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Abbreviations

The abbreviations used in the tutorial are listed below, in alphabetical order. In
addition, the abbreviations are also defined the first time they occur in the text.
If an abbreviation is shown in plural form, an s is added to the abbrevation.
Thus, for example, the term artificial neural networks is abbreviated as ANNs.

AI Artificial intelligence
ALIFE Artificial Life
ANN Artificial neural network
BBR Behavior-based robotics
DOF Degrees of freedom
EA Evolutionary algorithm
EP Evolutionary programming
ER Evolutionary robotics
ES Evolution strategy
FFNN Feedforward neural network
FSM Finite-state machine
GA Genetic algorithm
GP Genetic programming
IR Infrared
RNN Recurrent neural network
ZMP Zero-moment point
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Chapter 1

Introduction to evolutionary
robotics

The topic of this tutorial is evolutionary robotics (ER), the sub-field of robotics
in which evolutionary algorithms (EAs) are used for generating and optimiz-
ing the (artificial) brains (and sometimes bodies) of robots.

In this chapter a brief introduction to the topics of evolution and autono-
mous robots will be given, followed by a simple example involving the evolu-
tion of a cleaning behavior.

1.1 Biological and artificial evolution

EAs are methods for search and optimization based on darwinian evolution,
which will be described further in the next chapter.

Why should one use these algorithms in robotics? There are many good
reasons for doing so; First of all, if properly designed, an EA allows structural
as well as parametric optimization of the system under study. This is particu-
larly important in ER, where it is rarely possible (or even desirable) to specify,
in advance, the structure of e.g. the artificial brain of a robot. Thus, mere
parametric optimization would not be sufficiently versatile for the problem at
hand.

Second, evolution – whether artificial or natural – has, under the right con-
ditions, the ability to avoid getting stuck at local optima in a search space. Thus,
given enough time, an evolutionary algorithm usually finds a solution close to
the global optimum.

Finally, due partly to its stochastic nature, evolution can find several differ-
ent (and equally viable) solutions to a given problem. The great diversity of
species in nature, for instance, shows that there are many different solutions
to the problem of survival. Another classical example is the evolution of the
eye. Richard Dawkins notes in one of his books [21] that the eye has evolved
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Introduction 2

in forty (!) different and independent ways. Thus, when nature approached
the task of designing light–gathering devices to improve the chances of sur-
vival of previously blind species, a large number of different solutions were
discovered. Two examples are the compound eyes of insects and the lens eyes
of mammals. There is a whole range of complexity from simple eyes which
barely distinguish light from darkness, to strikingly complex eyes which pro-
vide their owner with very acute vision. In ER, the ability of the EA to come
up with solutions that were not anticipated is very important. Particularly
in complex problems, it often happens that an EA finds a solution which is
remarkably simple, yet very difficult to arrive at by other means.

1.2 Autonomous robots

EAs can, in principle, be applied in most robotics problems. However, most
applications of EAs in robotics concern autonomous robots, i.e. robots that
move freely and without direct human supervision. While the number of au-
tonomous robots is rapidly increasing, the most common types of robots in in-
dustries are still stationary robotic arms operating in very structured and con-
trolled environments. Such robots are normally equipped with very limited
cognitive abilities, and stationarity has therefore been a requirement rather
than an option.

Autonomous robots, on the other hand, are expected to operate in unstruc-
tured environments, i.e. environments that change rapidly and in an unpre-
dictable way, so that it is impossible to rely on pre-defined maps. Thus, au-
tonomous robots have much more in common with biological organisms than
stationary robotic arms, and it is therefore not surprising that computational
methods based on biological phenomena have come to be used in connection
with autonomous robots.

The influence from biology is evident already in the structure of the arti-
ficial brains used in autonomous robots; It is common to use behavior-based
robotics (BBR), in which robots are equipped with a repertoire of simple be-
haviors, which are generally running concurrently and which are organized
to form a complete robotic brain. By contrast, classical artificial intelligence
(AI), with its sense-plan-act structure (see Chapter 3), has much less in com-
mon with biological systems.

Clearly, there exists many different approaches to the problem of generat-
ing brains for artificial robots, and this tutorial does not make an attempt to
cover all of these methods. Instead, the discussion will be limited to methods
involving EAs in one way or another. Readers interested in other methods are
referred to [2] and references therein.

Within the field of autonomous robots, there exists many different robot
types, the most common being wheeled robots and walking robots. Within
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the sub-field of walking robots, which will be discussed further in Subsect.
3.4.1, there exists bipedal robots and quadrupedal robots, as well as robots
with more than four legs. Bipedal robots with an approximately human shape
are also called humanoid robots.

Note that, in this tutorial, a rather generous definition of the phrase autono-
mous robot will be used, including not only real, physical robots, but simulated
robots as well. This is necessary, since, by their very nature, EAs must often
be used in simulated environments. Evolution directly in hardware will be
covered briefly as well, however, in Subsect. 3.4.2.

However, applications in artificial life (ALIFE) will not be considered. In
ALIFE, the aim is often to study biological phenomena in their own right,
whereas in ER, the aim is to generate robots with a specific purpose, and the
discussion will henceforth omit results from ALIFE. The reader is referred to
[62], and references therein, for further information on the topic of ALIFE.

Finally, before proceeding with two simple examples from the field of ER,
the concept of a robotic brain should be defined: some researchers use the
term control system. However, in the author’s opinion, this term is misleading,
as it leads the reader to think of classical control theory. Clearly, concepts from
classical control theory are relevant in autonomous robots; For example, the
low-level control of the motors of autonomous robots is often taken care of
by PI- or PID-regulators. However, autonomous robots are expected to make
their own decisions in complex, unstructured environments, in which systems
based only on classical control theory simply are insufficient. Thus, hereafter,
the term robotic brain (or, simply, brain) will be used when referring to the
system that provides an autonomous robot, however simple, with the ability
to process information and decide upon which actions to take.

1.3 A simple example

In this section, a brief introduction to ER will be given through a simple ex-
ample, namely the evolution of a cleaning behavior. Consider an arena of the
kind shown in the left panel of Fig. 1.1. The large cylinder represents a sim-
ple, differentially steered, simulated two-wheeled robot, whereas the smaller
(stationary) objects are considered to be garbage, and are to be removed by the
robot. The aim is to use an evolutionary algorithm to generate a brain capable
of making the robot clean the arena.

1.3.1 Cleaning behavior in simulation

The first choice that must be made is whether to evolve robotic brains in sim-
ulation, or directly in hardware (an issue that will be discussed further in Sub-
sect. 3.4.2). For the simple problem described here, which was part of an
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Figure 1.1: A simple, simulated cleaning robot (the large, circular object) in
action [128]. The initial state is shown in the left panel, and the final state in
the right panel.

investigation concerning elementary behavioral selection [128], the choice was
made to use simulated robots during evolution, and then attempt to transfer
the best robotic brain found in simulation to a physical robot.

Next, a representation must be chosen for the robotic brains. Ideally, the
EA should be given as much flexibility as possible but, in practice, some limi-
tations must generally be introduced. In this problem, the robotic brains were
represented as a generalized finite-state machines (GFSMs, see Appendix B),
and the EA acted directly on the GFSMs rather than on a chromosomal encod-
ing of them (see Sect. 2.7.2). In the beginning of the simulation, the GFSMs
were small (i.e. contained very few states). However, the EA was allowed to
change the sizes of the GFSMs during the simulation.

The simulated robot was equipped with very simple sensors that could
distinguish garbage objects from walls, but not much more.

The next step in the application of an EA is to choose a suitable fitness
measure, i.e. a performance measure for the evolving robotic brains. In the
particular case considered here, the aim of the robot was to place the garbage
objects as far from the center of the arena as possible. Thus, the fitness measure
was simply chosen as the mean square distance, counted from the center of the
arena, of all the garbage objects at the end of the evaluation.

Furthermore, each robot was evaluated against several (usually five) differ-
ent starting configurations, with garbage objects placed in different positions,
to avoid a situation where the evolved robot would learn only to cope with a
given configuration.

Next, an EA was set up, in which a population of robotic brains (in the form
of GFSMs) was generated. As the EA progressed, evaluating robotic brains,
and generating new ones using selection, crossover, and mutations (see Sect.
2.5), better and better results were obtained. In early generations, the simu-
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lated robots did little more than run around in circles near their starting po-
sition. However, some robots were lucky enough to hit one or a few garbage
objects, thereby moving them slightly towards the walls of the arena. Before
long, there appeared robots that would hit all the garbage objects.

The next evolutionary leap led to purposeful movement of objects. Here, an
interesting method appeared: Since both the body of the robot and the garbage
objects were round, objects could not easily be moved forward; Instead, they
would slide away from the desired direction of motion. Thus, a method in-
volving several states of the GFSM was found, in which the robot moved in a
zig-zag fashion, thus managing to keep the garbage object in front.

Next, robots appeared that were able to deliver a garbage object at a wall,
and then return towards the center of the arena in a curved, sweeping motion,
in order to detect objects remaining near the center of the arena.

Towards the end of the run, the best evolved robots were able to place all, or
almost all, garbage objects near a wall, regardless of the starting configuration.

An example of the motion of an evolved robot is provided on the CD asso-
ciated with the tutorial, in the file Cleaning_Simulation.avi .

1.3.2 Cleaning behavior in a Khepera robot

Needless to say, the aim of ER is to generate real, physical robots capable of
performing useful tasks. Simulation is a useful tool in ER, but the final results
should be tested in physical robots.

The simulations for the cleaning robot discussed above were, in fact, strongly
simplified, and no attempt was made to simulate a physical robot exactly.
Nevertheless, the best robotic brain obtained in the simulations was adapted
for the Khepera robot (see Appendix C), the adaptation consisting mainly of
rescaling the parameters of the robotic brain, such as e.g. wheel speeds and
sensor readings, to appropriate ranges. Quite amazingly, the evolved robotic
brain worked almost as well in the Khepera robot as in the simulated robots,
as can be seen in the film Cleaning_Khepera.avi , which is also available
on the tutorial CD. Thus, in this particular case, the transition from simulation
to real robots was quite simple, probably due to the simplicity of the problem.
However, despite its simplicity, the problem just described still illustrates the
power of EAs as a method for generating robotic behaviors. Now, before pro-
ceeding with a survey of results obtained in the field of ER, an introduction to
EAs will be given.



Chapter 2

Fundamentals of evolutionary
algorithms

2.1 Introduction

Since the introduction of EAs in the 1970s, the number of applications of such
algorithms has grown steadily, and EAs are today used in fields as diverse
as engineering, computational biology, finance, astrophysics, and, of course,
robotics.

Below, a brief introduction to EAs will be given. Clearly, it is impossible to
review completely the vast topic of EAs on a few pages. Thus, readers inter-
ested in learning more about EAs should consult other sources as well, e.g. [3],
[45], [77], and [81].

Before introducing EAs, however, it is necessary to give a brief introduc-
tion to the terms and concepts that appear in the study of biological evolution.
Needless to say, this, too, is a vast topic, and only the most basic aspects will
be given below. For more information on biological evolution, see e.g. [20] and
[21]. As their name implies, EAs are based on processes similar to those that
occur during biological evolution. A central concept in the theory of evolution
is the notion of a population, by which we mean a group of individuals of the
same species (i.e. that can mate and have fertile offspring), normally confined
to some particular area in which the members of the population live, repro-
duce, and die. The members of the population are referred to as individuals.
In cases where members of the same species are separated by, for instance, a
body of water or a mountain range, they form separate populations. Given
enough time, speciation (i.e. the formation of new species) may occur.

One of the central ideas behind Darwin’s theory of evolution is the idea of
gradual, hereditary change: New features in a species, such as protective cover
or fangs, evolve gradually in response to a challenge provided by the environ-
ment. For instance, in a species of predators, longer and sharper fangs may
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evolve as a result of the evolution of thicker skin in their prey. This gradual
arms race between two species is known as co–evolution.

The central concept is heredity, i.e. the idea that the properties of an indi-
vidual can be encoded in such a way that they can be transmitted to the next
generation when (and if) an individual reproduces. Thus, each individual of
a species carries a genome that, in higher animals, consists of several chromo-
somes in the form of DNA molecules. Each chromosome, in turn, contains
a large number of genes, which are the units of heredity and which encode
the information needed to build and maintain an individual. Each gene is
composed, essentially, of a sequence of bases. There are four bases in chro-
mosomes (or DNA molecules), denoted A,C,G, and T. Thus, the information
is stored in a digital fashion, using an alphabet with four symbols. During
development, as well as during the life of an individual, the DNA is read by
an enzyme called RNA polymerase, and this process, known as transcription
produces messenger RNA (mRNA). Next, proteins are generated in a process
called translation, using mRNA as a template.

Proteins are the building blocks of life, and are involved in one way or
another in almost every activity that takes place inside the living cell.

Each gene can have several settings. As a simple example, consider a gene
that encodes eye color in humans. There are several options available: Eyes
may be green, brown, blue etc. The settings of a gene are known as alleles. Of
course, not all genes encode something that is as easy to visualize as eye color.
The complete genome of an individual, with all its settings (encoding e.g. hair
color, eye color, height etc.) is known as the genotype.

During development, the stored information is decoded, resulting in an
individual carrying the traits encoded in the genome. The individual, with all
its traits, is known as the phenotype, corresponding to the genotype.

Two central concepts in evolution are fitness and selection (for reproduc-
tion), and these concepts are often intertwined: Individuals that are well adap-
ted to their environment (which includes not only the climate and geography
of the region where the individual lives, but also other members of the same
species, as well as members of other species), i.e. those that are stronger or
more intelligent than the others, have a larger chance to reproduce, and thus
to spread their genetic material, resulting in more individuals having these
properties etc.

Reproduction is the central moment for evolutionary change. Simplifying
somewhat, we may say that during this process, the chromosomes of two (in
the case of sexual reproduction) individuals are combined, some genes being
taken from one parent and others from the other parent. The copying of ge-
netic information takes place with remarkable accuracy, but nevertheless there
occurs some errors. These errors are known as mutations, and constitute the
providers of new information for evolution to act upon. In some simple species
(e.g. bacteria) sexual reproduction does not occur. Instead, these species use
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0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1

X , X1 2

Figure 2.1: Typical usage of a chromosome in a genetic algorithm. The 0s and
1s are the genes, which are used as binary numbers to form, in this case, two
variables x1 and x2, using e.g. the first half of the chromosome to represent x1

and the second half to represent x2.

asexual reproduction, in which only one parent is involved.

2.2 Biology vs. evolutionary algorithms

It should be noted that the description of reproduction above (and indeed of
evolution altogether) is greatly simplified: For example, in higher animals,
the chromosomes are paired, allowing such concepts as recessive traits etc.
Furthermore, not all parts of DNA are actually used in the production of an
individual: A large part of the genetic information is dormant (but may come
to be used in later generations).

Another simplification, relevant to the topic of EAs, comes from the way
chromosomes are used. The most common usage in EAs is illustrated in Fig. 2.1.
The figure shows the typical procedure used when generating an individual
from a chromosome in a genetic algorithm As can be seen from the figure,
the chromosome is used as a lookup table from which the traits of the corre-
sponding individual are obtained. In the simple case shown in the figure, the
individual obtained consists of two variables x1 and x2 which can be used e.g.
in a function optimization problem.

2.2.1 Embryological development

The simple procedure shown in Fig. 2.1 is, in fact, just a caricature of the pro-
cess taking place when an individual is generated in a biological systems. The
biological process is illustrated schematically in Fig. 2.2. First of all, in biolog-
ical systems, the chromosome is not used as a simple lookup table. Instead,
genes interact with each other to form complex genetic regulatory networks,
in which the activity (i.e. the level of production of mRNA) of a gene often
is regulated by the activity of several other genes [101]. In such cases, the
product of a gene (i.e. a protein) may attach itself to an operator close (on the
DNA molecule) to another gene, and thereby affect, i.e. increase or decrease,
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1 2 3 4

Figure 2.2: A schematic illustration of the function of the genome in a biolog-
ical system. Four genes are shown. Genes 1, 3, and 4 are transcription fac-
tors, which regulate each other’s levels of expression, as well as that of gene 2,
which is a structural gene. The arrow below gene 2 indicates that its product
is used in the cell for some other purpose than gene regulation. Note that the
figure is greatly simplified in that the intermediate step of translation is not
shown.

the ability of RNA polymerase to bind to the DNA molecule at the starting
position of the gene (the promoter region).

Genes that regulate other genes are called regulatory genes or transcrip-
tion factors. Some regulatory genes regulate their own expression, forming
a direct feedback loop, which can act to keep the activity of the gene within
specific bounds (see gene 1 in Fig. 2.2).

Gene regulation can occur in other ways as well. For example, a regulatory
gene may activate a protein (i.e. the product of another gene) which then,
in turn, may affect the transcription of other genes. Genes that have other
tasks than regulatory ones are called structural genes. Such genes produce
the many proteins needed for a body to function, e.g. those that appear in
muscle tissues. In addition, many structural genes code for enzymes, which
are proteins that catalyze various chemical reactions, such as, for example,
breakdown of sugars.

During embryological development of an individual, the genome thus ex-
ecutes a complex program, resulting in a complete individual.

2.2.2 Multicellularity

An additional simplification in most EAs is the absence of multicellularity. By
contrast, in biological systems, the development of an individual results in a
system of many cells (except, of course, in the case of unicellular organisms),
and the level of gene expression in each cell is determined by its interaction
with other cells. Thus, signalling between cells is an important factor in bio-
logical systems. Note, however, that the set of chromosomes, and therefore the
set of genes, is the same in all somatic (non-germ) cells in a biological organism.
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It is only the expression of genes that varies between cells, determining e.g. if a
cell should become part of the brain (a neuron) or part of the muscle tissue.

2.2.3 Gene regulation in adult animals

In EAs, the individual resulting from the decoding procedure shown in Fig. 2.1
is usually fixed during its evaluation. However, in biological systems, the
genome remains active throughout the life time of the individuals, and con-
tinues to produce the proteins needed in the body. In a computer analogy, the
embryological development described above can be considered as a subrou-
tine which comes to a halt when the individual is born. At that time, another
subroutine, responsible for the growth of the newborn individual is activated,
and is finally followed by a subroutine active during adult life. The amount
needed of any given protein usually varies with time, and continuous gene
regulation is thus essential in biological organisms.

2.2.4 Summary

To summarize the description of evolution, it can be noted that it is a process
that acts on populations of individuals. Information is stored in the individ-
uals in the form of chromosomes, consisting of many genes. Individuals that
are well adapted to their environment are able to initiate the formation of new
individuals through the process of reproduction, which combines the genetic
information of two separate individuals. Mutations provide further material
for the evolutionary process.

Finally, it should be noted that, while EAs are inspired by biological evolu-
tion, they often represent a strong simplification of the very complex processes
occurring in biological evolution. Clearly, there is no need to reproduce biol-
ogy exactly: In ER, the aim is to generate e.g. artificial brains for autonomous
robots by means of any method that allows one to do so, and there is nothing
preventing deviations from biology.

2.3 Taxonomy of evolutionary algorithms

The taxonomy of EAs is sometimes confusing, particularly since different au-
thors sometimes use slightly different definitions of the particular version of
EAs they are using. Here, EAs will be considered the umbrella term, covering
all types of algorithms based on darwinian evolution. A common special case
are genetic algorithms (GAs) [45], in which the variables of the problem are
encoded in strings of digits which, when decoded, generate the system that is
to be optimized (e.g. the brain of a robot represented, for example, by a neural
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All
individuals
evaluated?

No

Initialize population

Yes

Satisfactory
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Decode chromosome Evaluate individual

Select two individuals Perform crossover Mutate

New
population
complete?

No

Terminate run

Insert the two new
individuals in the
population

Replace entire parent
population by offspring

Yes

No

Figure 2.3: The basic flow of a standard GA, using generational replacement
(see Subsect. 2.5.4 below). The dashed arrow indicates that crossover is only
carried out with a probability pc.

network). Another version of EAs are evolution strategies (ESs) [4]. In a tra-
ditional ES, the variables of the problem were encoded as numbers taking any
value in a given range (e.g. [0, 1]), whereas in traditional GAs, the digits were
usually binary, i.e. either 0 or 1. There were other differences as well, such as
the use of a variable mutation rate in ESs, whereas GAs typically used a con-
stant mutation rate. However, GAs and ESs have gradually approached each
other, and many practitioners of EAs today use real-valued encoding schemes
and variable mutation rates in algorithms which they refer to as GAs.

Other versions exist as well, and they differ from the traditional GA mainly
in the representations used. Thus, in genetic programming (GP) [61], the rep-
resentation is usually a tree-like structure (even though a more recent version,
linear GP, uses a representation closer to that used in GAs, further blurring the
distinction between different algorithms). In evolutionary programming (EP)
[33], a representation in the form of finite-state machines (see Appendix B) was
originally used.

While there are many different versions of EAs, all such algorithms share
certain important features - they operate on a population of candidate solu-
tions (individuals), they select individuals in proportion to their performance,
and then apply various operators (the exact nature of which depends on the
representation used) to form new individuals, providing a path of gradual,
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hereditary change towards the desired structure.
In evolutionary robotics, it is common to skip the step of encoding the infor-

mation in strings of digits, and instead allow the EA act directly on the struc-
ture being optimized. For example, in the author’s research group, EAs are
often used that operate directly on recurrent neural networks (see Appendix
A) or even on a behavioral selection system. The optimization of such systems
will be discussed below. In general, a system being optimized by an EA will
be called a structure whether or not it is obtained by decoding a chromosome.
Thus, in a GA, one may optimize, say, a structure such as a neural network of
fixed size, obtained from a chromosome. Alternatively, one may use a more
generic type of EA, in which the encoding step is skipped, and the EA instead
acts directly on the neural network.

2.4 Basic operation of evolutionary algorithms

Before discussing the various components of EAs, a brief description of the ba-
sic functionality of such algorithms will be given, centered around the exam-
ple of function optimization using a standard GA. However, with only small
modifications, the discussion is applicable to almost any EA. The basic flow
of a GA is shown in Fig. 2.3. The first step of any EA (not shown in the fig-
ure), is to select a representation for the structures on which the algorithm will
act. In the standard GA, the structures are strings of (binary) digits, known
as chromosomes. An example of a chromosome is shown in Fig. 2.1. When
decoded, the chromosome will generate the corresponding individual, i.e. the
phenotype corresponding to the genotype given by the chromosome. In the
case shown in Fig. 2.1, the individual simply consists of two real numbers x1

and x2, but more complex structures, such as e.g. ANNs, can also be encoded
in chromosomes. In the case of ANNs, the real numbers obtained from the
chromosome can be used for representing network weights.

As mentioned above, the encoding-decoding step is sometimes skipped in
ER. However, for the remainder of this section, only encoding schemes mak-
ing used of chromosomes, represented as linear strings, will be considered.
Advanced topics, such as EAs operating directly on a complex structure (e.g.
an ANN), or using structures of variable size, will be considered in Sect. 2.7.2.

Once a representation has been chosen, the next step is to initialize the chro-
mosomes, which is normally done in a random fashion. Next, each chromo-
some is decoded to form the corresponding individual, which is then evalu-
ated and assigned a fitness value, specified by the user. Consider the specific
case of function maximization, applied to the benchmark function

ψn(x1, x2, . . . , xn) =
1

2
+

1

2n
exp (−α

n
∑

i=1

x2
i )

n
∑

i=1

cos

(

β
√
ixi

i
∑

j=1

jxj

)

, (2.1)
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Figure 2.4: The function ψ10. The surface shows the function values obtained
while keeping x3, x4, . . . , x10 fixed at zero, and thus only varying x1 and x2.

where α and β are constants. This function has a global maximum of 1 at
x1 = x2 = . . . = xn = 0, and is illustrated in Fig. 2.4 for the case n = 10,
and with α = 0.05, β = 0.25. The figure was generated using the program
GA Function Maximizer v1.1 , which is provided on the CD associated
with this tutorial. The fitness measure should be such that individuals that
come close to the desired result receive higher fitness than those that do not.
Thus, in the case of function maximization, a possible fitness measure is simply
the function value itself1. Thus, for each individual, the variables x1, x2, . . . xn

are obtained from the chromosome, and the fitness value f = ψn(x1, x2, . . . , xn)
is computed.

Following the flow chart in Fig. 2.3, when all individuals have been eval-
uated, the production of new individuals can begin. Here, the first step is
to select two (in case of sexual reproduction) individuals from the population,
which will be used as parents for two new individuals. In general, the selection
of individuals is performed in a fitness-proportional manner, thus favoring in-
dividuals with high fitness while at the same time allowing for the selection of
less fit individuals. The details of various selection procedures will be given
below in Subsect. 2.5.3. When two parents have been selected, two new indi-
viduals are formed, normally using crossover with a certain probability pc (the
crossover probability, in which the genetic material of the parents is mixed,
and mutation, in which a small, random change is made to each of the two
new chromosomes. The crossover and mutation operators are described in
Subsects. 2.5.5 and 2.5.6 below. The procedure is repeated N/2 times, where
N is the population size. The N new individuals thus generated replace the
N individuals from which parents were selected, forming the second genera-
tion, which is evaluated in the same way as the first generation (see the flow

1In case of minimization, the inverse of the function value can be used.
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chart). The whole procedure - evaluation, selection, crossover, and mutation -
is repeated until a satisfactory solution to the problem has been found.

2.5 Basic components of evolutionary algorithms

Following the schematic example above, the main components of EAs will
now be described in some detail. For a more detailed description, see e.g.
[3], [77], and [81]. Note that the implementation of some operators, notably
crossover and mutation, depends on the particular representation used.

2.5.1 Encoding schemes

The representation of the chromosomes can be chosen in several different ways.
In the standard GA, binary encoding is used. Another alternative is real–
number encoding, where genes take any value in the range [0, R], where R
is a non-negative real number (usually 1). As is often the case with EAs, it is
not possible to say that one encoding scheme is always superior to the others,
and it is also difficult to make a fair comparison between the various encoding
schemes. Real–number encoding schemes often use slightly different muta-
tion methods (see below), which improve their performance in a way that is
not directly available for binary encoding schemes. In real–number encoding,
a single gene g is used to represent a number between 0 and 1. This number is
then rescaled to the appropriate range ([−d, d]), according to

x = −d+ 2dg, (2.2)

assuming that the standard value R = 1 has been chosen for the range of
allowed gene values. For standard binary encoding, the procedure is

x = −d+ 2d
(

g1 × 2−1 + g2 × 2−2 + g3 × 2−3 + . . .
)

, (2.3)

where gi denotes the ith gene used in the representation of the variable x. There
are also other procedures for encoding numbers using binary chromosomes.
An example is Gray coding, which will be discussed briefly in Sect. 2.7.1.

2.5.2 Fitness assignment

The simplest possible fitness assignment consists of simply assigning the value
obtained from the evaluation (assuming a maximization task) without any
transformations. This value is known as the raw fitness value. For example,
if the task is to find the maximum of a simple trigonometric function such as
f(x) = 1 + sin(x) cos(2x), the raw fitness value would be useful. However, if
instead the task is to find the maximum of the function g(x) = 1000+ f(x), the
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raw fitness values would be of little use, since they would all be of order 1000.
The selection process would find it difficult to single out the best individuals.

It is therefore generally a good idea to rescale the fitness values before they
are used. Linear fitness ranking is a commonly used rescaling procedure,
where the best of the N individuals in the population is given fitness N, the
second best fitness N − 1 etc. down to the worst individual, which is given
fitness 1. Letting R(i) denote the ranking of individual i, defined such that the
best individual ibest has ranking R(ibest) = 1 etc. down to the worst individual
with ranking R(iworst) = N , the fitness assignment is given by

f(i) = (N + 1 −R(i)). (2.4)

Fitness ranking must be used with caution, however, since individuals that are
only slightly better than the others may receive very high fitness values and
soon come to dominate the population, trapping it in a local optimum. The
tendency to converge on a local optimum can be decreased by using a less
extreme fitness ranking, assigning fitness values according to

f(i) = fmax − (fmax − fmin)

(

R(i) − 1

N − 1

)

. (2.5)

This ranking yields equidistant fitness values in the range [fmin, fmax]. The sim-
ple ranking in Eq. (2.4) is obtained if fmax = N, fmin = 1.

The choice of the fitness measure often has a strong impact on the results
obtained by the GA, and the topic will be discussed further in Sect. 2.7.4.

2.5.3 Selection

Selection can be carried out in many different ways, two of the most com-
mon being roulette-wheel selection and tournament selection. All selection
schemes preferentially select individuals with high fitness, while allowing se-
lection of less fit individuals as well.

In roulette-wheel selection, two individuals are selected from the whole
population using a procedure in which each individual is assigned a slice of a
roulette wheel, with an opening angle proportional to its fitness. As the wheel
is turned, the probability of an individual being selected is directly propor-
tional to its fitness. An algorithm for roulette-wheel selection is to draw a ran-
dom number r between 0 and 1, and the select the individual corresponding
to the smallest value j which satisfies the inequality

∑j

i=1 fi
∑N

i=1 fi

> r, (2.6)

where fi denotes the fitness of individual i.
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It is evident that roulette-wheel selection is a far cry from what happens
in nature, where small groups of individuals, usually males, fight each other
until there remains a single winner which is allowed to mate. Tournament
selection tries to incorporate the main features of this process. In its simplest
form, tournament selection consists of picking two individuals randomly from
the population, and then selecting the best one as a parent. When two parents
have been selected this way, crossover and mutation takes place as usual. A
more sophisticated tournament selection scheme involves selecting m individ-
uals randomly from the population. Next, with probability r, the best of the m
individuals is selected, and with probability 1− r a random individual among
the other m−1 is selected. m is referred to as the tournament size, and r is the
tournament selection parameter. A typical numerical value for r is around
0.75. The tournament size is commonly set as a (small) fraction of the popu-
lation size. Thus, unlike the case with roulette-wheel selection, in tournament
selection no individual is discarded without at least participating in a close
combat involving a small number of individuals. Note also that, in tourna-
ment selection, negative fitness values are allowed, whereas all fitness values
in roulette-wheel selection must be non-negative.

Both roulette-wheel selection and tournament selection operate with re-
placement, i.e. selected individuals are returned to the population and can
thus be selected again.

2.5.4 Replacement

In the example described in the previous section, generational replacement
was used, meaning that all individuals in the evaluated generation were re-
placed by an equal number of offspring. Generational replacement is not very
realistic from a biological point of view. In nature, different generations co–
exist and individuals appear (and disappear) constantly, not only at specific
intervals of time. By contrast, in generational replacement, there is no compe-
tition between individuals from different generations.

In general, replacement schemes can be characterized by their generational
gap G, which simply measures the fraction of the population that is replaced
in each selection cycle, i.e. in each generation. Thus, for generational replace-
ment, G = 1.

At the opposite extreme are replacement schemes that only replace one in-
dividual in each step. In this case G = 1/N , where N is the population size.
In steady-state reproduction, G is usually equal to 1/N or 2/N , i.e. one or two
individuals are replaced in each generation. In order to keep the population
size constant, NG individuals must be deleted. The deletion procedure varies
between different steady-state replacement schemes; In some, only the N par-
ents are considered for deletion, whereas in others, both parents and offspring
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Figure 2.5: Single-point crossover as implemented in a standard GA using
fixed-length chromosomes. The crossover point is selected randomly.

are considered.
Deletion of individuals can be done in various ways, e.g. by removing the

least fit individuals or by removing the oldest individuals.
As mentioned above, for G = 1 (i.e. generational replacement), individuals

from different generations do not compete with each other. Note however that
there may still be some de facto overlap between generations if the crossover
and mutation rates are sufficiently low since, in that case, many of the offspring
will be identical to their parents.

2.5.5 Crossover

Crossover allows partial solutions from different regions of the search space to
be assembled into a complete solution to the problem at hand.

The crossover procedure can be implemented in various ways. The sim-
plest version is one–point crossover, in which a single crossover point is ran-
domly chosen, and the first part of the first chromosome is joined with the
second part of the second chromosome, as shown in Fig. 2.5. The procedure
can be generalized to n–point crossover, where n crossover points are selected
randomly, and the chromosome parts are chosen with equal probability from
either parent. In uniform crossover, the number of crossover points is equal
to the number of genes in the chromosome, minus one.

While crossover plays a very important role, its effects may be negative if
the population size is small, which is almost always the case in artificial evo-
lution where the population size N typically is of order 30–1,000, as compared
to populations of several thousands or even millions of individuals in nature.
The problem is that, through crossover, a successful (partial) solution will very
quickly spread through the population causing it to become rather uniform or
even completely uniform, in the absence of mutation. Thus, the population
will experience inbreeding towards a possibly suboptimal solution.

A possible remedy is to allow crossover or sexual reproduction only with
a certain probability pc. In this case, some new individuals are formed us-
ing crossover followed by mutation, and some individuals are formed using
asexual reproduction, in which only mutations are involved. pc is commonly
chosen in the range [0.7, 0.9].
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2.5.6 Mutation

In natural evolution, mutation plays the role of providing the two other main
operators, selection and crossover, with new material to work with. Most of-
ten, mutations are deleterious when they occur but may bring advantages in
the long run, for instance when the environment suddenly undergoes changes
such that individuals without the mutation in question have difficulties sur-
viving.

In GAs, the value of the mutation probability pmut is usually set by the user
at the start of the computer run, and is thereafter left unchanged throughout
the simulation. A typical value for the mutation probability is around 1/n,
where n is the number of genes in the chromosome. There are, however, some
versions of EAs, notably evolution strategies, in which the mutation probabil-
ities are allowed to vary, see e.g. [4].

In the case of chromosomes using binary encoding, mutation normally con-
sists of changing the value of a gene to the complementary value, i.e. changing
from 0 to 1 or from 1 to 0, depending on the value before mutation.

In real–number encoding, the modifications obtained by randomly select-
ing new values often become too large to be useful and therefore an alterna-
tive approach, known as real–number creep, is frequently used instead. In
real–number creep, the mutated value is not completely unrelated to the value
before the mutation as in the discrete encodings. Instead, the mutation is cen-
tered on the previous value and the creep rate determines how far the muta-
tion may take the new value. In arithmetic creep, the old value g of the gene
is changed to a new value g′ according to

g → g′ = g − c + 2cr, (2.7)

where c ∈ [0, 1] is the creep rate and r is a random number in [0, 1]. In geomet-
ric greep, the old value of the gene changes as

g → g′ = g(1 − c+ 2cr), (2.8)

Note that, in geometric creep, the variation in the value of the gene is propor-
tional to the previous value. Thus, if g is small, the change in g will be small
as well. In addition, it should be noted that geometric creep cannot change
the sign of g. Thus, when using geometric creep, the encoding scheme should
be the standard one for real-numbered encoding, in which genes take non-
negative values (e.g. in [0, 1]).

Furthermore, in both arithmetic and geometric creep, it is possible to obtain
new values g′ outside the allowed range. In that case, g′ is instead set to the
limiting value.

Finally, it should be noted that creep mutations can be defined for binary
representations as well. One procedure for doing so is to decode the genes
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representing a given variable, change the variable by a small amount, e.g. ac-
cording to an equation similar to Eq. (2.7) or Eq. (2.8), and then to encode the
new number back into the chromosome.

2.5.7 Elitism

Even though a fit individual has a large probability of being selected for repro-
duction, there is no guarantee that it will be selected. Furthermore, even if it is
selected, it is probable that it will be destroyed during crossover or mutation.
In order to make sure that the best individual is not lost, it is common to make
one or a few exact copies of this individual and place them directly in the next
generation, a procedure known as elitism. All the other new individuals are
formed via the usual sequence of selection, crossover, and mutation.

2.6 Genetic programming

As mentioned in Sect. 2.3, there exists many different types of EAs. In ER, one
of the simplest methods of generating a robotic brain is to evolve the weights
of an ANN (see Appendix A) of fixed size, using a GA with direct encoding,
illustrated in Fig. 2.6. In such an approach the network cannot change size, and
its success or failure depends entirely on the experimenter’s ability to select an
appropriate structure for the network.

More flexible approaches have also been developed, in which the size of
the structure being optimized (be it an ANN or something else) is allowed
to vary. Genetic programming (GP) is one such approach, and because of its
frequent use in ER, a brief introduction will be given here. For a more thor-
ough introduction, see e.g. [5] and [61]. In standard GP, trees consisting of
elementary operators and terminals are generated. The elementary operators
require a number of input arguments, whereas the terminals take no inputs.
For example, the operator + requires two arguments, whereas the operator
sin() requires one. The standard GP begins with the selection (by the user) of a
suitable set of elementary operators (also called a function set) and terminals.
In a problem involving function approximation, a possible set of operators
is {+,−,×, /, exp(), sin(), cos(), ln()}, and the terminals could be chosen as the
set of real numbers and the variable x. If the problem instead is to evolve a
search strategy for an autonomous robot, the operators could consist of the
set {IfObjectInView( , ), Turn(), ChangeSpeed()}, where the operator IfObject-
InView takes two arguments, one saying what to do if an object is visible,
and one saying what to do if no object is visible. The terminals would be the
real numbers encoding the magnitudes of the changes in direction and speed.
More complex functions sets, used in connection with ER, can be found e.g. in
[63], [64], and [106].
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Figure 2.6: Direct encoding of a simple ANN with three neurons and two input
elements. The weights and biases (the latter shown as vertical arrows) are
obtained directly from the chromosome, which is used simply as a lookup
table. In this case, an ordinary GA would be an appropriate technique for
optimizing the ANN.

When a GP is initialized, a population of random trees is generated. Two
examples are shown in Fig. 2.7. The tree in the left panel of the figure can be
decoded to yield f(z) = 3(z + 5z2) which, using LISP–like notation, also can
be written as (∗, 3, (+, z, (∗, 5, (∗, z, z)))). The tree in the right panel gives the
following control system for an object–seeking robot:
IfObjectInView(ChangeSpeed(1),Turn(30)), which simply means that the robot
will increase its speed by one unit if it sees an object, and change its direc-
tion of motion by 30 degrees (clockwise, say) if it does not see an object. The
IfObjectInView operator is the root of the tree.

Normally, some limits are set on the size of the trees in the first generation,
by limiting the number of elementary operators or the depth of the tree (i.e.
the number of branchings from the root to the terminal furthest from the root).
When GP trees are generated, it is vital to ensure that they are syntactically
correct so that each elementary operator has the correct number of inputs.

When the initial trees have been generated they are evaluated one by one,
and a fitness score is assigned based on performance. When all trees have
been evaluated, new trees are formed through selection, crossover, and muta-
tion. The crossover operator differs from that used in GAs. In GP, the two trees
that are to be crossed over are split at random locations, and the subtrees be-
low these locations are swapped between the two trees. The procedure, which
clearly leads to trees of varying size, is illustrated in Fig. 2.8.

The mutation operator can change both terminals and elementary oper-
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*

 3               +

          z               *

           5               *

  z               z

IfObjectInView

ChangeSpeed        Turn

 1                     30

Figure 2.7: Two GP trees. The tree to the left can be decoded to the function
f(z) = 3(z+ 5z2). The tree to the right tells a robot to increase its speed by one
unit if it sees an object, and to turn by 30 degrees if it does not see any object.

Figure 2.8: The crossover procedure in GP.

ators, but must be implemented in such a way as to maintain the syntactic
correctness of the trees.

2.7 Advanced topics

In this section, a few advanced topics will be covered, with particular emphasis
on topics relevant to practitioners of ER. In should be noted that there is a very
large number of variations on the theme of EAs. Thus, the description below
is intended as an illustration of a few advanced topics related to EAs, and
is by no means exhaustive. The interested reader can find more information
concerning advanced EA topics in e.g. [3].

2.7.1 Gray coding of binary-valued chromosomes

In the standard GA, a binary representation scheme is used in the chromo-
somes. While simple to implement, such a scheme may have some disadvan-
tages, one of them being that a small change in the decoded value obtained
from a chromosome may require flipping many bits which, in turn, is an un-
likely event. Thus, the algorithm may get stuck simply as a result of the en-
coding scheme. Consider, as an example, a ten-bit binary encoding scheme,
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and assume that the best possible chromosome is 1000000000. Now, consider
a case in which the population has converged to 0111111111. In order to reach
the best chromosome from this starting position, the algorithm would need to
mutate all ten genes in the chromosome, even though the numerical difference
between the decoded values obtained from the two chromosomes may be very
small.

An alternative representation scheme, which avoids this problem is the
Gray code, which was patented in 1953 by Frank Gray at Bell Laboratories,
but which had been used already in telegraphs in the 1870s. A Gray code is
simply a binary representation of all the integers k, in the range [0, 2n], such
that, in going from k to k + 1, only one bit changes in the representation. Thus,
a Gray code representation of the numbers 0, 1, 2, 3 is given by 00, 01, 11, 10.

Of course, other 2-bit Gray code representations exist as well, for example
10, 11, 01, 00 or 00, 10, 11, 01. However, these representations differ from the
original code only in that the binary numbers have been permuted or inverted.
An interesting question is whether the Gray code is unique, if permutations
and inversions are disregarded. The answer turns out to be negative for n > 3.
Gray codes can be generated in various ways.

2.7.2 Variable-size structures

In the standard GA, all chromosomes are of the same, fixed size, which is a
suitable state of affairs for many problems. For example, in the optimization
of a function, with a known number of variables, it is easy to specify a chromo-
some length. It is not entirely trivial, though: The number of genes per variable
must be set sufficiently high to give a representation with adequate accuracy
for the variables. However, if the desired accuracy is difficult to determine,
a safe approach is simply to set the number of genes per variable to a high
value (50, say), and then run the GA with chromosomes of length 50 times the
number of variables. Thus, there is no need to introduce chromosomes with
varying length.

However, in many other situations, it is desirable, or even essential, to op-
timize structures of varying size. Indeed, during biological evolution, many
different genome sizes have resulted (in different species, both current and ex-
tinct ones). Variations in genome length may result from accidents during the
formation of new chromosomes, such as duplication of a gene or parts thereof
(see Subsect. 2.7.5 below). Clearly, in nature, there can be no given, optimal
and non-changing genome size. The same applies to artificial evolution of
complex structures, such as artificial brains for autonomous robots, whether
the evolving structure is a behavioral selection system (see Sect. 3.3), a neural
network (see Appendix A) or a finite-state machine (see Appendix B) repre-
senting a single behavior, or some other structure. Evolutionary size variation
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can be implemented either by allowing chromosomes to take variable length
or by letting the EA act directly on the structure (e.g. a neural network) being
optimized.

In general, varying size should be introduced in cases where there is insuf-
ficient a priori knowledge of the optimal size of the structures being optimized.

In this section, two examples of encoding schemes will be given, starting
with a description of encoding schemes for ANNs. In view of their frequent
use in ER, ANNs occupy a central position in research concerning autonomous
robots, and therefore the description of ANNs will be quite detailed. However,
the reader should keep in mind that there are also many cases in which archi-
tectures other than ANNs are used in ER. For example, while ANNs are very
useful for representing many individual behaviors in robots, other architec-
tures are sometimes used when evolving behavioral selection (see Sect. 3.3).

Encoding schemes for neural networks

In the case of FFNNs (see Appendix A for the definition of network types)
of given size, the encoding procedure is straightforward: If real-number en-
coding is used, each gene can represent a network weight, and the decoding
procedure can easily be written so that it associates the weights with the cor-
rect neuron. An example is shown in Fig. 2.6. Here, a simple FFNN with
three neurons, two in the hidden layer and one in the output layer is encoded
in a chromosome containing 9 genes, shown as elongated boxes. If instead bi-
nary encoding were to be used, each box would represent several genes which,
when decoded, would yield the weight value.

In more complex applications, however, the encoding of information in a
linear chromosome is often an unnecessary complication, and the EA can in-
stead be made to operate directly on the structures that are to be optimized.
For such implementations, object-oriented programming is very useful. Here,
a type (i.e. a data structure) representing a neural network can be defined as a
list of neurons, each of which is equipped with a list of incoming connections
from input elements, as well as a list of incoming connections from neurons.
Both the latter two lists and the list of neurons can then be allowed to vary in
size. The generation of ANNs using EAs has been considered extensively in
the literature, see e.g. [136] for a review.

When generating brains for autonomous robots using EAs, there is rarely
any reason to limit oneself to FFNNs. Instead, the EA is commonly used for
optimizing completely general RNNs. Note, however, that the possibility of
generating an FFNN is not excluded, since such networks are special cases of
RNNs, and may appear as a result of the optimization procedure. When using
an EA to optimize RNNs of varying size, some problems must be tackled. In
particular, several mutation operators must be defined, which can modify not
only the weights, but also the architecture (i.e. the structure) of the networks.
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Figure 2.9: Mutation operators (M1-M7). Modifications and additions are shown as

bold lines and removed items are shown as dotted lines. The mutations are (M1-M2):

weight mutations, either by a random value or a value centered on the previous value;

(M3-M4): connectivity mutations, addition of an incoming weight with random origin

(M3), or removal of an incoming weight (M4); (M5-M7): neuron mutations, removal

of a neuron and all of its associated connections (M5), insertion of an unconnected

neuron (zero-weight addition) (M6), and addition of a neuron with a single incoming

and a single outgoing connection (single connection addition) (M7). Reproduced with

kind permission of Mr. J. Pettersson.

A set of seven mutation operators (M1-M7) for RNNs is shown in Fig. 2.9. M1
and M2 modify the strengths of already present connections between units
(see Appendix A) in the network, whereas M3-M7 modify the architecture of
the network: M3 adds a connection between two randomly chosen units, and
M4 removes an already present connection. M5 removes an entire neuron, and
all its incoming and outgoing weights. M6 and M7 add neurons. In the case
of M6, the neuron is added without any incoming or outgoing weights. Thus,
two mutations of type M3 are needed in order for the neuron to have an effect
on the computation performed by the network. M7, by contrast, adds a neuron
with a direct connection from an input element to an output neuron (shown
as filled circles in the figure). Note that many other neuron addition operators
can be defined.

In addition, crossover operators can be defined that can combine chro-
mosomes of varying size, unless the equivalent of species is introduced (see
below), in which case only chromosomes of equal size are allowed in the
crossover procedure. In general, due to the distributed nature of computa-
tion in neural networks, it is difficult to define a good crossover operator,
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even in cases where the networks are of equal size. This is so, since half an
ANN (say) does not perform half of the computation of the complete ANN.
More likely, any part of an ANN will not perform any useful computation
at all. Thus, cutting two networks in pieces and joining the first piece of the
first network with the second piece of the second network (and vice versa) of-
ten amounts to a huge macro-mutation, decreasing the fitness of the network,
and thus generally eliminating it from the population. However, putting this
difficulty aside for the moment, how should crossover be defined for neural
networks? One possibility is to encapsulate neurons, with their incoming con-
nections into units, and only swap these units (using, e.g. uniform crossover)
during crossover, rather than using a single crossover point.

Clearly, with this procedure, crossover can be performed with any two net-
works. However, there is a more subtle problem concerning the identity of the
weights. If the list of incoming weights to the neurons represents neuron in-
dices, crossover may completely disrupt the network. For example, consider
a case where neuron 3, say, takes input from neurons 1, 4, and 5. If, during
crossover, a single additional neuron is inserted between neurons 3 and 4, say,
the inserted neuron will be the new neuron 4, and the old neuron 4 will become
neuron 5 etc., thus completely changing the identities (and, therefore, the nu-
merical values) of the weights, and also limiting the usefulness of crossover.

The problem of modified neuron identities can, of course, be mitigated by
simply rewiring the network (after e.g. neuron insertion) to make sure that
the identities of the neurons and their weights remain unchanged. However,
there are also biologically inspired methods for mitigating this problem: Con-
sider another type of network, namely a genetic regulatory network. Here,
some genes (transcription factors) can regulate the expression of other genes,
by producing (via mRNA) protein products that bind to a binding site close to
the regulated genes. The procedure of binding is an ingenious one: Instead of,
say, stating that e.g. ”the product of gene 45 binds to gene 32” (which would
create problems like those discussed above, in the case of gene insertion or
deletion), the binding procedure may say something like ”the product of gene
g binds to any gene with a binding site containing the nucleotide sequence
AATCGATAG”. In that case, if another gene, x say, is preceded (on the chro-
mosome) by a binding site with the sequence AATCGATAG, the product of
gene g will bind to gene x regardless of their relative position on the chromo-
some. Likewise, the connection can be broken if the sequence on the binding
site preceding gene x is mutated to, say, ATTCGATCG. Encoding schemes us-
ing neuron labels instead of neuron indices can be implemented for the evolu-
tion of ANNs, but they will not be considered further here.

As mentioned above, crossover between networks often leads to lower fit-
ness. However, there are crossover operators that modify networks more gen-
tly. One such operator is averaging crossover, which can be applied to net-
works of equal size. Consider a network of a given size, using an encoding
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scheme as that illustrated in Fig. 2.6. In averaging crossover, the value of gene
x in the two offspring, denoted x′1 and x′2 is given by

x′1 = αx1 + (1 − α)x2, (2.9)

and
x′2 = (1 − α)x1 + αx2, (2.10)

where x1 and x2 denote the values of x in the parents. α is a number in the
range [0, 1]. In case α is equal to 0 or 1, no crossover occurs, but for all other
values of α there will be a mixing of genetic material from both individuals in
the offspring. If α is close to 0 (or 1), the mixing is very gentle.

Grammatical encoding

The introduction of variable-size structures, as discussed above, adds consid-
erable flexibility to an EA, and is crucial in the solution of certain problems.

Another motivation for the introduction of variable-size structures is the
fact that such structures have more similarity with chromosomes found in
natural evolution. However, as was discussed in Sect. 2.2, even the variable-
size structures used in EAs differ considerably from biological chromosomes.
A particularly important difference is the fact that biological chromosomes
do not, in general, encode the parameters of a biological organism directly,
whereas the structures (e.g. linear chromosomes) used in EAs most often do
use such direct encoding.

An example should be given to illustrate the state of affairs in biological
systems. Consider the human brain. This very complex computer contains
on the order of 1011 computational elements (neurons), and around 1014 − 1015

connections (weights) between neurons, i.e. around 1,000 - 10,000 connections
per neuron. Now, if every connection were to be encoded in the chromosome
the information content of the chromosome would have to be around 105 Gb,
even if the strength (and sign) of each connection weight could be encoded
using a single byte. However, the actual size of the human genome is around
3 Gb. Furthermore, the genome does many other things than just specifying
the structure of the brain. Thus, it is evident that rather than encoding the
brain down to the smallest detail, the genome encodes the procedure by which
the brain is formed.

In EAs, encoding schemes that encode a procedure for generating e.g. a
neural network, rather than the network itself, are known as grammatical en-
coding schemes [39], [59]. In such methods, the chromosome can be seen as a
sentence expressed using a grammar. When the sentence is read, i.e. when the
chromosome is decoded, the individual is generated, using the grammar. An
early example of grammatical encoding is the method developed by Kitano
[59] for encoding FFNNs. In that method, each chromosome is encoded in a
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S A B C D A a f b a C e h a e B c a d a E g p j a D m l a e H c p c a . . .

Figure 2.10: Grammatical encoding, as implemented by Kitano [59].

string of the form shown in Fig. 2.10. The method was applied to the specific
case of FFNNs containing, at most, 8 neurons. The S in the chromosome is a
start symbol, which, when read, generates a matrix of 4 symbols: (ABCD, in
the case shown in the figure)

S →
(

A B
C D

)

. (2.11)

The rule generating the matrix is, of course, quite arbitrary. For example, the
elements could have been placed in a different order in the matrix. S and
the symbols A, B, C, and D are non-terminals, i.e. symbols that will them-
selves be read and will then generate some other structure, which may contain
both non-terminals or terminals, i.e. symbols which are not processed further.
Each capital-letter symbol (A-Z) encodes a specific matrix of lower-case letters,
taken from an alphabet (a-p) of 16 symbols that encode all 16 possible 2×2 ma-
trices. Thus, rules for decoding, say, the matrices A and B are taken from the
chromosome. For the chromosome shown in Fig. 2.10 above, the results would
be

A→
(

a f
b a

)

, (2.12)

and

B →
(

c a
d a

)

, (2.13)

Note that the total number of matrices of the kind shown in the right-hand
sides of Eqs. (2.12) and (2.13) equal 164 = 216 = 65, 536. The results of decoding
the matrices in Eqs. (2.12) and (2.13) are given by

a→
(

0 0
0 0

)

, b→
(

0 0
0 1

)

, . . . p→
(

1 1
1 1

)

. (2.14)

Thus, the first step generates a 2 × 2 matrix of capital letters, the second step
a 4 × 4 matrix of lowercase letters, and the final step an 8 × 8 matrix of 0s and
1. This method is then used for generating a simple FFNN. The diagonal el-
ements are used for determining the presence (1) or absence (0) of a neuron,
and the off-diagonal elements (wij) in the 8×8 matrix are used for determining
the connection weights from neuron i to neuron j. Since Kitano’s aim was to
generate FFNNs, recurrent connections were simply ignored, as were connec-
tions to non-existent neurons (i.e. those neurons encoded by rows with a 0 as
diagonal element).
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In the encoding scheme showed in Fig. 2.10, it is possible that the same
capital-letter symbol may appear in several rules. In this case, only the first
(e.g. leftmost on the chromosome) rule is used in the decoding scheme imple-
mented by Kitano.

Grammatical encoding schemes have been used in ER as well and some
examples will be given in Subsect. 3.4.3 below.

2.7.3 Selection

The selection of individuals in an EA can be performed in many different ways.
So far, in this tutorial, tournament selection and roulette-wheel selection have
been considered. Here, two additional selection methods will be introduced
briefly, namely Boltzmann selection and competitive selection.

Boltzmann selection

The Boltzmann selection scheme introduces concepts from physics into the
mechanisms of EAs. In this selection scheme, the notion of a temperature T is
introduced in the EA, and the basic idea behind the selection scheme is to use
T as a tunable parameter that determines the extent to which good individuals
are preferred over bad individuals during selection. The mechanism derives
its name from the fact that the equations (see below) for Boltzmann selection
are similar to the Boltzmann distribution which, among other things, can be
used for determining the distribution of particle speeds in a gas. In addition,
due to the presence of the temperature parameter T , Boltzmann selection is
related to heating and cooling (annealing) processes in physics. Boltzmann
selection can be implemented in various different ways [3]. In one version,
the selection of an individual from a randomly selected pair of individuals is
based on the function b given by

b(fj1, fj2) =
1

1 + e
1
T

( 1
fj1

− 1
fj2

)
, (2.15)

where fj1 and fj2 are the fitness values of the two individuals in the pair. Dur-
ing selection, a random number r is generated and the selected individual j is
determined according to

j =

{

j1 if b(fj1 , fj2) > r
j2 otherwise

(2.16)

If T is low, and fj1 > fj2 , individual j1 will be selected with a probability ap-
proaching 1 as T tends to zero. On the other hand, if T is large, the selection
procedure tends to select j1 and j2 with almost equal probability, regardless
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of the difference in fitness. Normally, in runs with EAs using Boltzmann se-
lection, T is initially set to a high value, allowing the EA to sample the search
space as much as possible. T is then gradually reduced, making the EA home
in on the better solutions found in the early stages of the run.

An alternative Boltzmann selection scheme selects individual j with prob-
ability pj given by

pj(fj) =
e

fj

T

∑N

k=1 e
fk
T

, (2.17)

where fk denotes the fitness of individual k and N is the number of individu-
als in the population. As in the other Boltzmann selection scheme presented
above, individuals are selected with approximately equal probability if T is
large, whereas for small T , individuals with high fitness are more likely to be
selected.

Competitive selection and co-evolution

In all the selection schemes presented so far, the basis for the selection has
been a user-defined fitness function, which has always been specified before
the start of an EA run. However, this way of specifying a fitness function is
very different from the notion of fitness in biological systems, where there is no
such thing as an absolute fitness measure. Instead, whether an individual is fit
or not depends not only on itself, but also on other individuals, both those of
the same species and those of other species. These ideas have been exploited
in EAs as well. In competitive selection schemes, the fitness of an individ-
ual is measured relative to that of other individuals. Such selection schemes
are often used in connection with co-evolution, i.e. the simultaneous evolu-
tion of two (or more) species. In nature, co-evolution is a frequently occurring
phenomenon. For example, predators may grow sharper fangs as a result of
thicker skin in their prey (and the prey, in turn, will then grow even thicker
skin etc.).

In EAs, co-evolution is often implemented by considering two populations,
where the fitness of the members of the first population is obtained from inter-
actions with the members of the second population, and vice versa. A specific
example are the sorting networks evolved by Hillis [43]. In this application,
the goal was to find sorting networks of order n, i.e. networks that can sort
any permutation of the number 1, 2, . . . , n. In his experiments, Hillis used one
population of sorting networks, which was evolved against a population of
sequences to be sorted. The fitness of the sorting networks was measured by
their ability to sort test sequences, and the fitness of the test sequences was
measured by their ability to fool the sorting networks, i.e. to make them sort
incorrectly.
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A problem with co-evolution is the issue of measuring absolute improve-
ments, given that the fitness measure is a relative one. This problem can be
attacked in various ways. A simple procedure (used e.g. by Wahde and Nor-
dahl [123] in their work on pursuit and evasion in artificial creatures) is to
measure the performance of the best individual (a pursuer, say, in the applica-
tion considered in [123]) against a given, fixed individual. However, such an
individual cannot easily be defined in all applications.

Co-evolution is an interesting (and biologically motivated) idea, but it is
not applicable to all problems. In addition, the problems involved in measur-
ing co-evolutionary progress (as discussed above) have made the use of co-
evolution in EAs quite rare. However, there are some applications involving
ER, and some references to those are given in Sect. 3.4.

2.7.4 Fitness measures

In many problems, e.g. function optimization, it is relatively easy to specify
a fitness measure. However, in other problems, it is much more difficult. An
example can be taken from the ER. Consider the problem of evolving a gait (i.e.
a means of walking) for a simple model of a bipedal robot, namely the five-link
robot shown in Fig. 3.24 in Subsect. 3.4.1 below, using, say, a neural network as
the brain of the robot. An obvious choice of fitness measure for this problem is
simply the distance walked in a given amount of time, i.e. the position of the
center-of-mass (COM) of the robot, at the end of an evaluation. However, with
this fitness measure it is usually found that the robot will throw itself forward,
thus terminating the evalution, but at least reaching further than robots that
simply collapse. Here, the problem stems from the fact that the step from a
random neural network to one that can generate the cyclical pattern needed
for legged locomotion is a very large one. Indeed, evolving a gait (for a pre-
defined body shape) from random initial conditions is a very complex task,
and the EA therefore takes the easier route of just throwing the body of the
robot forward. Of course, if the EA did find an actual gait, however bad, that
could keep the robot upright while walking slowly forward, the corresponding
individual would obtain a higher fitness value. However, such an individual
is unlikely to be present in the early generations of the EA. In this particular
case, the problem can be solved by combining several criteria. For example,
the fitness measure can be taken as a combination of the position of the feet and
the posture (e.g. the vertical position of the COM) at the end of the evaluation.

Furthermore, in ER, it is common that each individual must be evaluated
in a variety of situations, to prevent the EA from finding solutions that only
perform well in certain specialized situations. Thus, in such cases, the robot
should be evaluated in a variety of different situations, and each evaluation
will result in a partial fitness value. Thus, when a robot has been completely
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evaluated, there will be a vector of partial fitness values, from which a scalar
fitness value must be obtained. Procedures for doing so will be given in Sect. 3.2.

Other complicated situations are those in which the fitness measure should
take into account several, possibly conflicting, criteria (multiobjective opti-
mization). Another example is constrained optimization where not all possi-
ble solutions are valid. Constrained optimization will not be considered fur-
ther in this tutorial. The interested reader is referred to [77]. Multi-objective
optimization will, at least implicitly, be considered in some of the examples in
Chapter 3.

2.7.5 Alternative schemes for reproduction and replacement

In nature, there are restrictions on mating, the most obvious one being that
individuals of one species generally do not mate with individuals of another
species. However, mating restrictions exist even within species, as a result of,
for example, geographical separation between individuals. In addition, to pre-
vent inbreeding, biological organisms are designed to avoid mating with close
relatives. The concept of mating restriction has been exploited in EAs as well,
and some brief examples will now be given. For a more detailed discussion,
see e.g. [3].

Species-based EAs

In biology, one introduces the notion of species, to classify animals (and plants).
Members of the same animal species are simply those that can mate2 and have
offspring, or more correctly fertile offspring3. Speciation, i.e. the generation of
new species, occurs frequently in nature, often as a result of physical separa-
tion (allopatry) of groups of individuals belonging to the same species. After
many generations, the descendants of those individuals may have evolved to
become so different (genetically) that members from one group can no longer
breed with members of the other group, should they meet. This is so, since
evolution will fine-tune animals (i.e. their genomes) to prevailing conditions.
In addition, random accidents such as mutations, occur during recombination
of chromosomes and, if beneficial, such accidental changes may spread rapidly
in a population, thus making it genetically different from another population
in which the same random change has not taken place. In addition to mu-
tations, gene duplication may also take place: It is common to find several
copies of the same gene in a genome. In fact, it is believed [20] that at least two
complete genome duplications have occurred in early vertebrates. Evidence for
this quadrupling of the genome can be obtained from studying a complex of

2For species that reproduce asexually, this definition can obviously not be used.
3For example, a female tiger and a male lion (or vice versa) can have offspring (called a

liger), but the offspring is sterile.
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A

Figure 2.11: Premature convergence in an EA. In the original population,
shown in the left panel, one individual (marked A) has significantly higher
fitness than the others. Thus, the genetic material of individual A will spread
rapidly in the population, normally resulting in the situation shown in the
right panel: Convergence to a local optimum.

genes known as hox4. The hox gene complexes are a set of transcription factors
which are active during development of an animal, and which are responsible
for determining the identity of different regions of a body, i.e. whether a part
is to become a limb or something else. In many vertebrates (e.g. mammals),
there are four hox gene complexes, suggesting that two genome duplications
have occurred. Some EAs also use the concept of species. In such EAs, indi-
viduals are only allowed to mate with individuals that share some properties,
either on the genotype level or on the phenotype level. One of the simplest
speciation schemes is to allow crossover only between individuals for which
the Hamming distance of the chromosomes, defined as the number of genes
for which the two chromosomes have different alleles (assuming a binary rep-
resentation), does not exceed a pre-specified maximum value D.

In other EAs, the properties of the objects being optimized may provide a
natural basis for mating restriction. For example, in the optimization of ANNs,
a simple mating restriction procedure is to allow crossover only between indi-
viduals with identical structure.

In general, one of the main ideas behind the introduction of species is to
avoid matings of very different individuals, since such matings often result in
rather bad individuals, especially when the EA has been running for a while
so that the parents have already started approaching (local) optima.

4The hox genes belong to a larger family of genes called homeobox genes. Mutations to
homeobox genes can cause visible phenotypic changes. An example is the fruit fly Drosophila
Melanogaster, in which an extra set of legs may be placed in the position normally occupied
by antennae in the, a result of mutations in homeobox genes
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Figure 2.12: Mating restriction in a grid-based EA. The selected individual,
represented by the dark, central square in the figure, is only allowed to mate
with one of its immediate neighbors, shown as white squares.

2.7.6 Subpopulation-based EAs

In subpopulation-based EAs, the population of N individuals is divided into
Ns groups with ν = N/Ns individuals each. Mating is only allowed to take
place between individuals in the same subpopulation. Such EAs are also called
island models, for obvious reasons. The idea behind subpopulation-based
EAs is to prevent situations in which an EA rapidly converges towards a local
optimum (a situation known as premature convergence), making it difficult
to reach the global optimum, as illustrated in Fig. 2.11. In a subpopulation-
based EA, it is less likely that, in the initial generation, all the best individuals
in the subpopulations are located close to the same local optimum. Thus, in
later generations, when a certain amount of convergence inevitably occurs, it
is more likely to find an individual reaching the global maximum rather than
a local one.

However, if no interaction is allowed between individuals of different sub-
populations, a subpopulation-based EA simply amount to running Ns EAs
with ν individuals each. Thus, tunneling is allowed with some small probabil-
ity pt. Tunneling can be achieved simply by swapping two indiviuals between
subpopulations.

2.7.7 Grid-based EAs

In grid-based EAs, individuals are placed in a regular pattern as shown in
Fig. 2.12, and mating restrictions are introduced based on the placement of
individuals on the grid. When an individual i on the grid is to be replaced by
a new individual, parents are selected only in the neighborhood of the indi-
vidual i. In the figure, the neighborhood contains eight individuals, but other
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neighborhood sizes are, of course, possible as well.
The topology of the grid can be chosen in many different ways. A common

procedure is to use periodic boundary conditions, in which the two edges of
a rectangular grid are joined to form a toroidal space. Grid-based EAs are also
called diffusion models.



Chapter 3

Evolutionary robotics

3.1 Introduction

In this chapter the main topic of this tutorial, namely the generation of robotic
bodies and brains by means of EAs will be considered. This is a vast and
rapidly growing area of research, and therefore, by necessity, only a few as-
pects will be covered in detail in this tutorial. However, it is the author’s hope
that the topics covered with be representative of the field as a whole, and that
the reference list at the end of the tutorial will provide useful directions for
further reading.

ER has been applied in a large variety of different situations. Most appli-
cations, however, can be considered part of the subfield of robotics known as
behavior-based robotics, and it is therefore appropriate to give a very brief
introduction to this topic. The reader is referred to [2], and references therein,
for a more thorough introduction.

3.1.1 Behavior-based robotics

The concept of behavior-based robotics (BBR) was introduced in the mid 1980s,
and was championed by Rodney Brooks [12] and others. BBR approaches in-
telligence in a way that is very different from the classical AI approach, and a
schematic illustration of the difference in given in Fig. 3.1. In classical artificial
intelligence (AI), the flow of information is as shown in the left panel of the
figure. First, the sensors of the robot sense the environment. Next, a (usually
very complex) world model is built, and the robot reasons about the effects
of various actions within the framework of this world model, before finally
deciding upon an action, which is executed in the real world.

Now, this procedure, shown in the left panel of Fig. 3.1, is very different
from the distributed form of computation found in the brains of biological or-
ganisms, and, above all, it is generally very slow, strongly reducing its survival

35
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Sense
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Figure 3.1: A comparison of the information flow in classical AI (left panel)
and in BBR (right panel). For BBR, any number of behaviors may be involved,
and the figure only shows an example involving four behaviors.

value. Clearly, this is not the way most biological organisms function. As a
good counterexample, consider the evasive maneuvers displayed by noctuid
moths, as they attempt to escape from a pursuing predator (e.g. a bat) [26]. A
possible way of achieving evasive behavior would be to build a model of the
world, considering many different bat trajectories, and calculating the appro-
priate response. However, even if the brain of the moth were capable of such
a feat (it is not), it would most likely find itself eaten before deciding what to
do. Instead, as will be discussed below, moths use a much simpler procedure.

As is evident from the left panel of Fig. 3.1, classical AI is strongly focused
on high-level reasoning, i.e. an advanced cognitive procedure displayed in
humans and, perhaps, some other mammals. Attempting to emulate such
complex biological systems has proven simply to be too complex as a starting-
point for research in robotics: Classical AI has had great success in many of the
subfields it has spawned (e.g. pattern recognition, path planning etc.), but has
made little progress toward the goal of generating truly intelligent machines,
capable of autonomous operation. For a good introduction to AI, see e.g. [108].

BBR, illustrated in the right panel of Fig. 3.1 is an alternative to classical
AI, in which intelligent behavior is built in a bottom-up fashion, starting from
simple behaviors , many of which may be active simultaneously in a given
robotic brain. Examples of simple behaviors are avoid obstacles, pursue moving
target, follow wall, find power supply etc. An important task in behavior–based
robotics is therefore to generate basic behaviors, and the construction of such
behaviors will be one of the main topics in the remainder of this tutorial. First,
however, an attempt should be made to define the concepts of behaviors and
actions, since they are used somewhat differently by different authors. Here,
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a behavior will be defined simply as a sequence of actions performed in order
to achieve some goal. Thus, for example, an obstacle avoidance behavior may
consist of the actions of stopping, turning, and starting to move again. Note,
however, that the definition is not very strict, and that the terms behavior and
action remain somewhat blurred.

Returning to the example of the moth, its evasive behavior is very simple
indeed, and is in fact based on only a few neurons and an ingenious position-
ing of the ears on its body. This simple system enables the moth to fly away
from an approaching bat and, if it is unable to shake off the pursuer, start to
fly erratically to confuse the predator [26].

The example with the moth shows that intelligent behavior does not re-
quire reasoning1, and in BBR one generally uses a more generous definition of
intelligent behavior than that implicity used in AI. Thus, in BBR, one may de-
fine intelligent behavior as the ability to survive, and to strive to reach other goals,
in an unstructured environment. This definition is more in tune with the fact that
most biological organisms are capable of highly intelligent behavior in the en-
vironment for which they have been designed, even though they may fail quite
badly in novel environments (as illustrated by the failure of e.g. a fly caught in
front of a window). As mentioned in Chapter 1, an unstructured environment
is an environment that changes rapidly and unexpectedly, so that it is impossi-
ble to rely on pre–defined maps, something that holds true for most real-world
environment. For example, if it is the task of a robot to transport equipment in
a hospital, it must first be able to avoid (moving) obstacles. Putting a complete
plan of the hospital into the robot will not be sufficient, since the environment
changes on a continuous basis. The robot may pass an empty room, only to
find the room full of people or equipment when it returns.

Different behavior-based robots generally share certain features, even though
not all features are present in all such robots. To start with, behavior-based
robots are first provided with the most basic behaviors such as obstacle avoid-
ance or battery charging, needed to function in an unstructured environment.
More complex behaviors are added at a later stage. Secondly, several behav-
iors are generally in operation simultaneously, and the final action taken by
the robot represents either a choice between the suggestions given by the var-
ious behaviors, or an average action formed from the actions suggested by
several behaviors. Thirdly, BBR is mostly concerned with autonomous robots,
i.e. robots that are able to move freely and without direct human supervision.
Finally, the concept of situatedness is a central tenet of BBR: Behavior-based
robots do not build complex, abstract world models. Instead, they read the
information available through their sensors, and take actions based on that in-
formation. Thus, behavior-based robots are generally situated (i.e. operate in
the real world), and many behaviors in BBR are reactive [88], i.e. have a di-

1The concept of rational behavior will be considered in Subsect. 3.3.3.
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rect coupling between sensors and actuators. However, internal states are of
course allowed and are often very useful, but, to the extent that such states are
used, they are not in the form of abstract world models.

Note that, in ER, it is often necessary to use simulations rather than ac-
tual robots. While the use of simulations represents a step away from the re-
quirement of situatedness, the simulations used in BBR differ strongly from
the construction of abstract world models: Just as in a real, behavior-based
robot, a simulated robot in BBR will rely only on the information it can gather
through its simulated sensors, and the reading of a sensor, in itself, never pro-
vides explicit information about e.g. the distance to a detected object.

Clearly, no simulation can capture all the facets of reality. Thus, it is impor-
tant to test, in real robots, any results obtained through simulations. The issue
of evolution in simulations versus evolution in hardware will be considered
briefly in Subsect. 3.4.2.

In general, the construction of a complete brain for a behavior-based robot
can be considered a two-stage process: First the individual behaviors must be
defined (or evolved, in the case or ER). Next, a system for selecting which ac-
tion to take, based on the suggestions available from the individual behaviors,
must be constructed as well. Clearly, in any robot intended for complex appli-
cations, the behavioral selection system is just as important as the individual
behaviors themselves. For example, returning to the example of the hospital
robot, it is clear that if it starts to run out of power, it must reprioritize its goals
and quickly try to find a power supply, even if, by doing so, it comes no closer
to achieving its task of delivering objects. Methods for Behavioral organiza-
tion, (also called action selection, behavioral coordination, and behavioral
selection) have been the subject of much research in BBR. While a complete
survey of such methods is beyond the scope of this text, a few methods for be-
havioral selection based on evolutionary algorithms will be considered below
in Sect. 3.3. For a review of methods for behavioral organization, see e.g. [100].
Other relevant references on this topic are e.g. [8], [71], and [122].

3.1.2 Evolving robots

The aim of ER is to use EAs to evolve robotic brains2 (or bodies, or both),
rather than designing them by other means, e.g. by hand. There are many
reasons for using artificial evolution to generate robotic brains [40], [41], one
of the most important being that it is very difficult to design such systems by
hand in any but the simplest cases. In a non-controlled setting, i.e. any real-
istic environment, there will always be many sources of noise, as well as both

2As mentioned in Chapter 1, in this tutorial, the term robotic brain will be used instead of
the term control system, since the latter term is indicative of the more limited types of systems
considered in classical control theory.
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stationary and moving obstacles and, perhaps, other robots as well. Trying to
predict which situations may occur in such an environment is a daunting task,
and hand-coded robotic brains are therefore generally non-robust and prone
to failure. On the other hand, properly evolved robotic brains, i.e. those gener-
ated using either physical robots or simulations involving realistic noise at all
levels, are often able to cope quite well with their environment, even though, in
fairness, it should be mentioned that the robotic brains evolved so far are quite
simple compared to the ultimate goal of truly intelligent machines. However,
the complexity of evolved robotic brains is steadily increasing, and EAs are
now used not only for constructing simple behaviors, but also for generating
complex systems for behavioral organization [99], [122].

Furthermore, evolution (whether natural or artificial) is often able to find
solutions that are remarkably simple, yet difficult to achieve by other means.

Another advantage with EAs in connection with robots, is that their abil-
ity to function even with very limited feedback. This is important in robotics,
where it is often known what a robot should do, but perhaps not how it should
do it, e.g. in what order different behaviors should be activated, at what point
a task should be suspended in order to engage in self-preserving activities such
as obstacle avoidance etc. In other words, it is difficult to specify directly the
adequacy of any single action: Feedback is often obtained long after an action
is performed, resulting in a credit assignment problem, i.e. the problem of
assigning credit (or blame) to previous actions. EAs are very well suited to
this kind of problems, where only rather vague guidance can be given. An
example is the evolution of the simple cleaning behavior presented in Chap-
ter 1: The simulated evolving robots were not told first to approach objects,
then start pushing them, correcting the heading when needed etc. Instead, the
only feedback available was the final state, and the intermediate steps were
the result of evolution.

Of course, as with all methods, there are also some drawbacks with ER, one
of the most serious being that, in view of the many candidate robotic brains
that must be examined before a satisfactory one is found, it is usually required
to resort to the use of simulations, rather than evolving in actual, physical
robots. Making realistic simulations is indeed difficult, and there exists a re-
ality gap [53] between simulated and physical robots. However, as will be
discussed in Subsect. 3.4.2 below, it is possible to overcome the reality gap,
and the need for using simulations does not, in fact, introduce fundamental
limits on the results obtained from ER.

In the remainder of this chapter, several examples of ER will be given, along
with a discussion of several general issues that appear in most ER applications.
The flow of an ER investigation is shown in Fig. 3.2, and it is quite similar to
the flow of a general EA. The figure is simplified: The procedure of forming
individuals can involve anything from setting a few parameters to running
a complex developmental process (see Subsect. 3.4.3 below), generating both
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Figure 3.2: The flow of an ER investigation. Note that some steps, e.g. forma-
tion of individuals and new populations, are shown in a strongly simplified
way.

the brain and the body of a robot. The dashed arrows in the figure indicate a
choice: As mentioned above, in many ER investigations, simulations are used
and, as indicated in the figure, the evaluation of an individual requires simu-
lating the physics of the arena in which the evaluation takes place. The other
option is to use actual, physical robots, and, in this case, the most common
approach is to generate individuals in a computer, upload them one by one
on a single robot, evaluate the robot, and return its fitness. There are other
approaches as well (not shown in the figure), such as embodied evolution
[28], [131], where the entire evolutionary process takes place on a population
of physical robots. Incidentally, if evolution is carried out in physical robots
according to the scheme shown in Fig. 3.2, some restrictions are placed on the
fitness measure, since it must be possible for the robot to assess its fitness and
return the result to the computer, at least in cases where the EA is to operate
without continuous human supervision. Thus, the fitness measure must be
based on quantities that are readily available to the robot, such as e.g. sensors
readings, motor speeds etc. [29].

The final step in Fig. 3.2, i.e. the validation of the results in physical robots,
is perhaps the most important step. A robotic brain that only functions in
simulation is of little use. Note that validation should be carried out even if
the evolution has been performed using a single physical robot. This is so,
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Figure 3.3: A schematic illustration of a differentially steered robot, equipped
with three sensors. The wheels, shown as rectangles, are independently con-
trolled. The vertical line indicates the direction of motion (for positive wheel
speeds).

since all physical robots have individual characteristics. For example, there is
no such thing as two completely identical IR sensors, even if they come from
the same manufacturer and have the same product number.

If the validation does not give satisfactory results, there are two different
options, either to extend the EA run, or to attempt to adjust the robotic brain
(or body) by hand. A useful approach in extended runs may be to switch from
simulations to physical robots. Even a short extended run may then lead to
improved results [79].

The architectures used for robotic brains can be chosen in a variety of ways.
It is common to use ANNs (see Appendix A), but other architectures are used
as well, as will be discussed below.

Robots used in ER investigations are of many kinds, including walking
robots (see Subsect. 3.4.1) and wheeled robots. A common type of wheeled
robot for ER is the Khepera robot (see Appendix C), for which there also exists
several simulators (see Subsect. 3.4.4). In general, differentially steered robots,
such as Khepera, are also simple to model and thus to use in simulations. The
basic equations of motion for such robots can be taken as

Mv̇ + αv = A (τL + τR) , (3.1)

and
Iϕ̈+ βϕ̇ = B (−τL + τR) , (3.2)

where M is the mass of the robot, I its moment of inertia (with respect to
the vertial axis), v its speed, and ϕ its direction of motion. τL and τR are the
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torques acting on the left and right wheels, respectively. A and B are constants
depending on geometrical and physical factors (such as the radius and mass
of a wheel). A schematic view of a differentially steered robot, equipped with
3 sensors, is shown in Fig. 3.3.

3.2 Evolving single behaviors

In this section, some examples of the evolution of single behaviors will be
given. However, already at this stage, it can be noted that the definition of
behaviors is somewhat fuzzy. For example, in the first example below, i.e. the
evolution of navigation, it is normally required that the robots be able not only
to move, but also to avoid collisions. Thus, the question of whether to con-
sider motion without collisions as a single behavior or as a combination of two
behaviors arises. However, in this particular example, the two aspects of the
robot’s behavior - motion and obstacle avoidance - are so closely integrated
with each other, and can rather easily be achieved through a clever choice of
fitness function, that they can perhaps be considered as part of a single behav-
ior.

While the examples are hopefully interesting in their own right, the reader
should pay attention to a few particularly important aspects of any application
of ER, namely (1) the representation used for the evolving systems, (2) the level
of complexity of the simulator (if applicable), and (3) the fitness measure used
in the simulations. In general, the choice of representation (i.e. whether to use,
say, direct encoding or grammatical encoding, in the case of neural networks)
and the choice of fitness measure have a very strong impact on the results
of an ER investigation: If the representation is chosen badly, the EA may be
hampered in its search for a good solution, and if the fitness measure is chosen
badly, the results of the evolution may be different from the desired results. In
simulations, the level of complexity of the simulator influences the possibility
of transferring the results of a simulation onto a real robot.

3.2.1 Navigation

Navigation, i.e. the problem of moving in an environment without colliding
with obstacles, is clearly a basic competence of any robot, and it has been stud-
ied extensively in the ER literature [29], [80], [109]. For a review, see [90].

Basic navigation

In [29], Floreano and Mondada evolved basic navigation. The authors specif-
ically pointed out the difficulties in constructing accurate simulations, and
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Figure 3.4: The environment used in the evolution of navigation in [29]. Re-
produced with kind permission of Dr. D. Floreano.

chose instead to evolve navigation behavior in a real Khepera robot (see Ap-
pendix C). The aim was to evolve collision-free navigation in an environment
with stationary obstacles, shown in Fig. 3.4. In the experiments, the authors
used a simple, fixed-length chromosome to encode the weights of neural net-
works of fixed structure. The networks consisted of a single layer of synaptic
weights, connecting the 8 IR sensors of the Khepera robot to two output neu-
rons, connected to the motors. In addition, recurrent connections were intro-
duced within the output layer.

The fitness contribution for each time step during the motion of the robot
was chosen as

Φ = V
(

1 −
√

|∆v|
)

(1 − i), (3.3)

where V denotes the average rotation speed of the wheels, ∆v is the difference
between the (signed) speeds of the wheels, and i is the value of the IR sen-
sor with the highest reading. V , |∆v|, and i were all normalized to the range
[0, 1], so that Φ also was constrained to this range. The complete fitness func-
tion f was obtained by summing the values of Φ obtained for each time step,
and then dividing the results by the number of time steps. The same fitness
measure was used also by Nolfi et al. [92].

The first factor (V ) in Eq. (3.3) promotes high speed, whereas the second

factor, 1 −
√

|∆V |, promotes straight-line motion, and the third factor (1 − i)
rewards obstacle avoidance. Note that the different factors in the fitness mea-
sure counteract each other, to some extent. For example, the environment was
such that the robot was required to turn quite often in order to avoid colli-
sions, even though the second factor in the fitness measure would discourage
it to do so. This is an example of what could be called an explicit fitness mea-
sure, since explicit punishments (in the form of a reduced increase in fitness)
are given if the speed is low, if the robot does not move in a straight line, or if
the robot approaches an obstacle. The alternative is to use an implicit fitness
measure for some of the aspects of the robot’s motion. For example, in [53],
Jakobi et al. used a fitness measure similar to the one given in Eq. (3.3), but
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Figure 3.5: The maze used by Nelson et al. [85] for the evolution of navigation,
reproduced with kind permission of the authors. The figure shows some re-
sults obtained in simulation. Qualitatively similar results were obtained using
a physical robot, EvBot, shown in Fig. 3.6.

without the factor (1 − i), since it was found that this factor is unnecessary in
a sufficiently cluttered environment, where obstacle avoidance is an implicit
requirement for any form of motion.

Floreano and Mondada report that the best evolved robots successfully
navigated through their environment, and that some robots also showed in-
telligent behavior beyond what was explicitly encoded in the fitness function.
For example, some of the best robots learned to modulate the speed, keeping
it at around three quarters of the maximum allowed speed in the vicinity of
obstacles.

While evolving robotic behaviors in hardware has obvious advantages, a
possible disadvantage is that it is often quite time-consuming. Indeed, in the
experiments reported in [29], each generation lasted around 40 minutes. In
order to evolve successful robots, around 50-100 generations were needed.

In addition to basic navigation, Floreano and Mondada also evolved hom-
ing navigation, in which the robot was required periodically to recharge its
(simulated) batteries. However, this was a more complex task, and it will be
considered briefly in the discussion on complex behaviors and behavioral or-
ganization in Sect. 3.3 below.

While some recurrent connections were included in the output layer of the
neural networks used in [29], Nelson et al. [85] made more explicit use of tem-
poral processing of information, motivated by the fact that robots commonly
show suboptimal performance using reactive behaviors based on very poor
sensory inputs.

Thus, Nelson et al. considered neural networks with several layers con-
taining recurrent couplings as well as time-delayed couplings. The neural net-
works were evolved in simulations involving robots equipped with 5 simple
tactile sensors. The task of the simulated robots was to navigate in a maze,
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Figure 3.6: The EvBot robot used in [85]. The robot is equipped with an array of
tactile sensors, and can also be fitted with other sensors, such as video cameras.
Reproduced with kind permission of Nelson et al.

shown in Fig. 3.5. The fitness measure was taken essentially as the distance
travelled, with a penalty for situations in which the robot became stuck.

It was indeed found that robots equipped with memory, in the form of
recurrent couplings and time-delay elements, performed the navigation task
better than purely reactive robots. The best results were obtained for networks
of moderate complexity, containing 1-3 hidden layers with 5-10 neurons per
layer. The best networks obtained during evolution were transferred, with
retained functionality, to an actual robot (EvBot, shown in Fig. 3.6), equipped
with five tactile sensors.

Wandering behavior

Miglino et al. [80] evolved an exploratory behavior (also called wandering) in
simulations. The resulting behaviors were then tested in actual (Lego) robots.
In this case, the brains of the robots were represented by very simple neural
networks, with two inputs from a front sensor and a rear sensor, two hidden
units, and two outputs controlling the two motors. In addition, a single mem-
ory neuron was used, connecting the hidden layer to itself through a recurrent
coupling. All signals were binary (a Heaviside step function was used as the
threshold function in the neurons), and the simple neural networks used in
this study could, in fact, be represented as finite-state machines (see Appendix
B).

In order to achieve wandering behavior, the authors used a fitness measure
which rewarded movements that would take the robot to locations where it
had not been before. The robot was placed in an arena of size 2.6× 2.6 meters,
consisting of squares with 10 cm side length. The central 20 × 20 square had



Evolutionary robotics 46

white color, and the remaining squares were black, so that the robot could
determine whether or not it was close to a boundary.

The fitness of the evolving robotic brains was incremented by one every
time the robot visited a square it had not previously visited, and the final fit-
ness measure was taken as the fraction of squares visited.

An important issue in ER is the fact that an EA will try to exploit the par-
ticularities of the encountered situations as much as possible. Thus, in the
evolution of wandering behavior, if a single starting position was used in all
evaluations, the EA would quickly find a way to optimize the motion of the
robot based on the given starting position. In order to avoid such problems,
Miglino et al. evaluated each robotic brain 10 times, starting from a random
location in the grid.

The authors report that the best evolved robotic brains managed to make
the corresponding robot visit an average of slightly more than half of the avail-
able squares. The evolutionary process exhibited three clear stages, during
which the maximum fitness was essentially constant. The stages corresponded
to different levels of complexity. For example, in the first stage, the evolved
neural networks made no use of the memory unit, whereas in the second stage
they did.

The neural networks obtained in the simulations where then implemented
in actual Lego robots. While the behaviors of the actual robots were similar to
those of the simulated ones, there were some clear differences, some of which
were attributed to noise (absent in the simulations). Thus, some simulations
were made with noise added, and it was found that a closer correspondence
between the behavior of real robots and simulated robots could be found if the
latter were evolved at intermediate levels of noise.

Potential-field based navigation

In [109], an EA was used in connection with potential field navigation [57] to
evolve (in simulation) robots capable of navigating toward a goal in an envi-
ronment containing stationary obstacles.

In the potential field navigation method, the robot moves in the direction
suggested by the (negative) gradient of an artificial potential field, generated
by the objects (such as obstacles) in the vicinity of the robot and by the nav-
igation goal. As shown in Fig. 3.7, the potential field can be interpreted as a
landscape with hills and valleys, and the motion of the robot can be compared
to that of a ball rolling through this landscape. The navigation goal is usually
assigned a potential field corresponding to a gentle down-hill slope, e.g.

Φg = kg (x − xg)
2 , (3.4)

where kg is a positive constant, x the position of the robot, and xg the position
of the goal. Continuing with the landscape analogy, obstacles should generate
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Figure 3.7: A potential field containing a single obstacle and a navigation goal.

potentials corresponding to steep hills. Thus, the potential of an obstacle can
be defined as

Φo = koe
−

(x−xo)2

w2
o , (3.5)

where ko and wo are constants, determining the height and width of the obsta-
cle, respectively, and xo is the position of the obstacle. The total potential is
given by

Φ = Φg +

no
∑

i=1

Φo
i , (3.6)

where no is the number of obstacles. Once the potential field has been defined,
the desired direction of motion r̂ of the robot can be computed as the negative
of the normalized gradient of the field

r̂ = − ∇Φ

|∇Φ| . (3.7)

Thus, the potential field provides the desired direction of motion of the robot.
In addition, the speed of the robot must be set. In [109], this was achieved
using a pre-specified set speed and a simple proportional control law.

In a complex environment, a robot using simple potential field navigation
will often get stuck, due to the presence of local minima in the potential field:
Since the method is gradient-based, the robot will be unable to escape from
such minima. The problem can be solved by the introduction of waypoints, i.e.
local goals (attractive potentials) along the path of the robot. It is not trivial,
however, to select the location of waypoints and the exact shape of waypoint
potentials, in order to arrive at efficient, yet collision-free, navigation.
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Figure 3.8: A Voronoi diagram. The black dots represent the centers of obsta-
cles, and the rings at the vertices of the resulting Voronoi diagram represent
the locations of waypoints.

In [109], the placement of waypoint was based on Voronoi diagrams. Briefly
summarized, in the generation of a Voronoi diagram the obstacles are consid-
ered as point-like objects, and are taken as central points (Voronoi generators)
for the spatial tessellation. Next, polygons are shaped by drawing lines per-
pendicular to the lines connecting Voronoi generators, and the corners of the
resulting polygons are taken as the waypoint locations. The procedure is illus-
trated in Fig. 3.8.

The potentials of the waypoints can be modelled e.g. as

Φp = kpe
−

(x−xp)2

w2
p , (3.8)

i.e. the same form as the obstacle potentials, but with negative constants kp.
When the waypoints have been placed, and their potentials have been deter-
mined, navigation proceeds as in standard potential field navigation, with the
direction of motion provided by the potential field, the only difference being
that waypoints are successively removed as the robot passes in their vicinity to
prevent it from being attracted back toward waypoints that have already been
passed.

Once the location of obstacles in a given environment is known, the loca-
tion of waypoints is generated deterministically through the procedure just
described. What remains to be determined is the depth (or height, in the case
of obstacles) of the potentials for the goal, obstacles, and waypoints, as well
as the widths of the potentials (i.e. wo for obstacles etc.). In [109], the authors
used an EA to determine suitable values for these parameters. In addition, the
reference speed used in the proportional control law was determined by the
EA. In fact, two reference speeds were used, v1

ref (for general navigation) and
v0
ref (near obstacles). Furthermore, the EA determined the distance do from the

closest obstacle at which a simulated robot would lower its set speed from v1
ref

to v0
ref , as well as the distance dw (between a waypoint and the robot) at which
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the waypoint was removed.
Thus, in all, a total of 10 parameters had to be determined, and, for this

purpose, the authors used a standard genetic algorithm (GA) with tournament
selection, single-point crossover, and mutation.

As in the navigation of wandering behavior discussed above, the authors
evaluated each set of parameters several times, in order to avoid overfitting to
any particular environment.

For each evaluation, the fitness measure was calculated as

fi =
Tmax

T
e−

d
D , (3.9)

where T denotes the time at which the robot reached the navigation goal, at
which point the evaluation would be terminated. In addition, all evaluations
had a maximum duration of Tmax, whether or not the robot reached the goal.
Furthermore, if the robot physically hit an obstacle, the evaluation was ter-
minated immediately and T was set to Tmax. d denotes the distance between
the robot and the goal at termination, and D is the initial distance between
the robot and the goal. With this fitness measure, the robot was rewarded for
moving quickly, and without collisions, toward the goal.

In all, 20 different environments, with different locations of obstacles, were
used in the evaluation of each individual (i.e. parameter set), and a final fitness
measure was formed by weighing the results of the Ne = 20 evaluations. Now,
a common approach for doing so is to consider the average fitness, i.e.

f (1) =
1

Ne

Ne
∑

i=1

fi, (3.10)

The authors report that the runs with fitness measure f (1) achieved only medi-
ocre results. This is understandable, as the fitness measure f (1) only measures
average performance, therefore making it possible for the simulated robot to
fail completely in some environments and still achieve a rather high average.
By contrast, fitness measure f (2)

f (2) = min
i
fi, (3.11)

which was also used, focuses completely on the worst performance of the
robot, and tends to generate results that are more robust. In fact, in all runs
with this fitness measure, the simulated robot with the motion determined by
the best individual of the EA managed to reach its goal position in all environ-
ments.

Next, the results from the simulations were transferred to an actual Khep-
era II robot (see Appendix C). Clearly, the potential field navigation method
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10.0s

Figure 3.9: The navigation of a simulated robot from [109] is shown in the left
panel. The snapshot was taken after 10.0s in a simulation in which the goal
was reached after 29.8s. In the right panel, a photograph of the actual Khepera
II robot, navigating in the same environment, is shown. The robot, seen from
above, is the smaller circle near the center of the photograph.

requires accurate positioning, and it turned out that the drift in the devia-
tion between actual and estimated position (based on dead reckoning) was
too large if the dynamics of the robot was integrated as in the simulations.
Thus, a simplified scheme was implemented, in which the robot navigated in
discrete steps. In each step the robot started from a standstill, determined (via
the potential field) its desired direction of heading, moved a distance δ in this
direction, and stopped again. Provided that δ was chosen sufficiently small,
this navigation procedure represents a slow-motion version of that used in the
simulations. Using this procedure, the Khepera robot rather successfully (but
slowly) navigated through one of the most difficult environments used in the
simulations. Snapshots of a simulated robot and a physical robot navigating
in this environment are shown in Fig. 3.9.

3.2.2 Box-pushing

Simple Box-pushing can be used as a metaphor for behaviors needed, for in-
stance, in transportation robots, and it has been investigated by several au-
thors, e.g. [64], [112], [113], [134]. The results from two such investigations
will now be discussed briefly.

Single-robot box pushing

Lee et al. [64], evolved box-pushing in simulations, and transferred their re-
sults onto a Khepera robot. In order to reduce the differences between simu-
lations and real-world implementations of box-pushing, the authors used the
interesting approach of sampling the actual sensors on the Khepera, storing the
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results in lookup tables that were then used in the simulations. In the simula-
tions, the task of the robot was to push a small box towards a light source.

In fact, the simulations reported in [64] involved the evolution of organi-
zation of two behaviors, namely box-pushing and box-side-circling. The latter
behavior was used in order to place the robot in the correct direction, so that
it could use the box-pushing to move the box toward the light source. Here,
however, only the box-pushing behavior will be discussed, behavioral organi-
zation being deferred to Sect. 3.3.

Lee et al. used GP to evolve tree-like structures achieving box-pushing,
using the readings of the 8 IR sensors on the Khepera as input. The authors
used the measure

e =
T
∑

t=1

α (1 − s(t)) + β (1 − v(t)) + γw(t), (3.12)

where s(t) denotes the average of the normalized activations of the two front
sensors (sensors 2 and 3, see Appendix C) on the (simulated) Khepera robot,
v(t) the normalized forward speed of the wheels, and w(t) the normalized
speed difference between the two wheels. Note that the measure e should be
minimized, and is thus an error measure rather than a fitness measure in the
traditional sense. However, an EA can of course easily be modified to strive to
minimize an objective function. The measure e penalizes low activation of the
front sensors (i.e. loosing the object), low speed, and curved motion.

The EA used by Lee et al. made use of subpopulations (see Subsect. 2.7.6)
in order to maintain the diversity of the population, and thus to avoid costly
computations of almost identical individuals. Successful box-pushing behav-
ior was achieved in 50 generations, using a total population size of 100.

Sprinkhuizen-Kuyper et al. [113] evolved box-pushing in simulations, us-
ing a Khepera simulator involving a slightly more complex environment (see
the left panel of Fig. 3.10) containing walls. In this case a simple, one-layer,
FFNN was used to represent the brain of the simulated robots. However, in
addition to the 8 input signals provided by the IR sensors and a bias signal,
the authors added six simple edge detectors, consisting simply of the differ-
ences between the readings of adjacent sensors, as shown in the right panel
of Fig. 3.10. All 15 input signals were connected directly to the two outputs,
which, in turn, provided the motor signals. Sprinkhuizen-Kuyper et al. noted
that the fitness of an individual can be defined in several different ways, and
the concepts of global, local, internal, and external fitness measures were intro-
duced. A global fitness measure was defined as one only taking into account
the difference between the final state and the starting state of the robot, in
a given evaluation, whereas a local fitness measure assesses a robotic brain
based on its performance at each time step. An internal fitness measure was
defined as one only based on the information available to the robot, through
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Figure 3.10: The left panel shows a schematic view of the environment used
by Sprinkhuizen et al. [113] in the evolution of box-pushing behavior. Note
the light source placed at the end of the corridor. The right panel shows the
structure of the FFNNs used.

its sensors, whereas an external fitness measure is based on information that
is not directly available to the robot, such as e.g. its position. The authors de-
fined four fitness measures, using all possible combinations, i.e. global exter-
nal, global internal, local external, and local internal. For example, the global
external fitness measure was defined as

fGE = d(BT , B0) −
1

2
d(BT , RT ), (3.13)

where d(BT , B0) denotes the difference in position of the box between the final
state (at time T ) and the initial state, and d(BT , RT ) is the difference in position
between the box and the robot at the final state. The second term was intro-
duced as a penalty for robots that did not keep pushing the box until the end
of the simulation. The local external fitness measure instead used a sum of
terms similar to those given in Eq. (3.13). The global internal fitness measure
required the introduction of lights, so that the robot could distinguish good
locations from bad ones. Finally, the local internal fitness measure was taken
as that used by Lee et al. [64].

Robotic brains were evolved using each of the four fitness measures. Next,
each robotic brain was tested for its performance based on the other three fit-
ness measure. It was found that the best performance was obtained with the
global external fitness measure, indicating that the best performance is ob-
tained when the EA is allowed to explore its search space quite freely, without
risking a penalty for occasional bad moves. The local internal fitness measure
did not do very well, however, and its failure was attributed to the fact that
this fitness measure would reward robots pushing against a wall (with sliding
wheels). The final results were succesfully implemented in a Khepera robot.
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Figure 3.11: A schematic view of the arena used in the visual discrimination
experiments carried out by Nolfi and Marocco [93]. The stripes are shown as
black lines, and the semi-circular regions indicate the distance at which evalu-
ations were terminated.

3.2.3 Visual discrimination of objects

In many ways, vision is a much more complex sensory modality than mere
proximity detection, as it generally involves an array or a matrix of data that
somehow must be integrated in order for a robot to make sense of the envi-
ronment it is looking at. However, using vision, it it possible for a robot to
discriminate accurately between different objects.

In [93], the evolution of visual discrimination of objects was studied. In the
initial experiments, Nolfi and Marocco, used an arena with two dark stripes
of different widths on an otherwise white wall (see Fig. 3.11). The goal was
to evolve a neural network brain that would allow the robot to approach the
wide stripe, and to avoid approaching the narrow stripe. The task is made
more difficult by the fact that a given stripe viewed by the robot can be either
the wide stripe seen from a large distance, or the narrow stripe seen from a
smaller distance. Thus, the robot must somehow learn to distinguish between
the two stripes in order to achieve its goals.

The experiments were performed in simulations, in which a simulated Khep-
era robot, equipped with the standard IR sensors as well as a linear vision array
(see Appendix C), was used. The robotic brain was a fully connected single-
layer FFNN, with 14 inputs corresponding to the (normalized) readings of the
6 frontal IR sensors, and the readings from 8 equally spaced pixels of the 64
available pixels in the linear vision array. The network had two output sig-
nals, that were scaled up to the range [−10, 10] and then used for setting the
desired speed of the two motors. A direct encoding scheme, as described in
Sect. 2.6 was used for the neural networks.
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The authors note that the simulations, which took about 1 hour each on a
standard PC, would have taken around 52 days if performed in the real robot.

In the simulations, each robot was evaluated in 30 trials (or epochs), each
lasting a maximum of 30 seconds. Evaluations were terminated either if the
robot ran out of time, or if it managed to reach the vicinity of either stripe. In
cases where the robot reached the wide stripe, its fitness was increase by one
unit. Similarly, the fitness was decreased by one unit if it reached the narrow
stripe.

The best evolved robots generally managed to approach the wide stripe,
by cleverly exploiting the fact that (1) the change in angular size of an object,
as it is approached, varies with the distance to the object and (2) the duration
of a sweep across a stripe is proportional to its perceived width. Thus, the
successful robots turned until a stripe was detected, then moved toward the
stripe, while turning slightly. Once visual contact with the stripe was lost, the
robot turned to fact the other stripe, and approached while turning slightly,
until visual contact was lost. Using this procedure, the robot tended to move
more in the direction of the wide stripe, thus successfully approaching it.

In order to verify the results, the best neural network was implemented in
an actual Khepera robot. The robot was started in nine different locations, us-
ing four different initial directions, leading to a total of 36 evaluations. Overall,
the performance of the Khepera robot was only slightly worse than that of the
simulated robots.

Additional experiments were also performed, using instead an environ-
ment containing a small and a large black cylinders, whose sizes varied be-
tween different evaluations of the same individual. For more details concern-
ing the behavior of the evolved robots in these experiments, see [93].

3.2.4 Corridor-following behavior

Corridor-following could be considered as an instance of the more general be-
havior navigation considered above. However, following corridors is an im-
portant special case, particularly in indoor applications. Thus, this topic will
be given a brief separate consideration.

In [106], corridor-following behavior was evolved in simulations, using GP.
Reynolds’ main point was that previous investigations of corridor-following
had been fully deterministic and noise-free, leading to brittle results, because
of the ability of the EA to exploit the particular details of the environment
in question. Reynolds, by contrast, introduced both sensory noise and motor
noise in the simulations.

The simulations were performed using a very simple robot model, with
a lower limit on its turning radius, essentially forcing it to move along the
corridor in which is was placed. As is common in GP, the structure of the
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Figure 3.12: Gradually improved results obtained during the evolution of
corridor-following behavior. Reproduced with kind permission of Dr. C.
Reynolds.

robotic brain was allowed to vary during evolution. The simulated robots
were equipped with simple sensors, measuring wall proximity.

The author chose a fitness measure that encouraged even very slight im-
provements. Thus, each individual was evaluated for a maximum of 16 trials.
In each trial a graded fitness measure was used, based on the percentage of the
corridor negotiated (without collisions) by the simulated robot, starting from a
random direction of heading, as illustrated in Fig. 3.12. If a robot collided with
a wall, it was not allowed to perform further evaluations. Thus, there was a
selection pressure in favor of individuals capable of general navigation in the
corridor.

Simulations were performed using either a fixed set of (nine) proximity
sensors, or a variable sensor setup, determined by the EA. Thus, in the lat-
ter case, both the brain and (part of) the body of the simulated robots were
evolved. As expected, it was found that sensors placed in forward-pointing
directions, were more useful in corridor following than sensors pointing to the
side or backwards. A certain degree of lateral symmetry was also found, even
though the symmetry was not exact. The issue of simultaneous evolution of
body and brain will be considered in more detail below (see Subsect. 3.4.3).
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Figure 3.13: A schematic illustration of the 10 different attack directions used
by Lazarus and Hu in the evolution of a soccer goalkeeper [63].

3.2.5 Behaviors for robot soccer

In recent years, there has been a great interest in robot soccer, manifested in
events such as the Robocup tournament (see www.robocup.org). Robot soc-
cer, or indeed any two-person (or two-team) game for robots, leads to interest-
ing questions concerning not only evolution of behaviors in general, but also
multi-robot coordination, co-evolution etc. Research on this topic has resulted
in a very large number of publications, and only a few brief examples will be
given here. The interested reader is referred to www.robocup.org for further
information.

The ultimate aim of Robocup is to generate a team of (humanoid) robotic
football players, capable of beating the best human team, a seemingly distant
goal. In addition to humanoid robot soccer, wheeled robots and simulated
robots have been used as well in the framework of Robocup. In [63], Lazarus
and Hu evolved goalkeeper behavior in simulations using GP. In the simu-
lations, the function set (see Sect. 2.6) included the standard operators of ad-
dition (add ), multiplication (mult ) etc., as well as problem-specific operators
such as e.g. kick and catch . The terminal set included e.g. the direction
to the ball and the distance to the ball. Each individual goalkeeper robot was
tested against attacks from 10 different directions, as shown schematically in
Fig. 3.13. An attack consisted of the attacker kicking the ball in a straight line
toward the goal. The authors attempted to evolve active goalkeepers, that
would not only catch an incoming ball, but would also attempt actively to
move toward the ball and intercept it. To this end, a fitness measure involving
five parts, namely ball saving, self-localization, ball localization, movements,
and positioning was used. When using a multimodal fitness measure, the
problem of weighing different fitness cases against each other always appears.
In [63], it turned out that the best results were found using equal weights.

In [129], simple ball-following behavior was evolved, also using GP and
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employing several (in this case, 8) different trials in order to evolve robust
solutions. Luke et al. [68] used co-evolution to evolve a simulated robot soccer
team.

3.2.6 Motion of a robotic arm

As mentioned in the introduction to this chapter, BBR (and therefore ER) is
mostly concerned with autonomous robots. However, EAs have also been
used in connection with stationary robots such as robotic arms. An example of
such an application is reported in [84], where obstacle avoidance was evolved
for an OSCAR-6 robotic arm. The authors noted that, while basic manipulator-
eye coordination had been obtained using neural networks trained in a super-
vised manner (using, for example, backpropagation [42]), such approaches are
mainly useful in structured environments without obstacles. In supervised
training, the neural network must generally be given feedback for each input-
output mapping, something which is difficult to provide e.g. in obstacle-filled
environments. Thus, Moriarty and Miikkulainen [84] used an EA to evolve
neural networks for controlling the robotic arm, guiding the search by means
of a single fitness measure at the end of each evaluation, rather than provid-
ing the neural network with a detailed performance measure for every single
motion carried out.

The task of approaching a target was divided into two phases, an initial ap-
proach phase phase, which brought the end effector to the vicinity of the tar-
get, and a final approach phase which used smaller movements to reach within
grasping distance of the target. Based on this division, the authors devised a
control system consisting of two neural networks, a primary network for the
initial approach phase, and a secondary network for the final approach phase.
Each network was represented as a fully connected FFNN, with 9 input units,
a single hidden layer with 16 neurons, and 7 output neurons. The 9 input units
consisted of 6 proximity sensors, as well as the x, y, and z components of the
distance between the end effector and the target. Six of the output units were
used for determining the direction of rotation and magnitude of rotation for
three joints in the robotic arm. The output units determining the magnitude
of rotation were scaled differently in the primary and secondary networks, in
such a way that the motion of the secondary networks used smaller steps. The
seventh output unit was used to override the output of the other six outputs,
and thus to stop the arm, in emergency situations.

The training of the arms was made by starting the arm with random joint
positions, and a random target position, selected from a set of 400 pre-generated
positions. An additional 50 target positions were generated for use during test-
ing. In addition, obstacles were placed in one of 12 imaginary boxes located
in the path of robotic arm. The motion was executed as a series of discrete
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moves, and simulations were terminated e.g. if a collision occurred. Fitness
was assigned as the percentage of the initial distance (between the position of
the end effector and the target) covered during the motion.

The results of the EA showed that the combination of primary and sec-
ondary networks could, in fact, control the arm to within industry standards,
i.e. with a deviation of one cm or less between the actual and desired end ef-
fector positions. Furthermore, using the 50 test cases, it was shown that the
evolved solutions were robust; Obstacles were hit only in around 2% of the
test cases.

3.3 Evolution of complex behaviors and behavioral

organization

A central issue in BBR is behavioral organization (also known as behavioral
coordination, behavior arbitration, or action selection), i.e. the process of de-
termining which behavior to activate at a given time. Several methods for be-
havioral organization have been suggested, e.g. subsumption [12], activation
networks [71], potential fields [57], distributed architecture for mobile naviga-
tion (DAMN) [107]. For reviews of such methods see e.g. [2], [8], and [100].

However, in many methods suggested to date, it is not uncommon, as
pointed out in [8], [72], and [122], that the user must specify the architecture
of the behavioral organization system by hand. This is far from optimal, for
several reasons: First, as mentioned in Subsect. 3.1.1, behavior-based robots
are generally expected to operate in unstructured environments, which cannot
easily be predicted, making it difficult to tune parameters by hand. Second,
even if the environment happens to be fairly well structured, it is difficult to as-
sess (at least quantitatively) the relevance of some behaviors, especially those
that are not directly related to the assigned task of the robot. For example, a
battery-driven robot that is assigned the task of transporting goods between
two locations, must occasionally recharge its batteries. Clearly, the behavior
of charging batteries is important, but it is difficult to judge quantitatively its
relevance against the relevance of the assigned task, and thus to assign an opti-
mal reward for it. Third, hand-coding a behavioral organizer represents a step
away from the biologically inspired behavior-based architecture.

The purpose of any method for behavioral organization is to determine
when different behaviors should be activated, and it is therefore natural to
categorize methods of behavioral organizations based on the procedure they
use for selecting behaviors. There are two main categories, namely arbitration
methods and cooperative methods3. In arbitration methods, exactly one be-
havior is active, and the selection of which behavior to activate is generally a

3Cooperative methods are sometimes also called command fusion methods.
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function both of present sensor readings and the internal state of the robot. In
cooperative methods, the action taken by the robot is a weighted combination
of the actions suggested by several behaviors.

The problem of behavioral selection has, of course, also been heavily stud-
ied in the field of ethology (see e.g. [25] for a review). The brains of biological
organisms have been optimized through millions of years of evolution result-
ing in behavioral selection systems, manifested in the beliefs and desires of
the organism, that maximize the chances of survival. Thus, the concepts and
ideas introduced in ethology should be carefully considered when proposing
methods for behavioral selection in robotics.

From the point of view of ER, the aim, of course, is to reach beyond the sim-
ple (and often purely reactive) robotic brains described above, and thus to gen-
erate robotic brains capable of more complex behaviors. However, not all such
studies have centered on behavioral organization in the sense described above,
let alone evolution of behavioral organization. Basically, the published studies
that focus on the evolution of complex behaviors can be divided into three
categories, namely (1) those in which complex behaviors are evolved without
explicit behavioral selection, i.e. without the presence of an independently
generated behavioral organizer that selects which behavior to activate [29],
[38], [60], [87], [128], (2) those in which behaviors are evolved independently
and are then used in a complete robotic brain equipped with a behavioral or-
ganizer which is not evolved itself [58], and (3) those in which the central issue
is the evolution of the behavioral organizer, and where the individual behav-
iors are generated either through an EA or by other means [64], [122].Here, a
short description of each category will be given, with the strongest emphasis
placed on the third category (see Subsect. 3.3.3 below), for which the utility
function method [122] will be described in some detail.

3.3.1 Complex behaviors without explicit arbitration

As pointed out in [38] and [128], a common problem when evolving com-
plex behaviors is that the difference between the initial, randomly generated,
robotic brains and those capable of carrying out the desired complex behavior,
is so large that the EA without exception finds itself stuck in a local optimum.
One obvious solution is to break down the problem into simpler tasks, for
which the EA will be able to find an adequate solution, and then either to fuse
several evolved robotic brains into one complete brain [128], or to make the
problem progressively more difficult until the desired level of complexity is
reached, a procedure called incremental evolution [38].

An example, taken from [128], is shown in Fig. 3.14. Here, the task was to
evolve a complex robotic brain, capable both of cleaning an arena and avoiding
moving obstacles. Two different approaches were used, namely (1) attempting
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Figure 3.14: Maximum fitness as a function of the number of evaluated in-
dividuals during the evolution of a complex behavior, divided into two con-
stituent behaviors [128]. The three short and almost vertical curves show the
results from runs in which the constituent behaviors were first evolved sepa-
rately, and then combined to form the complete robotic brain.

to evolve the complex behavior directly, starting from random robotic brains
(which, in this investigation, were represented by generalized FSMs, see Ap-
pendix C), and (2) first evolving cleaning and evasion separately, then fusing
the two generalized FSMs by adding random connections between them and,
finally, continuing the evolution until the complex behavior emerged. In Fig.
3.14, the results of the investigation are shown. The three lower curves, ex-
tending over the whole interval, show the maximum fitness as a function of
the number of evaluated individuals, whereas the three short, almost vertical
curves show the results obtained when first evolving the constituent behav-
iors separately. In the latter case, the two curves have been shifted to right by
an amount that corresponds to the number of evaluated individuals needed to
reach acceptable performance of the two constituent behaviors. As is evident
from the figure, the approach of first evolving constituent behaviors separately
is, by far, the most successful one, quite rapidly reaching the empirically de-
termined fitness threshold for acceptable performance of the complex behavior
(indicated by the horizontal line). By contrast, the attempts to evolve the com-
plex behavior directly were not successful: In no case was the fitness threshold
reached.

A similar conclusion was reached by Gomez and Miikkulainen [38], who
studied the evolution of complex prey capture behavior in contests of pursuit
and evasion. In their study, a simulated robot was required to capture a prey,
moving with speed s, which was given a head start of nmoves, a task denoted
Es

n. It was found that the complex behavior E1.0
4 could not be generated by di-
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rect evolution. However, using several intermediate steps, first evolving E0.0
0 ,

then E0.0
2 etc., the E1.0

4 behavior could be achieved easily.

Thus, the conclusion reached in [38] and [128] is that a complex behav-
ior can be evolved incrementally. However, this conclusion is perhaps not a
general one. Floreano and Mondada [29], by contrast, point out that complex
behavior can, at least in certain situations, be achieved simply by increasing
the complexity of the environment, and decreasing the complexity of the fitness
function, in order to avoid canalizing the evolving robotic brains toward sub-
optimal solutions. In [29], the task of navigation described in Subsect. 3.2.1,
was extended also to include the limited energy storage capacity of the bat-
tery of the robot. Thus, the behaviors of homing navigation (toward a light
source close to the charging station) and battery charging had to be included in
the brain of the robot. Rather than using incremental evolution, Floreano and
Mondada simplified their fitness measure (see Eq. 3.3), removing the require-
ment of straight-line motion, and allowed the evolving individuals to extend
their life by periodically returning to the charging station, in which case their
simulated batteries were instantaneously recharged. Indeed, during evolu-
tion, individuals were found that could return to the charging station, thereby
extending their life, even though no fitness was directly associated with doing
so. In fact, the ideas presented in [29] bear some resemblance to the dichotomy
of task behaviors and auxiliary behaviors, discussed in connection with the
utility function method described below.

It should be noted, however, that the task used in [29] was quite simpli-
fied (e.g. by allowing instantaneous recharging), and that the authors did not
attempt to compare with incremental evolution through which, perhaps, the
complex behavior could have evolved even faster. Nevertheless, the results
reported above show that there are several ways of achieving complex behav-
iors.

In addition, Floreano and Mondada carried out a painstaking analysis of
their evolved neural network, in order to determine how it generated the com-
plex behavior. While their analysis was impressive, it does, perhaps, point to a
weakness with respect to the use of neural networks. The advantages of neu-
ral networks, i.e. noise tolerance, absence of bias introduced by the user etc.,
have been eloquently presented by several authors (e.g. [17], [29], and [87]).
However, neural networks are also notoriously difficult to interpret. Thus, a
complex behavior based on neural networks will, most often, have to be used
as a black box. An alternative approach is to consider the robotic brain as a
two-part system containing (1) a set of basic behaviors, which may be imple-
mented as neural networks, but also in other ways, using e.g. finite-state ma-
chines or if-then-else -rules, and (2) a behavioral organizer (or arbitrator)
that dynamically selects which behavior to activate, at all times. Such systems
will be introduced in the two following subsections.
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Figure 3.15: A schematic representation of the behavioral organizer used by
Kim and Cho [58]. The dashed lines are successor links and the solid ones are
predecessor links, as defined in the method of activation networks [72].

3.3.2 Evolving behavioral repertoires

Kim and Cho [58] evolved a set of behaviors (also called a behavioral reper-
toire [122]) for a task similar to the homing navigation considered by Floreano
and Mondada [29]. Their repertoire consisted of four behaviors, namely charg-
ing battery, following light, avoiding obstacles, and moving in a straight line. For
each behavior, a neural network known as a CAM-brain (based on cellular
automata) was evolved, using incremental evolution [38]. However, the be-
havioral organizer was not evolved. Instead the method of activation networks
[71], [72] was used. Kim and Cho found that the behavioral organization sys-
tem was able to select behaviors in the appropriate order, so as to achieve the
main task of navigating in the arena, without collisions and without running
out of battery energy.

As pointed out above, an advantage of their behavioral organizer, com-
pared to complex behaviors implemented in a neural network, is its relative
simplicity, as indicated in Fig. 3.15. However, the method of activation net-
works, as indeed most methods of behavioral organization, requires that the
user be able to set a large number of properties manually, something which
becomes more and more difficult as the size and complexity of the behavioral
repertoire grows.

Thus, as an alternative to such methods, one may evolve the behavioral or-
ganizer itself. To conclude this section, one such method will now be described
in some detail.
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3.3.3 Evolution of behavioral organization by means of the

utility function method

The utility function method developed by Wahde [122] is a biologically in-
spired arbitration method, in which the selection of behaviors is based on a
quantity called utility. Thus, before the method itself is described, a short
introduction will be given to the concept of utility and its uses in rational
decision-making.

Utility and rational decision-making

The concept of utility is used both for studying decision-making in economic
theory and for studying behavioral selection in ethology. 4

Consider a case in which a robot must decide which of n actions A1, A2, . . . ,
An to perform. For simplicity, consider the case n = 3, and assume that the
actions have been ordered according to preference, such that the robot prefers
A1 to A2, and A2 to A3. The situation can be denoted A1 > A2, A2 > A3, where
> in this case means “is preferred to”. If this is the case, then A1 must also be
preferred to A3, so that A1 > A2 > A3. This property, known as transitivity of
choice, underlies all rational decision-making. An agent exhibiting transitivity
of choice is called a rational agent. Note that the use of reason is not a neces-
sary prerequisite for rationality. Rational choices can be made unwittingly as a
result of design, as is the case in reactive robots and most likely in insects and,
probably, in many higher animals as well.

In order to rank possible actions in order of preference, a common currency
must be available. Furthermore, it can be shown (see e.g. [25], [26], and [27])
that an agent with transitive preferences uses a maximimization procedure,
i.e. will select the action whose value, measured in the common currency, is
maximal. The common currency is usually called utility, and a rational agent
thus selects the action to perform (Aisel) according to

Aisel = argmax U(Ai), (3.14)

where U(Ai) denotes the utility of action Ai in the current situation.
As an example, consider a floor-sweeping robot, which is given a fitness

increment for each square meter of floor it sweeps. Clearly, the robot should try
to sweep as much floor as possible, in order to maximize its fitness. However,
if the robot runs out of battery energy, it will no longer be able to move. Thus,
the utility of a behavior that forces the robot to suspend, temporarily, its floor-
sweeping activities to charge its batteries will rise as the energy in the battery
decreases, even though the battery charging behavior does not lead to any

4In ethology, the terms benefit or negative cost are often used instead of utility. Here,
however, the term utility with be used throughout.



Evolutionary robotics 64

direct increase in fitness. Hence, in order to receive as much fitness as possible
over a long period of time, the robot must, in fact, maximize utility.

Utility also provides a means of allocating limited resources in an optimal
way. The life of any animal (or robot) inevitably involves many trade-offs,
where less relevant behaviors must be sacrificed or at least postponed in order
to perform the most relevant behaviors, i.e. those associated with largest utility
value.

Organizing behaviors using the utility function method

In the utility function method [122], the robot is equipped with a behavioral
repertoire, in which each behavior Bi is assigned a utility function Ui, which
depends on the values of the state variables of the robot. Three kinds of state
variables are defined, namely external variables, denoted s, representing e.g.
sensor readings, internal physical variables, denoted p, representing e.g. the
energy in the batteries of the robot, and internal abstract variables, denoted x,
which are dimensionless variables used in the behavioral selection procedure,
and which roughly correspond to signalling substances (e.g. hormones) in
biological systems. Thus, the most general form of a utility function is

Ui = Ui

(

s1, . . . , sne, p1, . . . , pnp, x1, . . . , xni

)

, (3.15)

where ne, np, and ni denote the number of external, internal physical, and
internal abstract variables, respectively. However, in most cases, each utility
function will only depend on a subset of the set of available variables.

In the utility function method, behaviors are divided into two categories.
Task behaviors are directly related to the task of the robot and increase its
fitness, if successfully executed. An example of a task behavior is the floor-
sweeping behavior described in the example above. Auxiliary behaviors, on
the other hand, do not change the fitness of the robot, but are nevertheless
necessary for the robot to be able to perform its duties. The battery charging
behavior (for the floor-sweeping robot described above) is an example of an
auxiliary behavior.

Furthermore, a time variable ti, referred to as the behavior time of behav-
ior Bi, is defined for all behaviors. ti is set to zero every time Bi is activated,
and then follows the same rate of increase as the global time variable t, which
measures the time since the robot was initialized. As soon as behavior Bi be-
comes inactive, ti is again set to zero, where it remains until the behavior is
activated again.

Behavioral selection is straightforward in the utility function method; At
regular intervals, the values of the utility functions are computed, using the
latest available readings of the state variables as input, and the behavior with
the highest utility value is executed. This is illustrated in Fig. 3.16, in which is
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Figure 3.16: The utility functions for a behavioral organization problem,
shown as functions of time during part of the evaluation of a simulated robot.

shown the variation in time of three utility functions obtained for a behavioral
organization problem involving three behaviors. In the part of the simulation
shown in the figure, behavior B2 is initially active, since its utility value ex-
ceeds that of the other behaviors, and remains active from t = 44 (arbitrary
units) until around t = 49.5, when B3, which in this case happened to be an
auxiliary battery charging behavior, was activated. Around t = 56, B1 was
activated.

The problem, of course, is to determine the shape of the utility functions.
In the utility function (UF) method, the optimization of utility functions is nor-
mally carried out using EAs. In general, the utility functions depend on several
state variables, and should provide appropriate utility values for any combi-
nation of the relevant inputs. Thus, determining the exact shape of the utility
functions is a formidable task, and one for which EAs are very well suited. In
principle, GP can be used, in which case any function of the state variables can
be evolved. However, it is often sufficient to make an ansatz for the functional
form of each utility function, and then implement the EA as a standard GA for
the optimization of the parameters in the utility function.

For example, for a utility function Ui (associated with a behavior Bi) that
depends on the two variables s and p, a common ansatz is

Ui(s, p) = ai,00 + ai,10s+ ai,01p+ ai,20s
2 + ai,11sp+ ai,02p

2, (3.16)

where the ai,jk are constants. When optimizing the utility functions the ai,jk

(and the corresponding constants in all other utility functions), should be en-
coded in the chromosomes used by the GA. The fitness gained while executing
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Figure 3.17: An example of a robotic brain involving five behaviors on two
hierarchical levels, taken from [127].

the task behavior(s) is used as the optimization criterion.
A problem that may occur when selecting behaviors based on utility func-

tions is rapid behavior switching in which the robot keeps swapping back and
forth between two (or more) behaviors, and thus failing to achieve its goals.
One of the purposes of the internal abstract variables is to prevent such rapid
switching. Thus, an internal abstract variable xi, which takes non-zero values
only in a specific behavior Bi, can be introduced. When the robot switches
from another behavior to Bi, xi is immediately set to a non-zero value (e.g.
1), and if the utility functions are properly chosen, the utility of Bi will then
be raised sufficiently to avoid immediate switching to another behavior. As
an example consider, in Fig. 3.16, the jump in utility for B3 at the moment
when it becomes active. The internal abstract variables may depend both on
other state variables and on the behavior time ti, and the exact variation can
be optimized by the GA as well. For example, a possible ansatz for an internal
abstract variable xi is

xi =

{

bi,1 + bi,2e
−|bi,3|ti If Bi is active

0 Otherwise
(3.17)

where the bi,j are constants. Thus, with this ansatz for the internal abstract
variables, the chromosomes used by the GA will encode not only the constants
ai,jk, but the constants bi,j as well.

Behavioral hierarchies

The presentation above is somewhat simplified, in that it does not consider the
fact that, in order to keep the level of complexity of the constituent behaviors
in a robotic brain at a reasonable level, the behaviors should often be divided
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Figure 3.18: The arena used in [99]. The aim of the simulated robot is to move
without collisions, from right to left, in the arena.

into sub-behaviors. Battery energy maintenance is a case in point: maintain-
ing the energy in the batteries of a robot requires that (at least) two separate
procedures be executed: one for finding an energy source, and one for connect-
ing to the energy source and carrying out the actual charging. Evidently, the
entire energy maintenance sequence could be considered as one single behav-
ior. However, generating such a behavior, and making it reliable, for example
in the case of sudden interruptions due to obstacles in the path of the robot,
would indeed be a daunting task. An alternative procedure is to introduce one
behavior for locating an energy source, and one for battery charging, and to
consider these behaviors as sub-behaviors to an overall energy maintenance
behavior. Thus, in such a case, the robotic brain would have a hierarchical
structure, an example of which is shown in Fig. 3.17.

This figure shows the structure of the robotic brain for a simple, two-wheeled
guard robot considered in [127]. The behavioral repertoire consisted of a total
of five behaviors, namely straight-line navigation (B1), obstacle avoidance (B2),
energy maintenance (B3), corner seeking (B3.1), and battery charging (B3.2). In the
arena where the robot operated, the battery charging stations were placed in
the corners. Thus, the corner seeking behavior corresponded to charging station
localization.

As shown in the figure, the five behaviors were placed on two hierarchical
levels. The utility function is able to cope with multiple hierarchical levels of
behaviors, by comparing utility values on a level-by-level basis. Thus, in the
case shown in Fig. 3.17, it was determined which of the three utility functions
U1, U2, and U3 took the highest value. If it happened to be U3, the comparison
of U3.1 and U3.2 would determine which of these two behaviors was active.

The procedure is actually slightly more complex than this since the switch
from, say, B2 to B3 (and then to one of the sub-behaviors B3.1 or B3.2) may re-
quire modification of the internal abstract variables (if any) in B3, in order to
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Figure 3.19: The robot used in [99] as seen from above, equipped with three
simple proximity sensors, each with a triangular-shaped detection range. The
filled black circles illustrate points on an obstacle that are detectable by the
range sensors. Dashed lines indicate detected points in this particular config-
uration.

avoid rapid behavior switching as discussed above. In practice, this is accom-
plished by executing an enter procedure on each hierarchical level. Thus, when
U3 exceeded U2, the enter procedure for U3 was executed (thus possibly further
raising U3 to prevent rapid switching back to B2), Next, the enter procedure of
either B3.1 or B3.2 was called, depending on their relative utility values, and
the robot then proceeded by executing the active behavior, i.e. either B3.1 or
B3.2.

Example 1: Locomotion in an arena with moving obstacles

In [99], the utility function method was used for generating a behavioral orga-
nization system for a hopping robot traversing an arena with moving obsta-
cles, illustrated in Fig. 3.18. The simulated robot, consisting of a foot plate and
a leg with two degrees of freedom (DOF), implemented as two revolute joints,
was equipped with four behaviors: move forward (B1), move backward (B2), stop
(B3), and charge batteries (B4). The robot was simulated using full newtonian
dynamics, implemented in the EvoDyn package developed by Pettersson [97].
In B4, the robot was required to remain at a standstill, charging its batteries
using simulated solar cells.

While the UF method itself uses an EA to generate behavioral organization,
the constituent behaviors can be generated by any method. In the particular
case considered in [99], the behaviors were implemented as continuous-time,
recurrent neural networks (see Appendix A), and were optimized using an EA.
Note, however, that the EA optimizing the individual behaviors should not be
confused with the EA used for generating the behavioral organizer through
the UF method.
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Figure 3.20: The early stages of a typical run. The bottom right panel shows the
variation of the four utility functions in one of the best performing individuals
during evolution with the dynamic model. The curves represent the utility
values for the behaviors move forward (solid curve), move backward (dash-dotted
curve,), stop (dotted curved), and charge (dashed curve). Note that the utility
of the move backward behavior is very low throughout the simulation.

Once the four constituent behaviors had been generated, the behavioral
organizer, assigned the task of selecting between behaviors B1-B4, was gen-
erated using the utility function method. The simulated robot was equipped
with three proximity sensors, as illustrated in Fig. 3.19. In addition, the robot
was able to measure the amount of available energy in its batteries. Thus,
the ansatz for each utility function was taken as a second-degree polynomial
Ui = Ui(s1, s2, s3, E, xi), where s1, s2, and s3 are the readings of the three sen-
sors, E is the battery energy, and xi is a behavior-specific internal abstract
variable, whose variation was modelled as in Eq. (3.17). The total number
of parameters to be optimized by the GA was 96.

The settings of the simulated robot’s battery were such that frequent recharg-
ing was necessary. Thus, the task of moving through the arena was strongly
non-trivial, requiring constant vigilance in order to avoid collisions or an empty
battery (in which cases the evaluation was terminated). The fitness measure
was simply taken as the distance moved in the forward direction.

Despite the many parameters determining the utility functions and the ab-
stract internal variables, a successful behavioral organizer was found quite
quickly. An example is shown in Fig. 3.20, and a movie of the robot is available
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Figure 3.21: A behavior switching sequence where, at first, behavior B1 (move
forward) is active. Shortly thereafter behavior B4 (charge) is activated due to the
detection of an approaching obstacle. As the obstacle passes, and the sensor
signal decreases, B1 is activated again. For clarity, only the utility values for
B1 (solid line) and B4 (dashed line) are shown in the bottom panel.

on the tutorial CD in the file HoppingRobot_BehavioralOrganization.mpg .
However, the dynamically simulated robot was unable to traverse the whole

arena. The failure could be attributed to the limited quality of the constituent
behaviors B1-B4, rather than a failure of the behavioral organization system.
Thus, an obvious conclusion was that the constituent behaviors must at least
reach some minimum level of quality, in order for a behavioral organizer to
perform well.

In order to study the evolution of behavioral organizer in its own right, Pet-
tersson and Wahde also carried out some simulations using a much simpler
dynamical model (essentially a point-particle model) for the simulated robots.
In this case, the EA found utility functions that would allow the robot to tra-
verse the entire arena without collisions. An example of the motion of the sim-
plified robot is shown in Fig. 3.21. In addition, two movies are available on the
tutorial CD, in the files SimpleRobot_UM1.mpg and SimpleRobot_UM2.mpg .

Example 2: A simple exploration robot

As a second example of an application of the utility function method, a sim-
ple exploration robot will be considered. The two-wheeled robot, shown in
Fig. 3.22, is differentially steered, and equipped with a two-dimensional laser
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Figure 3.22: A two-wheeled exploration robot in a simple arena with 5 station-
ary obstacles.

range finder for measuring the distance to the nearest objects in a certain sec-
tor. In this example, the sector of measurement will be assumed to cover a
narrow range centered around the current direction of motion of the robot.
The task of this robot will be to explore a given arena, also shown in Fig. 3.22,
while avoiding collisions with stationary obstacles.

Obviously, in a more realistic application, the robot would have to be able
to find a charging station and charge its batteries when necessary, avoid mov-
ing obstacles (in addition to stationary ones), and carry out purposeful motion
rather than the more or less random wandering that will be considered here.
In such cases, a rather complex robotic brain involving many behaviors, prob-
ably distributed on various hierarchical levels, e.g. as illustrated in Fig. 3.17,
would be needed. The utility function method would easily handle such a
situation, but, for simplicity and clarity, a greatly simplified situation will be
studied in this example, where the capacity of the robot’s battery is assumed
to be infinite. In fact, only two behaviors will be included in the robotic brain,
namely straight-line navigation (B1) and obstacle avoidance (B2). In B1, the brain
of the robot sends equal signals to the two motors of the robot, making it move
in a straight line (after an initial transient, in case the robot was turning at the
time of activation of B1). In B2, equal signals, but of opposite sign, will be sent
to the two motors, until the minimum distance (as measured by the laser range
finder) to the nearest obstacle exceeds a certain minimum value.

The fitness measure is basically taken as the amount of time spent execut-
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ing B1. However, the robot receives a fitness increase only if it executes B1

continuously for at least T0 seconds. The value of T0 was chosen, somewhat
arbitrarily, as 0.2 s. With this fitness measure, the robot has a strong incentive
for executing B1 as much as possible, without dithering between the two be-
haviors. On the other hand, it is also necessary for it sometimes to activate
B2, in order to avoid collisions, since the evaluation is terminated if the robot
collides with a wall or with some other obstacle. Thus, the robot is faced with
a behavioral selection problem, involving a trade-off between carrying out the
assigned task (by executing B1) and surviving (by executing B2). Clearly, in
this simple case, it would not have been very difficult to write down a pro-
cedure for behavioral selection by hand. However, as indicated above, this
simple example of a behavioral selection problem was chosen primarily for its
(intended) pedagogical value, not for its (rather limited) usefulness.

In order to apply the utility function method, an ansatz is needed for each
utility function. Here, U1 will be taken as a pth degree polynomial in the vari-
ables s1, s2, and s3 which represent the (inverted) readings along three rays of
the laser range finder (in the directions 0, ± 30 degrees, relative to the forward
direction). The inverted reading y along a ray equals R − z, where R is the
maximum range (4.0 m, in this case) of the laser range finder, and z is the mea-
sured distance to the nearest object along the ray. Thus, y will be in the range
[0, R]. For B2, the utility function (U2) depends on two variables: savg, which
equals the average reading of all rays of the laser range finder and x, which is
an internal abstract variable. x can be interpreted as a hormone whose level
is raised if the robot senses fear, e.g. as a result of an imminent collision. The
variation of the variable x is slightly simplified in this example, however: it
takes the value 0 if B1 is active, and the value 1 if B2 is active.

Thus, the utility functions U1 and U2 will be polynomials of three and two
variables, respectively, i.e.

U1(s1, s2, s3) = a000 + a100s1 + a010s2 + a001s3 + a110s1s2 + . . . , (3.18)

and

U2(savg, x) = a00 + a10savg + a01x+ a20s
2
avg + a11savgx+ a02x

2 + . . . (3.19)

Thus, the task of the evolutionary algorithm will be to determine the coeffi-
cents aijk and aij so as to maximize the fitness of the robot in evaluations of a
given maximum duration T (here set to 50 s).

The two behaviors B1 and B2 were implemented in the format defined by
the UF Library simulation package described in Sect. 3.4.4. Next, an exe-
cutable application was built, and the simulations for this exploration robot
were carried out, using utility function polynomials of degree p = 2. Due to
the simplicity of the problem, the evolutionary algorithm rather quickly found
robotic brains that were able to keep the robot from colliding with obstacles for
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Figure 3.23: Left panel: The motion of the robot, whose initial position is
marked by a black disk. Right panel: The variation of the utility functions
for the first 10 seconds of the motion. The solid line shows U1, and the dashed
line U2.

the full duration of an evaluation, while spending as much time as possible ex-
ecuting B1. In the left panel of Fig. 3.23, the motion of an evolved individual
is shown, seen from above. The right panel of the same figure shows the vari-
ation of the utility functions for the first 10 seconds of the evaluation. At the
initial moment of the evaluation, the robot was placed right in front of an ob-
stacle, forcing it first to activate B2 in order to rotate to a different direction
(this part of the motion is not visible in the left panel of Fig. 3.23, which only
displays translational motion). Once a clear path was found, at t ≈ 2 seconds,
the robot began executing B1. At t ≈ 5.5 seconds, another obstacle was en-
countered, and the robot again activated B2 for a fraction of a second, before
resuming the execution of B1.

3.4 Other issues in evolutionary robotics

ER is a vast field, and this tutorial does not, of course, completely cover all
aspects of the field. In the rest of this section, four different topics will be
considered briefly, namely (1) ER applied to balancing, walking, and hopping
robots, which constitute an increasingly important special case, (2) the relation
between simulations and evolution in hardware (i.e. on actual robots) in ER,
(3) simultaneous evolution of body and brain of robots, and (4) simulation
software for ER.

In addition to these topics, there are many others which will not be cov-
ered in detail, such as (1) the relation between evolution and learning in ER,
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i.e. modification of the brain of a robot during its operation [7], [30], [89],
[114], [119], [120], [135], (2) interactive evolution, in which the user provides
a subjective fitness measure [54], [70], (3) evolution of multi-robot (collective)
behaviors [6], [86], [103], [104], [118], (4) evolvable hardware [56], [74], [117],
(5) co-evolution, i.e. simultaneous evolution of two (or more) populations in
competition with each other, see Subsect. 2.7.3 above and e.g. [19], [31], [68],
[94], [123], and (6) behavior acquisition, i.e. the generation of behaviors from
primitive actions [133].

3.4.1 Balancing, walking, and hopping robots

In this subsection, the use of evolutionary techniques in connection with the
important special case of robots equipped with legs rather than wheels will be
considered, starting with a brief, general survey of walking robots.

Walking robots

Attempts at building walking robots can be traced back at least to the 1960s.
In addition to research concerning bipedal robots efforts were also made to
develop monopedal [105] and quadrupedal robots [36]. One of the first func-
tioning bipedal robots was developed in the 1970s by Kato [55].

As the name implies, the term bipedal robot refers to a robot that walks on
two legs, whereas the definition of the term humanoid robot is more loose. In
general, a humanoid robot is defined as a robot with some human-like features
(not necessarily the ability to walk on two legs). For example, some humanoid
robots consist only of an upper body or a head (see e.g. [82]).

Some impressive examples of humanoid robots include the Honda ASIMO
robots (world.honda.com/ASIMO) and the Sony QRIO robots (www.sony.net/
SonyInfo/QRIO). Advanced quadrupedal robots have also been developed. A
good example is the Sony AIBO pet robot (www.sony.net/Products/aibo).

There are many motivations for using bipedal robots, despite the fact that
it is much more difficult to implement algorithms for reliable locomotion in
such robots than in wheeled robots. First, bipedal robots are able to move
in areas that are normally inaccessible to wheeled robots, such as stairs and
areas littered with obstacles that make wheeled locomotion impossible. Sec-
ond, walking robots cause less damage on the ground than wheeled robots.
Third, it may be easier for people to interact with walking robots with a hu-
manoid shape rather than robots with a nonhuman shape [14]. It is also easier
for a (full-scale) humanoid robot to function in areas designed for people (e.g.
houses, factories), since its humanlike shape allows it to reach shelves etc.
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Figure 3.24: A simple five-link bipedal walking robot, used in [16], [37], and
[98].

Bipedal locomotion

One of the simplest models of a walking robot is the 5-link biped introduced by
Furusho and Masubuchi [37] and subsequently used by several authors, e.g.
[16], [98]. This simulated robot, which is shown in Fig. 3.24, is constrained to
move in the sagittal plane (i.e. the plane of the paper), and has five DOF. There
exists many different formulations of the equations of motion for a bipedal
robot, e.g. the Lagrangian formulation and the Newton-Euler formulation.
The Lagrangian equations of motion for the simple five-link robot shown in
Fig. 3.24 are

M(z)z̈ + C(z, ż)ż + N(z) + A
T
λ = Γ, (3.20)

where M is the inertia matrix, C is the matrix of Coriolis and centrifugal
forces, N contains gravity terms, A is the constraint matrix, λ contains the
corresponding Lagrange multipliers, and Γ are the generalized forces. z =

[ϕ1, . . . , ϕ5, x, y]
T are the generalized coordinates, where x and y indicate the

coordinates for one foot of the robot.
The Lagrangian equations of motion have the advantage that the internal

forces of constraint need not be explicitly represented in order to determine
the motion of the robot. However, in general, the Newton-Euler formulation
is computationally the most efficient, with the computation time growing lin-
early with the number of degrees of freedom. For a discussion of this formu-
lation see e.g. [130]. In more advanced simulation models, the motion is not
constrained to the sagittal plane, and the models most often include feet, arms,
as well as additional DOF in the hip [1], [35], [44].

In general, there are two types of bipedal gaits: Static walking, where the
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projection of the centre-of-mass of the robot is kept within the area of the sup-
porting foot, and dynamic walking where this is not the case. Static walking
is easier to implement, but is usually unacceptably slow, with individual steps
taking several seconds [16]. In dynamic walking, posture control based on
dynamic generalizations of the concept of centre-of-mass, such as the zero-
moment point (ZMP) [1] are used for generating stable bipedal gaits. The
ZMP, originally introduced by Vukobratovic and Juricic [121] is the point on
the ground where the torques around the (horizontal) x and y axes, gener-
ated by reaction forces and torques, are equal to zero. If the ZMP is contained
within the convex hull of the support region defined by the feet (or foot, in
the case of the single support phase), the gait is dynamically balanced, i.e. the
robot does not fall.

There are several different approaches to gait generation. Assuming that
an adequate model of the environment can be generated, it is possible to gen-
erate bipedal gaits off-line, and then implement them in the robot [44], [48].
Another approach is to use an on-line controller, which generates the appro-
priate torques according to some control law [35]. For a review of bipedal and
humanoid robots, see e.g. [126].

Applications of EAs in walking robots

Since walking robots are inspired by the properties of their biological counter-
parts, it is not far-fetched to consider biologically inspired computation meth-
ods, and in particular, EAs, when generating gaits and other behaviors for such
robots. The use of EAs in walking robots is well motivated since these meth-
ods can be implemented even in cases where a complete dynamical model of
the system under study is either unavailable or too complex to be useful [132].

Arakawa and Fukuda [1] used a GA to generate natural, human-like bipedal
motion based on energy optimization, and Wolff and Nordin [132] imple-
mented an evolutionary strategy to improve a hand-coded bipedal gait in a
small experimental humanoid (ELVINA). Pettersson et al. [98] used an EA
to develop energy-optimized bipedal gaits as well as robust balancing in the
presence of external perturbations. GAs have also been used for generating
robust gaits both on the Aibo quadrupedal robot [46] and on robots with more
than four legs [137]. Central pattern generators (CPGs), which are believed to
control oscillatory processes in animals, were used in [110]. A recurrent neural
network CPG was optimized using a GA, and was shown to generate a stable
bipedal walking pattern. The evolution of locomotion in one-legged hopping
robots has also been considered, see Subsect. 3.3.3 above.
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3.4.2 Simulations vs. evolution in actual robots

Evolving behaviors is often a time-consuming process, particularly in cases
where the evaluation of a single individual takes a long time. In general, an EA
needs at least several hundred evaluations (and sometimes thousands or even
millions) in order to arrive at a useful result. Thus, at a first glance, evolving
behaviors in simulation appear to be a more feasible approach than evolution
in hardware and simulations are indeed often used in ER. However, it is im-
portant to keep in mind that a simulation is, at best, only a caricature of the real
world and, at worst, an outright misrepresentation of it. This view has been
championed, among other, by Brooks [13], who takes a particularly pessimistic
view of the possibility of transferring results from simulations to reality. There
are several reasons for believing that simulations will not transfer well to re-
ality [79], a problem known as the reality gap [53]. First of all, it is difficult
to generate an accurate physical model of the world, including the motions
of real-world objects, variations in lighting etc. Second, real environments are
invariably noisy, on all levels. Thus, noise is present in sensor readings, actua-
tor signals, motion etc. Third, there is also a variation in supposedly identical
hardware components. For example, Miglino et al. [79] mention a measure-
ment on two sensors of the same type, in which it was found that the range of
one sensor was nearly twice as large as the other, and the diffence in angular
variation between the two sensors was also of the same magnitude.

Evolution in hardware

The obvious alternative to evolving behaviors in simulation is, of course, to
evolve in physical robots, and this approach has been used by many authors
(see e.g. [28], [29], [46], [47], [131], [132]). However, evolution in hardware
is also associated with numerous difficulties. First of all, the evaluation of in-
dividuals generally takes longer time than in actual robots than in simulated
robots (see e.g. [29] or [46] for timing estimates). In order to arrive at a re-
sult in a reasonable amount of time, it is therefore often necessary to resort
to an EA with a small population size, and to run it only for a small number
of generations [132]. Second, supplying the robots with continuous power is
an omnipresent problem: In real robots, the amount of available energy is fi-
nite, and so recharging will be necessary at regular intervals. This problem
can be overcome by the introduction of a powered floor [28], or by requiring
the robots periodically to return to a charging station. Charging batteries is
a rather slow process, but the transfer of energy to robots can be speeded up
using capacitors instead of batteries [95]. Third, in many applications, e.g. the
evolution of gaits for bipedal robots, the evolutionary process must be moni-
tored continuously.

The most common approach to evolution in hardware is to evaluate indi-
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viduals in a serial fashion, uploading them one after the other in a single robot
[29], [87]. In this case, all evolutionary processes, such as e.g. reproduction
and formation of new individuals take place on a computer, and the resulting
individuals are then placed in the robot for evaluation.

An alternative method, called embodied evolution [28], [131] is to evolve a
population of real robots. In embodied evolution, infrared communication can
be used for exchanging genetic material between robots. Such exchanges take
place only when two robots are within infrared communication range. The
probability of a robot sending a gene, can be set proportional to its current per-
formance, and the probability of a robot accepting a gene from another robot
(and thus to overwrite its own gene), can be set proportional to one minus the
probability of sending the gene.

Improving simulations

The comparison between simulations and evolution in hardware shows that
there are advantages and disadvantages with both approaches. A substantial
amount of work has been carried out in order to improve the quality of simu-
lations (see e.g. [50], [51], [52], [53], [74], [87], [90], and [92]). Some of the most
important aspects to keep in mind when setting up ER simulations [53] is to (1)
base the simulation on empirical data, rather than e.g. artificial sensor models
without a real-world counterpart, (2) add the correct level of noise (see below)
in all parts of the simulation, (3) use a representation that is noise-tolerant, e.g.
an ANN.

Sensors can be implemented in several different ways in ER simulations.
One approach is simply to measure sensor readings on an actual robot, and
store them (e.g. in a lookup table) for later use in a simulator [79], [92]. Noise
can be added in different ways, either by slightly perturbing the measured
sensor readings, or by using actual sensor readings taken from a slightly dif-
ferent position and angle than that currently held by the robot, a procedure
called conservative position noise [79]. In this approach, sensor readings
must be taken at many different positions, rendering the procedure quite time-
consuming in all but the simplest environments. An alternative approach is to
set up a physical model of the sensors, and to determine the values of the
model parameters through system identification. For example, Jakobi et al.
[53] used this approach to model the IR sensors on a Khepera robot (see Ap-
pendix C). They used a ray tracing technique which in which n ray tracings
were carried out (in different directions), and the resulting sensor reading was
then modelled as

s =

n
∑

i=1

cosβi

(

a

d2
i

+ b

)

, (3.21)

where βi is the angle at which ray i emanates from the sensor, and di is the
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distance to an object along the ray. a and b were determined empirically [53].

Jakobi et al. [53] also studied the effects of noise, and found that the small-
est performance difference between simulated robots and physical robots was
obtained when the noise level in simulations was set approximately equal to
the empirically determined noise level in the real world. Interestingly, it was
also found that, in simulations with high noise levels, simulated robots could
make use of noise to achieve good results in simulations that could not be re-
produced in physical robots, showing that noise levels should not be set too
high.

Jakobi [50], [52] has introduced a simulation procedure called minimal
simulations, which recognizes the inevitable discrepancies between the sim-
ulated and real worlds. Thus, in a minimal simulation, the various aspects
of the interaction between a robot and its environment are divided into base
set aspects and implementational aspects, where the former have a physi-
cal counterpart in the real world, whereas the latter do not. Thus, in a mini-
mal simulation, the implementational aspects should be varied randomly from
evaluation to evaluation, thus rendering them useless to evolution, and forc-
ing the EA to focus on the base set aspects. An evolved robotic brain that only
relies on base set aspects is called base set exclusive. In addition, a certain de-
gree of variation is introduced also in the base set aspects, in order to capture
the fact that even in the base set aspects there will be discrepancies between the
simulated and real worlds. A robot that can cope also with such discrepancies,
is termed base set robust.

Thus, summarizing, it is evident that the choice between evolution in sim-
ulation and evolution in hardware is a non-trivial one. Simulations have the
disadvantage of never being able to capture all aspects of the real world. How-
ever, carefully designed simulations will nevertheless lead to results that can
be transferred to physical robots. Indeed, one may, perhaps, consider the re-
sults obtained in a simulation as a first iteration toward the desired results.
Of course, a hybrid approach can be used, in which evolution is first carried
out in simulations and then briefly continued in hardware. Miglino et al [79]
report successful results from such an approach.

3.4.3 Simultaneous evolution of body and brain

The most common application of ER is to evolve the brain of a robot, adapting
it for use in a body of fixed size and shape. However, there is nothing prevent-
ing the use of EAs for optimizing both the body and the brain of a robot.

Simultaneous optimization of body and brain has been considered in artifi-
cial life, where Sims [111] evolved swimming, running, and hopping creatures,
consisting of limbs composed of chains of block-like structures and neural net-
works for moving the limbs in an oscillatory fashion. For a recent review, and
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also an extension of Sims’ work, see [115]. The procedure of simultaneously
optimizing body and brain has been used also by several authors in the field
of ER 5 A brief review of the topic can be found in [91].

In many such applications, see e.g. [10], [19], [22], [23], [75], [123], and
[124], an artificial ontogeny (or morphogenesis) is employed, i.e. the body
and brain of the individual are generated as the result of a developmental pro-
cess, modelled on the embryological development of biological organisms, in-
volving gene regulation and differential gene expression both in space and
time.6 In these cases, the encoding scheme used in the EA is, in general, much
more complex than the simple lookup-table coding used in many other ap-
plications. A simple example of an encoding scheme involving an element
of ontogeny is the grammatical encoding scheme described in Subsect. 2.7.2
above.

The ability of EAs to optimize the morphology of robots opens up a plethora
of new possibilities, and reduces the severity of the problem of selecting an ap-
propriate body structure a priori. As a simple example, in the pursuit-evasion
contests studied in [123] and [124], it was found that pursuers evolved forward-
pointing sensors, whereas evaders evolved backward-pointing sensors. While
these investigations were carried out in simulation, Lichtensteiger and Eggen-
berger [66] successfully evolved the positioning of sensors forming a com-
pound robotic eye on a physical robot.

Complex artificial morphological processes, involving artificial cell divi-
sion and gene regulation, have been developed [10], [22], [23], [75]. However,
so far, the use of artificial developmental processes has been limited to rather
simple applications.

It is also possible to evolve body and brain using a direct encoding scheme
(i.e. bypassing complex developmental processes) [9], [24], [69], [96]. For ex-
ample, Bongard and Paul [9], [96] evolved the shape of a bipedal robot, i.e its
mass distribution, moments of inertia and, in some cases, its total mass, to-
gether with the brain (implemented in the form of an RNN). It was found that
the addition of a variable morphology improved the performance of the EA,
at least in some cases, despite the larger search space compared to the fixed-
morphology case. The improved performance was attributed to the modifica-
tion of the fitness space resulting from the additional evolutionary degrees of
freedom.

In an interesting series of experiments, the research group of Jordan Pol-
lack has evolved simple moving creatures composed of rods, joints, and ac-
tuators, controlled by a neural network, and somewhat similar to the virtual

5Some authors use the term co-evolution to indicate simultaneous evolution of body and
brain. However, in order not to confuse this process with co-evolution involving different,
competing species, see Subsect. 2.7.3 above, the term co-evolution should, perhaps, be avoided
in this context.

6For an introduction to gene regulation in biological systems, see e.g. [20] and [101].
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Figure 3.25: A crawling robot evolved by Lipson and Pollack [67]. The left
panel shows the simulated robot, and the right panel shows the corresponding
physical robot. Reproduced with kind permission of Dr. H. Lipson.

creatures evolved by Sims [111]. However, in the experiments performed by
Pollack’s group [67], the evolved creatures were also given physical form using
techniques for automatic three-dimensional printing. An example is shown in
Fig. 3.25. The generated structures were manually fitted with motors, resulting
in simple robots that were able to reproduce the behaviors found in simulation.

3.4.4 Simulation software

Since ER often involves the use of simulations, it is not surprising that many
simulation packages (i.e. collections of source code that can be used for gen-
erating simulator for autonomous robots) and stand-alone robotic simulators
have been developed. A few tools for ER simulations will now be introduced.

EvoRobot

The EvoRobot program is a simulator for Khepera robots, available on the
world wide web at
http://gral.ip.rm.cnr.it/evorobot/simulator.html .
EvoRobot allows the user to perform various ER experiments, such as evolving
neural networks for navigation and obstacle avoidance. A variety of different
robot parameters, such as the number and types of sensors, can be set through
the graphical user interface. Evolution can be carried out both in simulation
and using an actual Khepera robot. If simulations are used, the results can also
be uploaded and tested in an actual Khepera robot.
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Figure 3.26: A screenshot from a WebotsTM simulation of a Khepera II robot.
Reproduced with kind permission of Dr. O. Michel, Cyberbotics.

Evolutionary robotics toolbox

The Evolutionary robotics toolbox (ERT) is a software package for
Matlab for simulation of Khepera robots. As in the EvoRobot package, the
results from a simulation carried out in ERT can be tested on an actual Khepera
robot. The package can be downloaded from
http://diwww.epfl.ch/lami/team/urzelai/ertbx.html .

Webots

Webots TM is a commercially available software package [78] manufactured
by Cyberbotics (www.cyberbotics.com). Webots allows simulation of many
different types of robots, including Khepera, Koala (manufactured by K-team,
www.k-team.com), and Aibo (manufactured by Sony, www.sony.com/aibo).
As with the other robotics packages mentioned above, the results obtained
from a Webots simulation can be uploaded to an actual robot. In addition
Webots supports, for instance, evolution of robot morphology and multi-
robot simulations (such as robot soccer). Webots is equipped with an ad-
vanced graphical user interface, allowing 3D rendering of simulated robots
(see Fig. 3.26). Furthermore, it is possible to import 3D models deleveloped in
3D modelling languages such as VRML.
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Figure 3.27: A typical environment for robotics simulations using the utility
function software package currently under development. Note the transparent
walls, allowing the user always to get an overview of the entire environment.

Darwin2K

Darwin2K [65] is an open source packages for robotic simulation, containing
an evolutionary algorithm for ER simulations. Like Webots , Darwin2K in-
cludes advanced robot models and has, among other things, been used in con-
nection with research on planetary exploration robots. The Darwin2K package
is available at darwin2k.sourceforge.net .

Utility function library

The author’s research group is currently developing a general simulation pack-
age, the utility function library or UFLibrary for ER applications involving
behavioral organization using the utility function method (see Subsect. 3.3.3).
The utility function library has been developed using Delphi object-oriented
Pascal (www.borland.com), and the first released version (v1.0.1), together
with a tutorial and reference manual, can now be downloaded from the in-
ternet [125]. At present, the UFLibrary consists of a total of more than 12,000
lines of code, divided into 51 source units, ranging from general units concern-
ing e.g. the evolutionary algorithm used for the optimization of utility func-
tions to more specific units such as those defining, for example, a DC motor
or a laser range finder. In addition, a few basic behaviors, such as a naviga-
tion behavior, an obstacle avoidance behavior etc. have been included in the
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UFLibrary .

UFLibrary makes possible the construction of robotic brains of arbitrary
complexity, provided that certain guidelines (as enforced by the utility func-
tion method) are followed. The functionality is provided in the form of a
software package rather than as a stand-alone application. Although some
programming is required to make full use of the UFLibrary , for example to
define new behaviors or to define a new stand-alone application based on the
package, it is possible, for basic usage, to control most aspects of the simula-
tions through the use of definition files in the form of simple text files. When
implementing an application, a minimum of two definition files are required,
one for the world (arena) in which the robot is supposed to move and oper-
ate, and one for the robot itself. The definition files have an object-oriented
structure, and provide an intuitive interface, even to users who have limited
programming experience. More detailed information concerning the use of
the UFLibrary can be found in [125]. Also, the UFLibrary and the related
documents can be found on the CD accompanying this tutorial.

A screenshot of a typical environment for a robotics simulation using this
software is shown in Fig. 3.27.

3.5 The future of evolutionary robotics

Predicting the future is a difficult business. Long-term investigations of such
predictions often show a general pattern: Forecasters are too optimistic in their
short-term (5-10 years, say) predictions, and too pessimistic in their long-term
predictions (50-100 years, say). Furthermore, new inventions that cannot even
be imagined today are certain to appear, at least in the long term, rendering
the task of predicting the future even more difficult.

Some long-term predictions concerning robotics in general (i.e. not specif-
ically ER), can be found e.g. in [15], [49], and [83]. An interesting observation
made by Moravec [83] is that, since around 1990, the growth of computational
power available to robotics (and AI in general) approximately follows Moore’s
law, i.e. a doubling of computational power every 18 months. This was not so
before 1990, due to decreasing funding for AI and robotics, which almost pre-
cisely offset the computational gains resulting from Moore’s law. However,
during the 1990s and early 2000s computers and computer parts have become
so cheap that experiments in robotics (and other related fields) can be carried
out on a very limited budget.

This trend is likely to remain in place, and Moravec even extrapolates to
2040, when (if Moore’s law can be sustained) robots and computers should be
able to perform 100 million million instructions per second (100 million MIPS),
which is roughly equivalent to the computational speed of the human brain.
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Figure 3.28: The PaPeRo personal robot. c© NEC. Reproduced with kind per-
mission of the NEC corporation.

Clearly, computing power alone is not sufficient for generating robots with
intelligent behavior, but it certainly helps.

Furthermore, there are many autonomous robots that are soon to be re-
leased or are already available on the market, particularly in Japan, where pet
robots such as AIBO, and humanoid robots such as ASIMO, have had great
success. The fact that robots such as AIBO are mass produced is also impor-
tant: The possibility of making profits from the construction of autonomous
robots is, of course, an essential driving force in their development.

So far, the capabilities of commercially available robots are quite limited,
even though they are important precursors for more advanced robots. In ad-
dition to entertainment robots such as AIBO, commercially available robots
include lawn moving robots, vacuuming robots, and robots for autonomous
transportation in hospitals. There are also prototypes for general-purpose
household robots, such as the NEC PaPeRo robot shown in Fig. 3.28.

Returning now the ER, some general trends can be observed. Note that
the following paragraphs reflect the author’s view. For an alternative (but not
necessarily conflicting) view of the short- to intermediate-term future of ER,
see e.g. [32].

First of all, a result of the increasing complexity of robotic brains is to re-
duce further the possibility of generating such systems by hand. Thus, if any-
thing, ER is likely to become more useful as complexity grows. This can be
seen e.g. in recent EA-based methods for behavioral organization [122]. In-
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deed, behavioral organization is of paramount importance in for ER to be able
to deliver robots with the capabilities needed for autonomous operation in re-
alistic environments. Current research efforts in this field show that EA-based
methods indeed are able to generate complex robotic brains, with a minimum
of hand-coding by the experimenter [99].

Furthermore, it is likely that the EAs used for ER (and also for other ap-
plications) will become increasingly sophisticated incorporating, among other
things, artificial gene regulation and ontogeny, as described in Subsects. 2.7.2
and 3.4.3, to a greater degree than today. Indeed, the march towards more
complex EAs is inspired, in part, by the rapid developments in molecular biol-
ogy [20] and bioinformatics [11]. In particular, the advent of massively parallel
gene expression measurements using microarray techniques [102] has led to a
rapid increase in the amount of biological data available, and the cooperation
of biology and computer science in bioinformatics continues to deliver new
information concerning the organization and function of biological systems,
information that is likely to be assimilated also in EAs.

In addition, the simultaneous evolution of body and brain is likely to be-
come increasingly important in ER. In biological systems, brains and bodies
have, of course, evolved together, and form an integrated system. Thus, de-
spite the increasing complexity introduced by variable morphologies, it is pos-
sible that simultaneous evolution of body and brain may, in fact, speed up
evolution [9], [96].

Finally, it is likely that there will appear many new multi-robot applica-
tions, in which the evolutionary process must also take into account the com-
munication between robots [73], [134], as well as the communication between
robots and people [34]. A particularly interesting topic is the emergence of
complex, self-organized collective behavior from simple, local interactions,
akin to stigmergy [116] in social insects such as ants and termites.

To summarize, it is evident that the influence from molecular biology, ge-
netics, and ethology will continue to play an important role in ER and in the
near future, increasingly advanced robots, based in whole or in part on ER,
will in all probability appear on the market, ready and able to help people
with a variety of tedious and dangerous tasks.



Appendix A: Artificial neural
networks

The aim of this appendix is to give a very brief introduction to neural net-
works, introducing only those parts of this vast topic that will be used in
this tutorial. For a more thorough introduction see [42]. Artificial neural net-
works (ANNs) are computational structures (loosely) based on the structure
and function of biological neural networks that constitute the brains of ani-
mals. Basically, an ANN is a set of interconnected elements, called neurons.

Neurons

The main computational element in neural networks, the neuron, is illustrated
in Fig. A1. In essence, a neuron receives weighted inputs, either from other
neurons (or from the neuron itself, in some networks, see below), or from in-
put elements, sums these input, adds a bias to form an internal signal, and
produces an output by passing the internal signal through a squashing func-
tion. ANNs may operate either in discrete time or continuous time. In the
former case, the output of neuron i in a network, denoted xi is computed as

xi = σ

(

∑

j

wijzj + bi

)

, (A1)

where wij are the connection weights, zj the input signals to the neuron and
bi is the bias. In the continuous case, the output at time x(t) is typically given
by the differential equation

τiẋi(t) + xi(t) = σ

(

∑

j

wijzj + bi

)

, (A2)

where τi are time constants. Typically, the zj are inputs from other neurons
(or even the neuron i itself), so that the equations for different neurons are
joined into a set of coupled non-linear differential equations. Other equations
are also possible, of course. In any case, the neuron equations presented above
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Figure A1: An artificial neuron. First, the input signals, multiplied by the
weights, are added. Next, the bias b is added, and the output is computed
using the squashing function σ.

represent very a strong simplification of the very intricate method of operation
of actual biological neurons. The squashing function can be chosen in various
different ways. Two common choices are the logistic function

σ(z) =
1

1 + e−cz
, (A3)

which restricts the output to the range [0, 1], and the hyperbolic tangent

σ(z) = tanh cz, (A4)

which restricts the output to [−1, 1]. In both functions, c is a positive constant,
which determines the steepness of the squashing function. If c is set to a very
large value, σ(z) approaches a step function.

Network types

The two main types of neural networks are feedforward neural networks
(FFNNs) and recurrent neural networks (RNNs). In the former, neurons are
arranged in layers, and signals flow from the input layer to the first hidden
layer, from the first hidden layer to the second hidden layer etc. until the out-
put layer is reached. By contrast, in RNNs, any neuron may be connected to
any other neuron. RNNs often operate in continuous time, using Eq. (A2) to
represent neurons. The difference between FFNNs and RNNs is illustrated in
Fig. A2. For the FFNN, shown in the left panel of the figure, the input sig-
nals are denoted Ij, the neurons in the middle layer xH, and the neurons in
the output layer xO. Assuming the network operates in discrete time, which is
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Figure A2: The left panel shows a feedforward neural network (FFNN),
whereas the right panel shows a recurrent neural network (RNN), in which
feedback connections are present.

common in FFNNs, the corresponding network equations will be

xH
i = σ

(

∑

j

wIH
ij Ij + bi

)

, (A5)

where wIH
ij are the weights connecting input element j to neuron i in the hid-

den layer, and

xO
i = σ

(

∑

j

wHO
ij xH

j + bi

)

, (A6)

where wHO
ij are the weights connecting the hidden layer to the output layer.

Note that the first (leftmost) layer (the input layer) in the FFNN does not con-
sist of neurons: the elements in this layer, indicated by squares to distinguish
them from neurons that are indicated by circles, simply serve to distribute the
input signals to the neurons in the hidden layer. No squashing function is as-
sociated with the elements in the input layer. In general, the term units can be
used to refer either to input elements or to neurons.

An RNN is shown in the right panel of Fig. A2. Here, neurons are not
(necessarily) arranged in layers, and the output of a typical neuron is given by

τiẋi(t) + xi(t) = σ

(

∑

j

wijxj(t) +
∑

j

wI
ijIj(t) + bi

)

, (A7)

wherewij are the weights connecting neurons to each other, andwI
ij are weights

connecting input j to neuron i. Again, the inputs are shown as squares in the
figure, and the neurons are shown as circles. Since RNN are not arranged in
layers, there are no natural output neurons. Instead, some neurons are sim-
ply selected to be the output neurons. The number of such neurons varies, of
course, from problem to problem.
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Training an ANN

In a neural network, the computation is intertwined with the structure of the
network (i.e. the number of neurons, and their connections to each other). If
the structure is changed, the computation changes as well. Thus, in order for a
network to perform a given type of computation, both the number of neurons
and the network weights must be set to appropriate values, a process known
as training. There are various algorithms for training neural networks. The
most common algorithm, applicable to FFNNs, is the backpropagation algo-
rithm [42]. This training algorithm requires that the reward is immediate: for
any input signal, it must be possible to judge directly the quality of the output
by means of an error function. For this reason, backpropagation belongs to a
family of training algorithms known as supervised training algorithms. Inci-
dentally, it can be mentioned that the error function must be differentiable for
backpropagation to function properly. No such restrictions are required in the
case of ANN optimization by means of EAs.

However, supervised training methods are rarely applicable in ER, since
immediate rewards do not normally occur. Instead, the reward (if any) for a
given action generally occurs long after the action was taken. In addition back-
propagation, as indeed many other methods developed in the neural network
literature, require that the structure of the ANN be specified in advance. In ER
it is generally impossible to specify the best structure of a ANN-based robotic
brain beforehand. Thus, for these reasons, EAs are often the method of choice
when generating ANNs in ER and, in this tutorial, only EA-based generation
of ANNs will be considered.



Appendix B: Finite-state machines

In addition to neural networks (see Appendix A), finite-state machines are
sometimes used for representing robotic brains in connection with ER.

A finite-state machine [33] (hereafter FSM) consists, as the name implies,
of a finite number of states and conditional transitions between those states.
At every time step, an FSM reads an input symbol, and produces an output
symbol as it jumps to the next target state.

In FSMs, the input and output symbols are taken from two discrete alpha-
bets. Commonly, the input alphabet, i.e. the symbols received by the FSM, is
the same as the output alphabet, i.e. the symbols generated by the FSM.
A simple FSM is shown in Fig. B1. In this case, the input and output alphabets
both consist of the symbols 0 and 1, and the input-output mapping is shown
in the right panel of the figure. Unlike FFNN (see Appendix A), FSMs can be
equipped with a dynamic memory of previous events, and can thus be used
e.g. to generate robotic brains that reach beyond the realm of purely reactive
behaviors.

FSMs, as introduced above, operate with discrete variables, however, and
are therefore not always suitable in connection with autonomous robots, which,
of course, operate in continuous time. A useful extension to FSMs are gener-
alized finite-state machines (GFSMs) [128]. Like ordinary FSMs, GFSMs con-
sist of a finite number of states and transitional conditions between the states.
However, in GFSMs, each state consists of a specific setting of (some of) the
variables of the system under study. For example, in the case of a Khepera
robot (see Appendix C), the variables specified in a state may be the speeds of
the two motors.

From each state i, there are Mi conditional transitions to other states. In the
case of autonomous robots, the conditions often involve the sensor readings,
but other variables can also be used. The conditions can, in principle, be arbi-
trarily complex, and are thus not restricted to a particular alphabet, as in FSMs.
If a condition is satisfied, the GFSM immediately jumps to the corresponding
target state. No particular action is associated with the jump from one state to
another. If none of the conditions are satisfied, the GFSM remains in the same
state, as indicated for state 1 in Fig. B2.

Thus, in GFSMs, each state is associated with some specific variable setting,
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Figure B1: A simple finite-state machine.

State 1

State 2

State j

. . .

Condition 1 Condition 2 Condition M1
. . .

. . .
State N

Figure B2: A GFSM. There are N states and, for each state i, there are Mi con-
ditional transitions (which differ from state to state). Only one conditional
transition is shown in the figure, namely from state 1 to state j.

whereas in ordinary FSMs it is the state transitions that are associated with
the actions. This reduces the number of possible variable settings for GFSMs
compared to FSMs for a given state machine size since, normally, there are
more transitions than states. However, it also makes the architecture more
transparent and easy to interpret.



Appendix C: The Khepera robot

During the last few decades, a large number of autonomous robots have been
developed, both by robotics researchers and, more recently, by companies such
as Sony, Honda etc. In this appendix, the properties of one commercially
available robot, namely the Khepera robot developed by K-team (www.k-
team.com) will be described briefly. The Khepera robot has, for many years,
been a popular tool in ER, due to the facts that it is very compact and light (and
thus easy to transport), easy to program, and equipped with basic sensory ca-
pabilities. In addition, the fact that the robot is so widely used, as evidenced
by the many examples in Chapter 3, facilitates the comparison of the results
obtained by different research groups. The also exists several simulators for
Khepera (see Subsect. 3.4.4), some of which allow evolved robotic brains to be
uploaded directly onto an actual Khepera robot.

Khepera is a small differentially steered robot, equipped with two wheels
and eight infrared sensors in the standard configuration. Several additional
modules, such as linear vision arrays and gripper arms, can be added to the
standard Khepera configuration. Two versions of Khepera exist: the original
version (called Khepera I in the remainder of this appendix) with a diameter
of around 55mm, and an improved version (Khepera II), with a diameter of
around 70mm. The weight of the robot is approximately 80g (Khepera II).

Pictures of Khepera I and Khepera II are shown in Fig. C1. The robot
is equipped with a processor from the Motorola 68K family, and has a RAM
memory of 256 Kb (Khepera I) or 512 Kb (Khepera II).

The robot can be programmed in C, and the communication between the
computer and the robot is carried out via a serial cable. Once a program has
been downloaded into a Khepera robot, the cable can be removed and the
robot is then fully autonomous. Each Khepera robot carries four rechargeable
NiCd batteries, which allow the robot to operate for around 45 minutes (Khep-
era I) to one hour (Khepera II). However, for longer operation, the robot can
be powered via the serial cable.

The robot is equipped with two DC motors, one on each side. The low-
level control of both motors is handled by PID controllers, which allow the
user to set either a speed or a position, without worrying about the details of
the motor control. The top speed of the robot is around 1 m/s. It is possible
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Figure C1: The Khepera family: Khepera I (left panel) and Khepera II (right
panel). Photos by the author.
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Figure C2: A schematic view of the Khepera robot. The infrared sensors are
numbered from 0 to 7.

also to override the motor controllers and take more direct control over the
motion of the robot.

As shown in the schematic view of the robot (Fig. C2), the robot has eight
infrared proximity sensors numbered from 0 (just in front of the left wheel in
Fig. C2) to 7 (behind the left wheel). The sensors can be used in two modes,
either to measure the ambient light levels (using only the reception of infrared
light) or to measure the light reflected by objects surrounding the robot (by
emitting infrared light and measuring the reflection). The sensors update their
readings every 20 ms, allowing high resolution (in time) of the measurements.
The readings for each sensor are integer values between 0 and 1023.

The sensor range for measurement of reflected light varies with the reflec-
tivity of the object in question, but is around 20–50 mm (i.e. of the same order
of magnitude as the size of the robot itself) for Khepera I and up to 100 mm
for Khepera II. It should be noted that the Khepera is rather sensitive to the
amount of ambient light present, and can easily be blinded if a strong light
source is suddenly turned on.



Bibliographical notes

These tutorial notes are, of course, intended as an introduction to the ER liter-
ature. However, the reader should also consult the original sources, given in
the reference list below. Because of the length of the reference list, however,
readers who are new to the field of ER may be helped by some guidance, es-
pecially since many of the references do not directly deal with ER but instead
with closely related topics, such as BBR, ANNs etc.

Thus, in addition to these tutorial notes, the reader is recommended to be-
gin by considering the book on evolutionary robotics by Nolfi and Floreano
[90], as well as review papers such as [40], [41], [76], and [92]. It is also rec-
ommended to read introductory texts on behavior-based robotics [2], ethology
[25], and molecular biology [20], since all these fields have a strong influence
on research in ER.

Furthermore, despite its length, the reference list below is only a partial
(and probably biased) sample of the many papers available in ER. Thus, the
reader is recommended to consult journals in which ER-based research ap-
pears, e.g. Adaptive Behavior, Artificial Life, Evolutionary Computation, IEEE
Transactions on Evolutionary Computation, IEEE Transactions on Systems,
Man, and Cybernetics, and Robotics and Autonomous Systems, as well as
the proceedings of the many conferences in which ER is often featured, e.g.
Simulation of Adaptive Behavior (SAB), Artificial life (ALIFE), Evolutionary
Robotics (ER), Genetic and Evolutionary Computation (GECCO), Intelligent
Robots and Systems (IROS), Robotics and Automation (ICRA), and Systems,
Man, and Cybernetics (SMC). The author maintains a regularly updated list of
conferences in ER and related fields, which is available at
http://www.me.chalmers.se/˜mwahde/ConferenceList.ph p
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[3] Bäck, T., Fogel, D.B., and Michalewicz, Z. (Eds.), Handbook of Evolution-
ary Computation, Institute of Physics Publishing and Oxford University
Press, 1997
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