
UFLibrary_v1.0.1 Tutorial
2005-05-28

Mattias Wahde and Jimmy Pettersson

mattias.wahde@chalmers.se, jimmy.pettersson@chalmers.se

1. Introduction to the Utility function (UF) method

The utility function method (hereafter: the UF method) [see refs. 1-6] is a method for
behavioral organization (behavioral selection) in behavior-based autonomous robots,
based on evolutionary optimization. The method provides a general solution to the
difficult problem of activating behaviors at appropriate times.

1.1 Behavioral selection in the UF method

The UF method is an arbitration method, i.e. a method in which one and only one
behavior is active (i.e. controls the robot) at each instant of time. The selection of the
active behavior is based on a quantity called utility: The active behavior is simply the
one with the highest current utility value. In the UF method, each behavior is associated
with a utility function that determines, for any given state (situation) the utility of the
behavior. Note that the UF method does not generate the actual behaviors: it merely
attempts to solve the problem of selecting between the available behaviors.

Clearly, the behavioral selection will thus depend on the exact shape of the utility
functions. In very simple cases involving, say, the selection between two behaviors in a
robot moving in a simple arena, it is sometimes possible to specify the shape of the utility
functions by hand. However, in more complex cases, involving robots equipped with
many behaviors, it is all but impossible to specify the utility functions by hand. Thus, in
the UF method, the utility functions are determined using an evolutionary algorithm
(hereafter: EA) which maintains a population of robots, each equipped with a given set of
behaviors, which in turn are associated with utility functions. Each robot is evaluated for
a certain period of time, in one or several arenas.

As with all EAs, a fitness measure is needed in order to compare the performance

of the individuals in the population. Here, another problem presents itself: In general, it is
a daunting task to specify a fitness measure for a robot equipped with many different
behaviors, since this requires that one be able to weigh different behaviors against each
other, for all situations that might occur. By contrast, in the UF method, the specification
of the fitness measure is simpler, at least in situations where the robot is given one
specific task. Consider, for example, the case of a floor-sweeping robot equipped with
two behaviors: floor-sweeping (B1) and battery charging (B2). Of course, as a user of the

robot, one would want the robot to execute B1 (the task behavior, using UF
nomenclature) continuously. However, a robot carrying its own energy source must, of
course, charge its batteries from time to time, i.e. it must also execute the auxiliary
behavior B2 so that, after charging its batteries, it may again proceed with B1 and thus
gain fitness. In the UF method, the user need only specify a fitness measure for the task
behavior. By contrast, none of the auxiliary behaviors (of course there is often more than
one such behavior) have any impact at all on the fitness of the robot. How, then, can the
robot sometimes choose B2 over B1, even though the former provides no fitness increase
whereas the latter does? Clearly, what is needed is some way of determining at what
situations it is beneficial to execute B2. This requires a common currency for comparing
behaviors, and that is exactly what the utility values (obtained from the utility functions)
provide: The utility functions are the common currency used for finding, in any given
situation, the most useful behavior. Thus, to summarize, it is the user’s task to specify the
fitness measure (e.g. one point of fitness gained for each square meter of floor sweeped,
in the example above), whereas it is the task of the UF method to determine the utility
functions (using an EA) that will maximize the fitness of the robot.

1.2 State variables and utility functions

In the UF method, several types of state variables are defined, namely external variables
(such as e.g. sensor readings), internal physical variables (such as e.g. the reading of a
sensor measuring the battery level), and internal abstract variables. The internal
abstract variables are readings of (artificial) hormone variables. Variables of this type
are, just like hormones in biological systems, used for internal signalling. As will be
shown below, the internal abstract variables are often used to prevent dithering, i.e. rapid
and counterproductive switching between behaviors. When the UF method is to be
applied to a given behavioral organization task, the user must specify an ansatz for each
utility function (one for each behavior). While any utility function may, in principle,
depend on all of the available state variables, it is common that such functions only
depend on a small subset of the state variables. In the present version of the method, the
utility functions are pth degree polynomials. Thus, a typical ansatz (with p=2) for, say, a
utility function depending on the two variables E and x would be

U(E,x) = a00 + a10E + a01x + a20E2 + a11EX + a02 x2 , (1)

where the aij are the coefficients that are to be determined by the EA.

1.3 A simple example

For most of the remainder of this tutorial, a simple example involving the organization of
two behaviors will be considered. The example is indeed very simple, since the aim has
been to provide a clear and accessible illustration of how the UF method works, rather
than trying to describe a realistic application. Thus, consider the example of a very simple,
two-wheeled, differentially steered robot (e.g. a guard robot), whose task it is to move as
far as possible along a circular path. The robot, which is illustrated in Fig. 1, is equipped
with two behaviors, namely Circular navigation (B1) and Battery charging (B2).

B1

Fig. 1 The motion of the robot (seen from above) while executing B1.

In the first behavior, the robot sets the torque of its two motor to slightly different values,
thus executing a circular motion, as illustrated in Fig. 1. In B2, the robot simply sets the
torque of the two motors to zero, eventually reaching a standstill. It is assumed that the
charging of the batteries (taking place e.g. via a conducting floor) starts after a time tc
after the motor torques have been set to zero, and then continues until B1 is activated. If
the batteries become full, no further charging occurs, but the robot does not start to move
until B1 is again activated.

 The evaluation of the robot continues during a time interval of length T, unless
the robot runs out of battery energy, in which case the evaluation is terminated
immediately. For this robot, B1 is the task behavior, for which a fitness measure should
be specified. In this simple case, the distance moved while executing B1 is a suitable
fitness measure. However, since the robot consumes energy while executing B1 it must,
from time to time also activate B2. In order to do so, it must be able to determine the
utility of B1 and of B2, at all times. Clearly, in this simple case, the battery energy E is a
very important variable. Thus, for B1, the following ansatz can be made for the utility
function: (making the somewhat arbitrary choice p=2 for the polynomial degree)

U1(E) = a00 + a10E + a20E2 (2)

Now, since the selection of a behavior (for activation) depends only on the relative utility
values of the available behaviors (i.e. the behavior with the highest utility value is
activated), one might be tempted to set U2 � 0 in this case. However, this would lead to a
more subtle problem: Assume that the coefficients determining U1 has been set such that
U1 decreases as the battery energy falls. If U2 were identically zero, B2 would become
active as soon as U1 dropped below zero, provided that the coefficients were such that it
does.

Utility

Time

U2 = 0
U1

Utility

Time

U2

U1

Fig. 2 Utility variation and behavior activation. In the left panel U2 is identically zero, resulting in
behavioral dithering (as indicated by the rectangles at the bottom of the figure: A black rectangle
indicates that B1 is active and a white one that B2 is active). By contrast, in the right panel, U2
depends on an internal abstract variable x.

To be specific, consider the case in which the battery energy is normalized to the range
[0,1], and where U1 is given as U1 = -0.5+E2, so that B2 would become active at E =
0.707… . As soon as B2 becomes active, the battery energy would rise, resulting in U1
becoming positive, and thus activating B1. However, at this point, E would again fall,
thus directly making U2 > U1, again activating B2 etc. Put differently, the robot would
find itself dithering endlessly between B1 and B2. This situation is illustrated in the left
panel of Fig. 2. Clearly, a different ansatz is needed for U2, and this is where the concept
of abstract internal variables becomes useful. Consider a variable x that takes the value 1
whenever B2 is active and the value 0 whenever B1 is active1. Now, ansatz of the form

U2 (x) = b00 + b10x + b20x2 (3)

can be made for U2

2. Now, as U2 becomes larger than U1, as a result of a drop in battery
energy, x (and, therefore, U2) would make an instantaneous jump. Provided that the
coefficients in Eq. (3) have been set appropriately, this would make U2 much larger than
U1, thus keeping B2 active for some time, as illustrated in the right panel of Fig. 2.

1 The variation of x could be more complex. However, this simple specification will suffice for the present
example.
2 Clearly, the ansatz U2 = b10x would be sufficient in this case.. However, the form (2) was chosen since it
is more general, i.e. it would be applicable even in cases where x varied in a more complex way.

2. Introduction to UFLibrary_v1.0.1

The UFLibrary, which provides a general implementation of the UF method, has been
written in Delphi object-oriented Pascal, and is provided, as the name implies, in the form
of a program library rather than a stand-alone application. The rationale behind this
approach is that, since each new scientific investigation generally differs significantly
from previous ones, a stand-alone, non-modifiable application will in general be less
useful than a library. The drawback, of course, is that the use of a library will require
some programming on the part of the user.

The aim with UFLibrary has been to place all common structures (such as the
mechanisms of behavioral selection) in the library, and thus to minimize the effort needed
from the user. Nevertheless, the problem of behavioral organization is a complex one,
and the UFLibrary is therefore far from trivial to use. Thus, in this tutorial, a simple step-
by step example will be given, involving the organization of the two simple behaviors
(B1 and B2) described above.

2.1 General usage issues

Even though the UFLibrary simplifies the problem of behavioral selection, there are
several steps that must be carried out in any given behavioral organization task. At a first
glance, the procedure described below may seem rather complex. However, in several
cases (namely steps (1), (3), (5), and (7)), pre-defined templates can be used, thus
minimizing the effort required by the user.

Specifically, the user must

(1) Provide, in the form of source files written in Pascal, the constituent behaviors

that are to be included in the behavioral repetoire of the robot. The specification
of a behavior can usually be based on a predefined template, thus limiting the
work to writing a few procedures. Of course, it is also possible to use the baseic
pre-specified behaviors provided in the UFLibrary.

(2) Specify a fitness measure. As described above, often the execution of a single
behavior (the task behavior) will be associated with a fitness increase, the fitness
variation for all other behaviors being zero.

(3) Provide a robot definition file (specifying the physical parameters of the robot,
as well as its sensors and motors) and a brain definition file (specifying which
behaviors are to be included in the behavioral repertoire, as well as any user-
defined parameters included in the behaviors). Examples of such definition files
will be given below.

(4) Provide an ansatz for each utility function. Again, the UFLibrary does most of the
work: The user need only specify which variables are to be included in each
polynomial, as well as the polynomial degree p.

(5) Provide an arena definition file, specifying the location of walls, obstacles, etc.
in the arena in which the robot will operate. An example of an arena definition file
will be given below.

(6) Specify a termination criterion, e.g. terminating an evaluation in case of collisions
(collision handling is taken care of by UFLibrary, limiting the specification of this
particular termination criterion to a few lines of code).

(7) Write and compile the actual application (executable file). Also in this case, the
user may employ pre-defined source files, as illustrated in the example below.
The user has full flexibility to specify e.g. what data should be extracted from the
evaluation of each individual (e.g. the variation of utility with time, the fitness of
the robot, the motion of the robot etc.)

3 A simple example: Circular navigation

3.1 Problem description

Consider again the example introduced above, namely that of an autonomous robot
moving in a large, obstacle-free arena. Assume that the task of the robot is simply to
guard the area around the center of the arena, by moving in circles around it, and assume
further that the robot carries its own energy supply (e.g. a battery) that must, from time to
time, be charged. In this simple example, it will be assumed that the robot is able to
charge it batteries simply by stopping (e.g. by making use of a conducting floor) As
mentioned above, it will be assumed that charging starts only after tc seconds of
execution of B2 (the battery charging behavior).

 The robot will be equipped with two behaviors: CircularNavigation (B1) and
BatteryCharging (B2). Since the UF method is an arbitration method, only one
behavior can be active at any given time. Thus, the robot must find a way to select
between the two available behaviors. Its goal is to move a far as possible in a given time.
Since there is a delay in the activation of the charging, and since the robot only needs to
stop, in any, location, to begin charging behavioral selection is quite simple in this case:
A rational approach, if the robot starts with a full battery, is simply to move until the
battery is almost empty, and then to stop and charge the batteries until they are full (the
possible exception being the final part of the evaluation, where it might be beneficial for
the robot only to charge the batteries partially).

In the particular case considered here, a hormone variable measuring the
equivalent of hunger (i.e. lack of energy) will be introduced in such a way that it forces
the robot to keep B2 active for some time before B1 can again become active. Thus, the
ansatz given in Eq. (3) will be used for U2, with x representing the reading of the
hormone variable H. For U1, the ansatz in Eq. (2) will be used.

 Thus, the task of the EA will be to find appropriate values for the coefficients aij
and bij in order to activate behaviors in a timely fashion. Since x is an artificial variable,
i.e. a variable that is unrelated to physically measurable quantities, its variation with time

Fig. 3 The main window of the UFLibBasicDemo application.

(and other variables) must be specified as well. In UFLibrary_v1.0.1, it is the user’s task
to specify this variation, and it should therefore be kept as simple as possible (In future
versions of the UF method and thus of UFLibrary, the variation of hormone variables will
be evolved together with the utility functions). Here, the variation of H (and thus of x)
will be as specified in Sect. 1 above: H is exactly 0 whenever B1 is active, and exactly 1
whenever B2 is active. The fitness measure will be taken simply as the distance moved
while executing B1.

In Sect. 3.3 below, source code for the example described above will be analyzed in
detail. However, before the writing of source code is considered, a simple illustration will
be given of the compilation and execution of a program based on the UFLibrary.

3.1.1 A note concerning Delphi versions

In order for it to be possible to use the UFLibrary, the user must, of course, have Delphi
object-oriented Pascal installed on the computer. Furthermore, the user must be careful to
use the correct version (depending on the Delphi version used) of the UFLibrary. The
examples associated with this tutorial are provided for Delphi v.5 and Delphi v.6. Names
of folders files will be given in bold italics below, whereas names of files and will be
given in bold face. Menu selections in Delphi and in the example program will be given
using underline.

3.2 Compiling and running the program

The source code for the application and the two behaviors CircularNavigation and
BatteryCharging is provided with this tutorial. As a first step, the addition of behaviors to
an application, as well as the compilation of the program, will be illustrated. First, open
the folder BasicDemo, and double-click on the blue Delphi project icon, named
UFLibBasicDemoProject.dpr in order to start the project. The window shown in Fig. 3
should appear. By default, three Delphi units (source files) have been added to this
project, namely the files Main.pas, UFEvolution.pas, and BasicRobotSimulation.pas.
By selecting View – Project Manager, and clicking on the + symbol the user may view
the files available in the project.

Fig. 4 The Pre-defined behaviors folder

Now, select Project – Add to Project, and browse to the folder Pre-defined behaviors, as
shown in Fig. 4 below. Next, add the two behavior units CircularNavigation.pas and
BatteryCharging.pas to the project.

The next step is to compile the project. For this to be possible, it is necessary to
tell Delphi where it can find the UFLibrary. The UFLibrary is contained in two files
called UFLibraryxx.dcp (this is the Delphi compiled package, needed for the
compilation) and UFLibraryxx.bpl (this is the file needed when running the application,
corresponding to a dll, using standard Windows terminology). xx indicates the version
number. Thus, in Delphi 5, xx = 50 etc. Now, select Project – Options… in the main
Delphi window, and then select Packages. The window shown in Fig. 5 appears (Note:
the figure shows the appearance of the Project – Options… window for Delphi 5. For
other versions of Delphi, it will look slightly different). Check the Build with runtime
packages check box. Select Add, and browse to the location of the UFLibrary (i.e the
folder immediately above Pre-Defined behaviors, see Fig. 6). Click Open and then OK
(twice). Now the application should be complete. In order to compile it, press F9 or select
Run – Run in the Delphi main window. The application starts by showing the main
window. In the Runs menu, select Evolution of behavioral organizer. Now, the window
shown in Fig. 7 appears. Press Initialize and then Run, without modifying any of the
parameter values. The program will now run the evolutionary algorithm, evaluating
successive generations, each of which consists of 50 individuals evaluated for 50 seconds
(or until a collision occurs).

Fig. 5. The Project – Options… window, shown for Delphi 5.

Fig. 6. Adding the UFLibrary dcp file (in the case Delphi5).

Let the program run until the maximum fitness value (shown in the lower left
corner of the window) reaches 10 or more. This should take less than 30 seconds on a
computer equipped with a P4 processor with a clock frequency of 2.5GHz or above. Then
press Pause. Once the current generation has been completed, the program pauses. When
this has occurred, press the Inspect button. Now, the robot can be seen in action,
switching between a circular motion (in B1) and standing still to charge the batteries (in
B2). A typical screenshot from such a run is shown in Fig. 8.

 Now, press End, and then Close. Exit the program by selection File – Exit in the
main window, and then inspect the BasicDemo folder. As can be seen, a new folder,
named after the exact time at which the program was started, has been added. Open this
folder. It should contain two files, namely an evaluation file called Robot_Gen_n.txt
(where n is the generation after which the Inspect button was pressed), and a run
summary called Run_Results_Summary_YYYY_MMMDD_HH_NN_SS.txt, where
the string YYYY_MMMDD_HH_NN_SS indicate the date and time at which the run
was started.

Fig. 7. The window used when evolving the behavioral organizer.

Fig. 8. A screenshot showing the robot in the arena, at the end of an evaluation.

2 4 6 8 10 12 14
Time

0.5

1

1.5

2

2.5

3

y
ti

l
i
t
U

Fig. 9. The actual utility functions obtained using the UFBaseApplication executable. The solid line
shows U1, and the dashed line represents U2.

The latter file contains a list of the run parameters, as well as the maximum and
average fitness values measured during the run. The file Robot_Gen_n.txt contains the
evolved utility functions, as well as their variation with time, the position and angle of
heading of the robot (as functions of time), and the battery energy (also as a function of
time). In Fig. 9, the actual utility functions obtained for an individual with fitness > 10. In
the figure, U1 and U2 are shown as solid and dashed lines, respectively. Initially, B1 is
active, since U1 > U2. At around t = 3.0, U1 dips below U2, so that B2 becomes active.
The internal abstract variable x is then set to 1, resulting in an upward jump in U2. The

charging of the battery begins after a short delay tc, and U1 then begins to rise until, at
around t=12.5, it again exceeds U2, thus activating B1.

3.3 Writing behavior source files and definition files

The program will now be studied in greater detail, by going through the source units for
the behaviors, and then analyzing the definition files. Thus, as the next step, select Project
– Remove from Project…, and remove the two source files CircularNavigation.pas and
BatteryCharging.pas from the project. Next, open the folder BasicDemo. As discussed
above, in this folder, there are three source files (all of which carry the suffix .pas),
namely Main.pas, BasicRobotSimulation.pas, and UFEvolution.pas. Main.pas and
UFEvolution.pas are each associated with a Delphi form (window), contained in the files
Main.dfm and UFEvolution.dfm, respectively. In addition, the folder also contains the
UFLibrary (as two files, UFLibraryxx.bpl and UFLibraryxx.dcp), GLScene (for 3D
graphics, contained in the files GLScenen.bpl and GLScenen.dcp), where xx and n
indicate the Delphi version used (for e.g. Delphi 5, xx = 50, and n = 5). The folder also
contains the two files vcl50.bpl and vcljpg50.bpl, which are needed by the UFLibrary
(but which are normally already present on the computer, provided that Delphi is
installed).

Note: None of the three .pas files mentioned above are necessary for using the

UFLibrary. They are provided as templates for rapid application development, but can
easily be replaced by files generated by the user. For example, there is, in principle, no
need to generate a separate form for running the evolutionary algorithm: This could be
done directly under the main.dfm window, should the user wish to do so. Next, take some
time to study the three .pas files:

(1) Main.pas

This is the main window of the application. All it does is to open a form of type
TUFEvolutionForm, in which the actual evolution takes place.

(2) UFEvolution.pas

This file contains several procedures. Note, however, that there is no need to look
at these procedures in detail at this point, and neither is it necessary to modify any
of them. In fact, the UFEvolution.pas unit can be used with any UF experiment.
However, if the user should generate a custom class for robot simulation with a
different name than TBasicRobotSimulation (see below), the corresponding
changes must of course be made also in UFEvolution.pas (i.e. all occurences of
TBasicRobotSimulation must be modified to T<name>RobotSimulation, where
<name> is the custom name provided by the user).

Anyway, consider briefly the most important procedure in this source file, namely
the RunButtonClick procedure. This procedure contains the main loop used by
the evolutionary algorithm (EA). Basically, the EA loops over all individuals in

the population, generates a robot simulation and sets the corresponding arena
(SetArena(fArena); For a description of arena files, see below), decodes the
chromosome of the current individual (fEA.Population[i].DecodeGenome),
sends the individual to the robot simulation (SetAgent(fEA.Population[i]);),
sets up a collision manager that handles collisions between the robot and objects
in the arena, and then evaluates the individual, time step by time step, until the
simulation is complete, i.e. until either the alloted time has been used up, or the
robot collides with an obstacle. When all individuals have been evaluated, a new
generation is formed (fEA.MakeNewGeneration).

(3) BasicRobotSimulation.pas

 This unit defines a class TBasicRobotSimulation, which is derived from
 the class TRobotSimulation, defined in the UFLibrary package. The
 TRobotSimulation class contains three virtual procedures, i.e. procedures
 that can be modified in a descendant class derived from it. In the base
 class TRobotSimulation, there are two termination criteria: the evaluation
 of the robot (i.e. the simulation is terminated if the maximum time is
 reached or if the robot collides with an obstacle. However, in the example
 considered here, the evaluation should also be terminated if the battery
 energy level drops to 0. Thus, a new class, i.e. TBasicRobotSimulation, is
 needed. For clarity, all three termination criteria have been included in the
 CheckTerminationCriteria procedure in this class. An alternative way
 would have been to replace the first two criteria with a call to the
 procedure inherited from the TRobotSimulation class, i.e. by writing the
 procedure as

 procedure TBasicRobotSimulation.CheckTerminationCriteria;

begin
 inherited;
 if (TRobot(fAgent).Body.Battery.Level <= 0.0) then

 begin
 fIsComplete := True;
 fTerminationType := ttBatteryDepleted;
 end;
 end;

 The procedure UpdateFitness, which does nothing in the base class, can
 be used in cases where one wishes to modify the fitness of the individual
 continuously during an evaluation. This is not the case here, so the
 procedure is empty also in the derived class. Finally, in the base class, the
 procedure FinalizeFitness sets the fitness simply to the distance travelled
 by the robot. This is a suitable fitness measure also for the example
 considered here (since the robot moves actively only when executing B1),
 and therefore the procedure in the descendant class simply calls the
 corresponding procedure in the base class.

The next steps are (1) to generate the source code for the actual behaviors, and

then (2) to specify the general structure of the robotic body and brain, as well as the arena,
in the form of text files.

3.3.1 Writing behaviors

The base class from which all specific behavior classes are derived is the TBehavior class.
In order to write a specific behavior, the user must, as a minimum, provide source code
for the Step procedure, which determines the actions take by the robot while executing a
single time step using the behavior in question. In addition, source code for the
constructors Create and CreateAndSet, the function Copy, the procedures
LoadFromDefinition, and (in certain cases) the destructor Destroy, must be provided.
Furthermore, for some behaviors (e.g. the battery charging behavior, see below), the
procedures Enter, Initialize, and Exit must be provided as well However, as we
shall see, only a few lines of code are needed for each routine, at least in this simple
example.

Fig. 10. The folder User-defined behaviors, after making copies of TemplateBehavior.pas.

Now, Use the explorer to open the folder User-defined behaviors. Here, a

template for behaviors is provided in the source file TemplateBehavior.pas. Make two
copies of this template file, and rename them to CircularNavigation.pas and
BatteryCharging.pas. Thus, after this step, the folder User-defined behaviors should

look as in Fig. 10 above. Next, open one of the files, e.g. CircularNavigation.pas, using
the File – Open command in Delphi. Since the file is a direct copy of
TemplateBehavior.pas, the name of the unit is still TemplateBehavior. Thus, as a first
step, change the name of the unit to CircularNavigation, so that the first line reads

unit CircularNavigation;

The class implementing the circular navigation behavior should preferably be
called TCircularNavigation. Thus, change all occurrences of the word
TTemplateBehavior to TCircularNavigation. The easiest way of doing so it to select
Search – Replace in Delphi, specifying the change as shown in Fig. 11 below, and
pressing Replace All.

In the template file, the defined class is of type TBehavior. In the present case we
are about to write a specific type of behavior, namely a motor behavior, for which a class
(derived from TBehavior) is available, namely TMotorBehavior. This class differs from
TBehavior only in one respect: it contains a vector for storing the motor outputs
generated by the behavior. Our behavior for circular navigation will be derived from
TMotorBehavior. Thus, change the class header to read

Fig. 11. Replacing all occurences of TTemplateBehavior by TCircularNavigation.

type TCircularNavigation = class(TMotorBehavior)

Inspecting the interface part of the class TCircularNavigation, we find (as indicated
above) that six routines must be written:

type TCircularNavigation = class(TMotorBehavior)
 private
 public
 constructor Create; override;

 constructor CreateAndSet(B: TBehavior); override;
 function Copy: TBehavior; override;
 procedure LoadFromDefinition(ObjDef: TObjectDefinition); override;
 procedure Step(TimeStep: real); override;
 destructor Destroy; override;
 end;

Let us now write these six routines. The Copy function is already complete as it is: the
only change needed is to set the right class name, which was just done (see above). The
constructor Create must set the number of output variables used by the motors of the
robot, since the base class TBehavior (and thus TMotorBehavior) has no way of
knowing exactly how many motors are present in the robot under study. In this case we
shall use a differentially steered, two-wheeled robot with two motors. Thus, add a line to
the constructor Create so that it reads

constructor TCircularNavigation.Create;
begin
 inherited;
 fOutputVariables.SetSize(2); // added line!
end;

The part “// added line” is a comment that can, of course, be omitted. fOutputVariables
is a field in the base class TMotorBehavior, of type TVector, for which the SetSize
procedure is defined. Thus, the line just added sets the number of output variables to two.

Next, the Step procedure should be written. This is the procedure that determines
the actual behavior of the robot, and it will, of course, vary from behavior to behavior. In
connection with the writing of the Step procedure, it is common that one must define
local variables needed for the implementation of the behavior. These can range from
simple constants to complex objects. For the particular case of the circular navigation
behavior, only two motor outputs are needed: one for the left motor (ML) and one for the
right motor (MR). If the motor outputs are set to constant values, the robot will execute a
clockwise motion if ML > MR and a counterclockwise motion otherwise (shown in Fig. 1).
Clearly, most behaviors will be made more advanced than this, but for the present
example, two constant motor outputs will be sufficient.

Note: the motor outputs will be fed to DC motors (implemented in the class

TDCMotor in UFLibrary), which expect signals in the range [-1, 1]. The procedure for
actually setting the numerical values, through the text files defining the robot, will be
described below).

Thus, as the next step, add two fields of type real, fLeftMotorOutput and

fRightMotorOutput, to the interface of the TCircularNavigation class, so that it reads:

type TCircularNavigation = class(TMotorBehavior)
 private
 fLeftMotorOutput: real;
 fRightMotorOutput: real;
 public

 constructor Create; override;
 constructor CreateAndSet(B: TBehavior); override;
 function Copy: TBehavior; override;
 procedure LoadFromDefinition(ObjDef: TObjectDefinition); override;
 procedure Step(TimeStep: real); override;
 procedure Exit; override;
 destructor Destroy; override;
 property LeftMotorOutput: real read fLeftMotorOutput;
 property RightMotorOutput: real read fRightMotorOutput;
 end;

Note the addition of the properties at the end of the class interface: The fields for the
motor outputs, fLeftMotorOutput and fRightMotorOutput will be invisible outside the
unit CircularNavigation (since they are defined as private). However, the two
properties LeftMotorOutput and RightMotorOutput can be read (but not written to) by
any unit containing CircularNavigation in its uses clause. Next, proceed to the
implementation part of the Step procedure, and modify it to read:

procedure TCircularNavigation.Step(TimeStep: real);
begin
 inherited;
 fOutputVariables[1] := fLeftMotorOutput;
 fOutputVariables[2] := fRightMotorOutput;
end;

This Step procedure will set the left and right motor outputs to constant values. In this
simple case, it would have been possible to set the constant motor outputs in the Enter
procedure, which is defined in the base class TBehavior. However, the preferred way
of setting torque values (even constant ones), is to use the Step procedure.

The CreateAndSet constructor can now be written. Its purpose is to generate an
exact copy of the behavior, which is needed e.g. when creating new individuals in the
evolutionary algorithm used for optimizing the utility functions. In this case, there are
two fields defined in the behavior, namely the motor outpus fLeftMotorOutput and
fRightMotorOutput. Thus, CreateAndSet takes the form:

constructor TCircularNavigation.CreateAndSet(B: TBehavior);

var
 CB: TCircularNavigation;

begin
 inherited;
 CB := TCircularNavigation(B);
 fLeftMotorOutput := CB.LeftMotorOutput;
 fRightMotorOutput := CB.RightMotorOutput;
end;

Note that an explicit typecast must be used, since the input variable (B) is of type
TBehavior. The next step is to write the procedure LoadFromDefinition, which is used

when reading the parameters of a behavior (e.g. the parameters LeftMotorOutput and
RightMotorOutput in this case) from the text file defining the brain of the robot (see
below). The general nomenclature for reading a field in a LoadFromDefinition
procedure is

<fieldname> := ObjDef.PropertyAsFloat('Name of field in text file');

Similar procedures are defined for reading variables in the form of integers
(PropertyAsInteger), strings (PropertyAsStrings), and vectors (PropertyToVector).
When the file is read, the field in question in identified by its name as written in the text
file (Example are shown below). Thus, in principle, any name or descriptive string
(without spaces) can be used for identifying a field. The preferred way, however, is to use
the name of the corresponding property, as defined in the class interface. In this case, the
LoadFromDefinition procedure will take the form:

procedure TCircularNavigation.LoadFromDefinition(ObjDef: TObjectDefinition);
begin
 inherited;
 fLeftMotorOutput := ObjDef.PropertyAsFloat('LeftMotorOutput');
 fRightMotorOutput := ObjDef.PropertyAsFloat('RightMotorOutput');
end;

 Finally, the destructor Destroy should be written. In this case, the only fields that
need to be destroyed are fLeftMotorOutput and fRightMotorOutput, which are of type
real and are thus handled by the default destructor associated with all Delphi objects.
Thus, the destructor need not be changed. The behavior CircularNavigation is now
complete. Save the file, and take a moment to check that your code looks exactly as the
source code for CircularNavigation provided in the folder Pre-defined behaviors.

Next, the source code for the battery charging behavior should be written. Thus,
open the file BatteryCharging.pas located in the user-defined behaviors folder (see Fig.
10 above). If this file does not yet exist, simply make a copy of TemplateBehavior.pas,
and rename it to BatteryCharging.pas. The class implementing the battery charging
behavior should be called TBatteryCharging. Thus, change all occurrences of the word
TTemplateBehavior to TBatteryCharging, using the method shown in Fig. 11 above.
Also, change the first line of the unit to read

unit BatteryCharging;

The battery charging behavior will also make use of the motors, and should therefore be a
motor behavior. Thus, change the first line of the class interface to read

type TBatteryCharging = class(TMotorBehavior)

Furthermore, the battery charging behavior will make use of some Delphi units
(contained in the UFLibrary) which are not listed in the uses clause of the template
behavior. Thus, modify the uses clause to read

uses
 Definitions
 , Behaviors
 , ObjectDefinition
 , Variables
 , Motors
 , Matrices
 , EnergySource
 , Sensors
 , Hormones
 , BatterySensor
 ;

(The four last units have been added).

 The six routines Create, CreateAndSet, Copy, LoadFromDefinition, Step, and
Destroy should now be written. Just as in the case of the CircularNavigation behavior,
the Copy procedure needs no further change. The constructor Create is identical to the
one used in CircularNavigation:

constructor TBatteryCharging.Create;
begin
 inherited;
 fOutputVariables.SetSize(2);
end;

 In the battery charging behavior, the robot need only stop in order to begin
charging the battery, and charging will begin a certain time after activation of the
behavior. However, the charging behavior must also be given the information needed to
identify the battery and its corresponding sensor (measuring the energy level in the
battery). Thus, modify the interface part of the class definition to read

type TBatteryCharging = class(TMotorBehavior)
 private
 fBatteryPointer: TEnergySource;
 fCorrespondingBatteryName: string;
 fChargingStartTime: real;
 public
 constructor Create; override;
 constructor CreateAndSet(B: TBehavior); override;
 function Copy: TBehavior; override;
 procedure LoadFromDefinition(ObjDef: TObjectDefinition); override;
 procedure Initialize(Sensors: TSensors; Hormones: THormones); override;
 procedure Enter; override;
 procedure Exit; override;
 procedure Step(TimeStep: real); override;
 destructor Destroy; override;
 property BatteryPointer: TEnergySource read fBatteryPointer;
 property CorrespondingBatteryName: string read fCorrespondingBatteryName;
 property ChargingStartTime: real read fChargingStartTime;
 end;

Note that the battery charging behavior is slightly more complex than the navigation
behavior, in that it contains three additional procedures: Initialize, Enter, and Exit.
The Initialize procedure is called (from TBrain) once and for all when the robotic
brain is created. Its task is to map sensor and hormone variables onto state variables (i.e.
the scalar variables used in the utility functions) and input variables (i.e. variables used
e.g. in the Step procedure of each behavior). The Enter procedure, by contrast, is called
every time the corresponding behavior becomes active, and the Exit procedure is called
every time an active behavior is de-activated. Here, the purpose of Initialize procedure
is to map the fBatteryPointer field to the battery sensor. Thus:

procedure TBatteryCharging.Initialize(Sensors: TSensors; Hormones: THormones);
override;

var
 i: integer;

begin
 inherited;
 fBatteryPointer := nil;
 for i := 1 to Sensors.NumberOfSensors do
 begin
 if (Sensors[i] is TBatterySensor) then
 begin
 if (TBatterySensor(Sensors[i]).CorrespondingBatteryName =
 fCorrespondingBatteryName) then
 begin
 fBatteryPointer := TBatterySensor(Sensors[i]).CorrespondingBattery;
 Break;
 end;
 end;
 end;
end;

As a precaution, the Initialize procedure begins by setting the fBatteryPointer to
nil. Next, it loops through all sensors (even though, in the present case, there is only one
sensor available, namely the battery sensor), identifies the battery sensors via its name,
and sets the corresponding pointer.

 In many cases, e.g. the circular navigation behavior, there is no need to add
explicitly any of the three procedures Initialize, Enter, and Exit. However, the
battery charging behavior is associated with a hormone variable (“hunger”), whose value
must be set. In future versions of UFLibrary, the variation of hormone variables will be
evolved together with the utility functions. However, in the current version, hormone
variables must be set by hand. In the simple application considered here, the hunger
hormone will be set to 1 upon activation of BatteryCharging and to 0 upon de-activation
of the same behavior. In the navigation behavior, the hunger hormone will remain at 0 at
all times. The value of the hormone will be made available to the utility function of B2 in
the form of an internal abstract state variable (see Sect. 1.2 above), which must thus be
present in the definition file of the robotic brain. Here, it will be assumed that the first
state variable in B2 corresponds to the hunger hormone. Thus, the Enter and Exit
procedures take the form:

procedure TBatteryCharging.Enter;

begin
 inherited;
 TInternalAbstractVariable(fStateVariables[1]).HormonePointer.Level := 1.0;
end;

procedure TBatteryCharging.Exit;

begin
 inherited;
 TInternalAbstractVariable(fStateVariables[1]).HormonePointer.Level := 0.0;
end;

Note the typecast, which identifies state variable 1 as an internal abstract variable. Note
also that the definition file for the robotic brain cannot be written completely
independently of the battery charging behavior, since the latter explicitly identifies the
first state variable as an internal abstract variable measuring the level of a hormone (In
furture versions of UFLibrary, state variables will be identified by name rather than their
index). Now, the Step procedure can be written. Put simply, this procedure will stop the
motors of the robot, so that charging can begin

procedure TBatteryCharging.Step(TimeStep: real);
begin
 inherited;
 fOutputVariables[1] := 0.0;
 fOutputVariables[2] := 0.0;
 if (fBehaviorTime > fChargingStartTime) then
 begin
 if fBatteryPointer <> nil then
 begin
 fBatteryPointer.Charge(TimeStep);
 end;
 end;
end;

As is evident from the source code for the Step procedure, charging only begins when
the behavior time (which is updated by the Step procedure in the base class TBehavior)
exceeds fChargingStartTime3. Note that the discharging of the battery is taken care of
by the Move procedure in the class TDifferentiallySteeredBody (which, in turn, is
derived from the base class TBody), and consists of two parts: a discharge rate at rest, and
a speed-dependent discharge rate. Clearly, in order for the battery to be charged by the
charging behavior, the charge rate must exceed the discharge rate at rest. All charging
rates are defined in the definition file for the body of the robot, see below. Now, the
CreateAndSet and LoadFromDefinition procedures can be written:

constructor TBatteryCharging.CreateAndSet(B: TBehavior);

var
 BC: TBatteryCharging;

begin
 inherited;
 BC := TBatteryCharging(B);

3 The behavior time is set to zero each time the behavior is activated.

 fCorrespondingBatteryName := BC.CorrespondingBatteryName;
 fChargingStartTime := BC.ChargingStartTime;
end;

Note that the fBatteryPointer is set by the Initialize procedure. This is so, since,
during the creation of a robot, the body must first be initialized in order to identify the
sensors, implying that the fBatteryPointer cannot be set already at the time of creation
of the battery charging behavior. The LoadFromDefinition procedure takes the form

procedure TBatteryCharging.LoadFromDefinition(ObjDef: TObjectDefinition);

begin
 inherited;
 fCorrespondingBatteryName :=
 ObjDef.PropertyAsString('CorrespondingBatteryName');
 fChargingStartTime := ObjDef.PropertyAsFloat('ChargingStartTime');
end;

Finally, the destructor should be written. In addition to calling the default constructor
inherited from TObject, it needs to set the fBatteryPointer to nil:

destructor TBatteryCharging.Destroy;

begin
 fBatteryPointer := nil;
 inherited;
end;

The battery charging behavior is now complete. Take some time to make sure that it is
identical to the battery charging behavior provided in the file BatteryCharging.pas in
the folder Pre-defined behaviors. Now, when the behaviors have been completed and
saved, they can be added to the application. In order to do so, select Project – Add to
project… in the main Delphi window. Browse to the folder User-defined behaviors, and
add the two files CicularNavigation.pas and BatteryCharging.pas.

3.3.2 Writing the definition files

While the actual code for the program has now be completed, there are a few components
missing before the program can actually be run. These components are:

(1) A definition file for the robot, specifying its physical properties (i.e. its
mass, moment of inertia, height etc.), its motors, and its sensors.

(2) A definition file for the brain of the robot. This file should define the
general structure of the brain, i.e. it should specify the behavioral
repertoire and the parameters for each behavior.

(3) An arena file, defining the environment in which the robot will operate.

Writing these files from scratch is rather cumbersome. Fortunately, however, they can
often be based on existing templates. For the present example, we will contend ourselves
with a brief analyis of the files needed for the program to run.

object Robot: TRobot

 object Body: TDifferentiallySteeredBody
 Position = 1.0 1.5 0.0
 Mass = 10.0
 Radius = 0.20
 MomentOfInertia = 0.005
 WheelRadius = 0.1
 WheelWidth = 0.02
 Height = 1.0
 Alpha = 1.25
 Beta = 0.39

 object Battery: TEnergySource
 MinEnergy = 0.0
 MaxEnergy = 1.0
 InitialEnergy = 1.0
 DischargeRateAtRest = 0.02
 DischargeRateInMotion = 0.30
 ChargeRate = 0.10
 end

 object Motor1: TDCMotor
 MaximumVoltage = 12.0
 TorqueConstant = 0.0333
 BackEMFConstant = 0.25
 ArmatureResistance = 0.62
 CoulombFriction = 0.008
 ViscousFriction = 0.02
 GearRatio = 4.0
 GearEfficiency = 1.0
 MaxTorque = 1.00
 end

 object Motor2: TDCMotor
 MaximumVoltage = 12.0
 TorqueConstant = 0.0333
 BackEMFConstant = 0.25
 ArmatureResistance = 0.62
 CoulombFriction = 0.008
 ViscousFriction = 0.02
 GearRatio = 4.0
 GearEfficiency = 1.0
 MaxTorque = 1.00
 end

 object BatterySensor1: TBatterySensor
 CorrespondingBatteryName = 'Battery'
 end

 end # Body

 object Brain: TBrain
 DefinitionFile = '..\Brains\UFLibBasicDemoRoboticBrain.txt'
 end

end #Robot

Fig. 12. The robot definition file.

The robot definition file

To begin with, open the folder Data and then the folder Robots. Next, open the file
UFLibBasicDemoRobot.txt. The contents of the file are as shown in Fig. 12 above. In
general, definition files (both for the body and for the brain of a robot) contain nested
structures beginning with the phrase

Object <objectname>: T<objectclassname>

and ending with the word End. In this case, the object Robot (of type TRobot) contains an
object Body (of type TDifferentiallySteeredBody, which is a descendant class of
TBody), which, in turn, contains definitions of the physical parameters of the robot and of
the battery sensor and the two motor. Finally, the lines

object Brain: TBrain
 DefinitionFile = '..\Brains\UFLibBasicDemoRoboticBrain.txt'
end

indicate the location of the brain definition file. For clarity, the definition of the brain is
normally placed in a separate file, even though it is theoretically possible to place it
directly in the robot definition file (in which case the brain definition will, of course, no
longer be needed). Separating the brain definition file from the definition of the body also
makes it easy to replace the brain definition file by changing a single line in the robot
definition file.

Most of the parameters listed in the robot definition file are self-explanatory. The battery
discharges according to

dE/dt = -c1 - c2 v, (4)

where E is the battery energy, v is the speed of the robot, i.e. the modulus of the velocity
vector v. The constant c1 corresponds to the DischargeRateAtRest defined in the robot
definition file, and c2 corresponds to the DischargeRateInMotion. The discharging of
the battery is taken care of by the procedure TEnergySource.Discharge, When the
battery is charging, the equation for its energy changes to
dE/dt = -c1 - c2 v + c3, (5)

where c3 corresponds to the parameter ChargeRate in the robot definition file. Note the
difference between the actual battery, and the battery sensor, defined close to the end of
the robot definition file: the battery is needed for the robot to move, and the battery
sensors (if available) allows the robot to monitor the state of the battery.

The brain definition file

Turning now to the definition file for the robotic brain, return to the folder Data, open the
folder Brains and then the file UFLibBasicDemoRoboticBrain.txt. The contents of the
file are as shown in Fig. 13 below.

object Brain: TBrain

 object Hormones: THormones

 object Hunger: THormone
 MinimumLevel = 0.0
 MaximumLevel = 1.0
 end

 end #Hormones

 object Behaviors: TBehaviorList
 Level = 1

 object Navigation: TCircularNavigation
 LeftMotorOutput = 0.9
 RightMotorOutput = 0.1

 object StateVariables: TStateVariables
 object StateVariable1: TInternalPhysicalVariable
 StateVariableType = 'svtInternalPhysical'
 CorrespondingSensorName = 'BatterySensor1'
 ReadingProcedure = 'rpSinglePixel'
 Pixel = 1 1
 end
 end
 end #CircularNavigation

 object BatteryCharging: TBatteryCharging
 CorrespondingBatteryName = 'Battery'
 ChargingStartTime = 0.5

 object StateVariables: TStateVariables
 object StateVariable1: TInternalAbstractVariable
 StateVariableType = 'svtInternalAbstract'
 CorrespondingHormoneName = 'Hunger'
 end
 end
 end #BatteryCharging

 end #Behaviors
end

Fig. 13. The brain definition file, UFLibBasicDemoRoboticBrain.txt.

As can be seen, the syntax of the brain definition file is similar to that of the robot
definition file. First, the object Brain (of type TBrain) is defined. Next, the hormone
variables are defined. In this case, one such variable is used, as discussed in connection
with the writing of the battery charging behavior above. Next, the behavioral repertoire
follows. In the UF method, it is possible to define a hierarchical structure, in which any
given behavior may contain a behavior list with several other behaviors, which, in turn,

may contain their own behavior lists etc. The Level parameter indicates the hierarchical
level on which the behaviors in the current behavior list are located. In this simple
example, there are only two behaviors, and they are located on the same hierarchical level
(=1).

The behaviors then follow. The definition of any behavior begins with a specification of
the parameters of the behavior. Thus, for example, the circular navigation behavior has
two parameters, LeftMotorOutput and RightMotorOutput, which are set to 0.8 and 0.5,
respectively. Next, the input variables normally follow. These are variables used by the
behaviors themselves. However, in this simple example, no input variables are needed
(for an example of the definition of such variables, see the brain definition file associated
with the example given in Sect. 4 below). Finally, the state variables should be defined.
As mentioned above, these are scalar variables that are used in the utility functions,
which, in the UF method, are optimized by the evolutionary algorithm. In this particular
example, U1 depends on the state variable E, whereas U2 depends on the variable x. These
variables are introduced towards the end of the definition of the battery charging behavior.

As described in Sect. 1.2, in the UF method, there are three types of state
variables, namely external variables, internal physical variables, and internal abstract
variables. Variables of the first two types may be extracted from sensors whose readings
are non-scalar. For example, a state variable may be defined as the average reading of a
laser range finder (containing perhaps hundreds of rays), or as the reading of a single ray.
In the former case, the reading procedure rpAverage would be used whereas, in the
latter case, the reading procedure rpSinglePixel would be used. The reading of a
battery sensor is of course scalar, but since the corresponding state variable is defined as
an internal physical variable a reading procedure must nevertheless be specified, hence
the two lines

ReadingProcedure = 'rpSinglePixel'
Pixel = 1 1

in its definition. Internal abstract state variables, by contrast, correspond to the reading of
hormone variables, which are always scalar, so no reading procedure needs to be defined
for such variables.

The arena file

As a final step before running the program, an arena file must be defined. Move to the
folder Data - Arenas, and open the UFLibBasicDemoArena.txt file. Note that only a
part of the arena file is shown in Fig. 14 below. The structure of arena files is similar to
that of the other two files described above, even though the arena file does not contain
nested object definitions. The arena used in this example consists of five objects: a floor
and four walls of type TcornerWall. Note that all objects defining an arena must have
unique names (e.g. object_1, object_2 etc.).

Generated by ArenaBuilder 20050525 10:38:29 (GMT+1)
object Object_0: TFloor
 Position = 0.000 0.000 0.000
 Velocity = 0.000 0.000 0.000
 Angle = 0.000
 Height = 2.500
 Mass = -1.000
 RGBColor = 0 0 0
 Texture = Textures/marbletiles.jpg
 Length = 10.000
 Width = 10.000
 TileLength = 2.500
 TileWidth = 2.500
end

object Object_1: TCornerWall
 Position = -5.100 -5.100 0.000
 Velocity = 0.000 0.000 0.000
 Angle = 0.000
 Height = 1.500
 Mass = -1.000
 RGBColor = 0 0 0
Texture =
 LengthPart1 = 5.000
 LengthPart2 = 5.000
 Thickness = 0.200
 Transparent = False
 HasWallPaperFront = True
 WallPaperFront = Textures/wallpaper.jpg
 HasWallPaperBack = False
WallPaperBack =
 TextureTileLength = 1.000
 TextureTileHeight = 1.000
End

< Truncated … >

Fig. 14. (Part of) the arena definition file.

Lines beginning with # are comments, i.e. they are ignored when the file is read. Note
that it is possible to add arbitrary textures to the arena, in order to enhance its appearance.
For example, in this case, textures contained in the files marbletiles.jpg and
wallpaper.jpg (located in the Textures folder) have been added to the floor and walls,
respectively. The arena is shown in Fig. 15 below.

Fig. 15. The arena, with textures added to the floor and the walls.

Finally, press F9 to compile and run the program. It should, of course, work exactly as
the program compiled in Sect 3.2 above.

3.4 Final notes

3.4.1 Computer requirements

When the Inspect button is pressed, the program attempts to show the motion of the robot
in real time. However, on some computers (notably laptops with insufficients graphics
capabilities), the motion may become very slow. In order to runs programs based on the
UFLibrary, it is recommended to use a computer running Windows XP and having a
clock frequency of at least 2.5 GHz, equipped with a good graphics card with at least 64
MB memory.

3.4.2 Future releases

The UFLibrary is under continuous development. New releases will be made frequently.
Please make sure to check the UFLibrary web page often for new releases.

4. Additional example

In this version of the tutorial, only one additional example will be given, namely that of a
robot navigating in an arena with obstacles. This robot is equipped with two behaviors,
namely StraightLineNavigation (which, as the name implies, makes the robot navigate in
a straight line, using equal torques for each motor) and CollisionAvoidance (in which the
torques for the two motors are set to values with equal magnitude but opposite sign,
making the robot turn without moving its center-of-mass). The example can be found in
the folder SimpleNavigation (again, the example is provided for Delphi versions 5 and 6).
The two behavior units StraightLineNavigation.pas and CollisionAvoidance.pas are
located in the behaviors folder.

 As in the previous example, double-click the project icon, in this case named
SimpleNavigationProject.dpr, and add the search path to the UFLibrary .dcp-file, as
described in Figs. 5-6 above. Then press F9 to compile and run the program. Let the
program run for a few minutes, and then press the inspect button to analyze the run. After
completing the run, inspect the definition file, particularly the brain definition file
(SimpleNavigationRoboticBrain.txt, located in the Brains folder). Unlike the simple
example described above, this example involves the use not only of state variables but
input variables as well. Next, analyze the source files for the two behaviors.

Fig. 16. The simple navigation robot in action.

Contact information

For further information concerning this example or the UFLibrary in general, please feel
free to contact Mattias Wahde at mattias.wahde@chalmers.se. You may also wish to visit
the web page of the Adaptive systems research group at Chalmers University of
Technology, located at www.me.chalmers.se/~mwahde.

References

Reference [1] is the original paper on the UF method. Reference [2] is a general tutorial
on evolutionary robotics, which contains some basic information concerning the UF
method. Copies of the papers listed below can be obtained upon request to
mattias.wahde@me.chalmers.se

[1] Wahde, M. A Method for Behavioral Organization for Autonomous Robots Based

on Evolutionary Optimization of Utility Functions, Journal of Systems and
Control Engineering (IMechI), 217, 249-258, 2003

[2] Wahde, M. Evolutionary robotics – The use of artificial evolution in robotcs,

Tutorial presented at IROS 2004 in Sendai, Japan, available at
 www.me.chalmers.se/~mwahde/robotics/TechReports/TR-BBR-2004-001.pdf

[3] Pettersson, J. and Wahde, M. Pettersson, J. and Wahde, M. Application of the

utility function method for behavioral organization in a locomotion task, IEEE
Trans. Ev. Comp. (In press, 2005)

[4] Sandholt, H. and Wahde, M. A study of multiple behavior implementations in

connection with the utility function method for behavioral organization,
Submitted to the Journal of Robotics and Autonomous Systems, 2005.

[5] Pettersson, J and Wahde, M. UFLibrary: A Simulation Library Implementing the

Utility Function Method for Behavioral Organization in Autonomous Robots,
Submitted to SMC2005

[6] Wahde, M., Pettersson, J., Sandholt, H., and Wolff, K. Behavioral Selection using

the Utility Function Method: A Case Study Involving a Simple Guard Robot,
Submitted to AmiRE 2005

