TStateVariables 
        object StateVariable1: TInternalPhysicalVariable 
         StateVariableType = 'svtInternalPhysical' 
         CorrespondingSensorName = 'BatterySensor1' 
         ReadingProcedure = 'rpSinglePixel' 
         Pixel = 1 1 
        end 
      end 
    end #CircularNavigation 
 
    object BatteryCharging: TBatteryCharging 
      CorrespondingBatteryName = 'Battery' 
      ChargingStartTime = 0.5 
 
      object StateVariables: TStateVariables 
        object StateVariable1: TInternalAbstractVariable 
          StateVariableType = 'svtInternalAbstract' 
          CorrespondingHormoneName = 'Hunger'      
        end 
      end 
    end #BatteryCharging 
 
  end #Behaviors 
end 
 

Fig. 13. The brain definition file, UFLibBasicDemoRoboticBrain.txt. 
 

 
As can be seen, the syntax of the brain definition file is similar to that of the robot 
definition file. First, the object Brain (of type TBrain) is defined. Next, the hormone 
variables are defined. In this case, one such variable is used, as discussed in connection 
with the writing of the battery charging behavior above. Next, the behavioral repertoire 
follows. In the UF method, it is possible to define a hierarchical structure, in which any 
given behavior may contain a behavior list with several other behaviors, which, in turn, 



may contain their own behavior lists etc. The Level parameter indicates the hierarchical 
level on which the behaviors in the current behavior list are located. In this simple 
example, there are only two behaviors, and they are located on the same hierarchical level 
(=1).  
 
The behaviors then follow. The definition of any behavior begins with a specification of 
the parameters of the behavior. Thus, for example, the circular navigation behavior has 
two parameters, LeftMotorOutput and RightMotorOutput, which are set to 0.8 and 0.5, 
respectively. Next, the input variables normally follow. These are variables used by the 
behaviors themselves. However, in this simple example, no input variables are needed 
(for an example of the definition of such variables, see the brain definition file associated 
with the example given in Sect. 4 below). Finally, the state variables should be defined. 
As mentioned above, these are scalar variables that are used in the utility functions, 
which, in the UF method, are optimized by the evolutionary algorithm. In this particular 
example, U1 depends on the state variable E, whereas U2 depends on the variable x. These 
variables are introduced towards the end of the definition of the battery charging behavior.  
 

As described in Sect. 1.2, in the UF method, there are three types of state 
variables, namely external variables, internal physical variables, and internal abstract 
variables. Variables of the first two types may be extracted from sensors whose readings 
are non-scalar. For example, a state variable may be defined as the average reading of a 
laser range finder (containing perhaps hundreds of rays), or as the reading of a single ray. 
In the former case, the reading procedure rpAverage would be used whereas, in the 
latter case, the reading procedure rpSinglePixel would be used. The reading of a 
battery sensor is of course scalar, but since the corresponding state variable is defined as 
an internal physical variable a reading procedure must nevertheless be specified, hence 
the two lines 
 
ReadingProcedure = 'rpSinglePixel' 
Pixel = 1 1 

 
in its definition. Internal abstract state variables, by contrast, correspond to the reading of 
hormone variables, which are always scalar, so no reading procedure needs to be defined 
for such variables.  
 
The arena file 
 
As a final step before running the program, an arena file must be defined. Move to the 
folder Data - Arenas, and open the UFLibBasicDemoArena.txt file. Note that only a 
part of the arena file is shown in Fig. 14 below. The structure of arena files is similar to 
that of the other two files described above, even though the arena file does not contain 
nested object definitions. The arena used in this example consists of five objects: a floor 
and four walls of type TcornerWall. Note that all objects defining an arena must have 
unique names (e.g. object_1, object_2 etc.).  
 
 
 



 
# Generated by ArenaBuilder 20050525 10:38:29 (GMT+1) 
object Object_0: TFloor 
  Position = 0.000 0.000 0.000 
  Velocity = 0.000 0.000 0.000 
  Angle = 0.000 
  Height = 2.500 
  Mass = -1.000 
  RGBColor = 0 0 0 
  Texture = Textures/marbletiles.jpg 
  Length = 10.000 
  Width = 10.000 
  TileLength = 2.500 
  TileWidth = 2.500 
end 
 
object Object_1: TCornerWall 
  Position = -5.100 -5.100 0.000 
  Velocity = 0.000 0.000 0.000 
  Angle = 0.000 
  Height = 1.500 
  Mass = -1.000 
  RGBColor = 0 0 0 
#  Texture =  
  LengthPart1 = 5.000 
  LengthPart2 = 5.000 
  Thickness = 0.200 
  Transparent = False 
  HasWallPaperFront = True 
  WallPaperFront = Textures/wallpaper.jpg 
  HasWallPaperBack = False 
#  WallPaperBack =  
  TextureTileLength = 1.000 
  TextureTileHeight = 1.000 
End 
 
 
< Truncated … > 
 
 

Fig. 14. (Part of) the arena definition file. 
 

 
Lines beginning with # are comments, i.e. they are ignored when the file is read. Note 
that it is possible to add arbitrary textures to the arena, in order to enhance its appearance. 
For example, in this case, textures contained in the files marbletiles.jpg and 
wallpaper.jpg (located in the Textures folder) have been added to the floor and walls, 
respectively. The arena is shown in Fig. 15 below. 
  
 
 
 
 
 



 
 

 
 

Fig. 15. The arena, with textures added to the floor and the walls. 
 

 
Finally, press F9 to compile and run the program. It should, of course, work exactly as 
the program compiled in Sect 3.2 above. 
 
3.4  Final notes 
 
3.4.1 Computer requirements 
 
When the Inspect button is pressed, the program attempts to show the motion of the robot 
in real time. However, on some computers (notably laptops with insufficients graphics 
capabilities), the motion may become very slow. In order to runs programs based on the 
UFLibrary, it is recommended to use a computer running Windows XP and having a 
clock frequency of at least 2.5 GHz, equipped with a good graphics card with at least 64 
MB memory. 
 
3.4.2 Future releases 
 
The UFLibrary is under continuous development. New releases will be made frequently. 
Please make sure to check the UFLibrary web page often for new releases. 
 



4. Additional example 
 
In this version of the tutorial, only one additional example will be given, namely that of a 
robot navigating in an arena with obstacles. This robot is equipped with two behaviors, 
namely StraightLineNavigation (which, as the name implies, makes the robot navigate in 
a straight line, using equal torques for each motor) and CollisionAvoidance (in which the 
torques for the two motors are set to values with equal magnitude but opposite sign, 
making the robot turn without moving its center-of-mass). The example can be found in 
the folder SimpleNavigation (again, the example is provided for Delphi versions 5 and 6). 
The two behavior units StraightLineNavigation.pas and CollisionAvoidance.pas are 
located in the behaviors folder.  
 
 As in the previous example, double-click the project icon, in this case named 
SimpleNavigationProject.dpr, and add the search path to the UFLibrary .dcp-file, as 
described in Figs. 5-6 above. Then press F9 to compile and run the program. Let the 
program run for a few minutes, and then press the inspect button to analyze the run. After 
completing the run, inspect the definition file, particularly the brain definition file 
(SimpleNavigationRoboticBrain.txt, located in the Brains folder). Unlike the simple 
example described above, this example involves the use not only of state variables but 
input variables as well. Next, analyze the source files for the two behaviors. 

 
 

 
 

Fig. 16. The simple navigation robot in action. 
 



Contact information 
 
For further information concerning this example or the UFLibrary in general, please feel 
free to contact Mattias Wahde at mattias.wahde@chalmers.se. You may also wish to visit 
the web page of the Adaptive systems research group at Chalmers University of 
Technology, located at www.me.chalmers.se/~mwahde. 
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