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Abstract: A biologically inspired computational model for learning in continuous-time recurrent neural
networks is introduced and described. The model includes both short-term learning, dependent on
neural activity, and long-term learning, dependent on synaptic tagging and artificial gene regulation.
Even though many aspects of learning remain to be included in the model, it is shown that, in its present
state, the model can reproduce important aspects of fundamental forms of learning such as habituation
and sensitization.

1 INTRODUCTION

Learning, i.e. the modification of behavior based on pre-
vious experience, is a crucial property of many living sys-
tems. The storage of information during learning can be
either short-term or long-term; even relatively simple bi-
ological organisms are capable of both forms of memory,
something that has been elucidated in detailed analyses
of organisms such as Aplysia (see [5] for a review) and
C. Elegans [10].

Two of the most basic forms of learning are habituation
and sensitization. Habituation refers to the gradual ex-
tinction of the behavioral response to a repeated, neutral
stimulus, such as a light touch. This fundamental type of
learning, which has been found in a wide range of biolog-
ical organisms [10], allows an animal to ignore harmless
stimuli and thus to focus on other, more relevant stimuli.

Sensitization, on the other hand, refers to an increased
behavioral response to a neutral stimulus following the
application of an aversive stimulus (such as, for example,
an electric shock).

The giant sea snail Aplysia is capable of both short-
term and long-term habituation and sensitization [8, 7,
5]. Moreover, due to the large size of its neurons, it is
a suitable model system for detailed molecular analyses.
As a protective mechanism, Aplysia will rapidly with-
draw its gill (its respiratory organ) upon a light touch
to a piece of skin that partly covers the gill. If the ani-
mal is touched repeatedly, its response to the touch will
gradually become weaker, that is, the animal will dis-
play habituation. By contrast, if a mild electric shock is
applied to the animal’s tail, it will exhibit sensitization,
such that its subsequent response to a light touch will
instead increase in magnitude.

In a series of studies, Kandel and colleagues (see [5]
for a review) were able to demonstrate that short-term
sensitization in Aplysia involves the modulatory neuro-
transmitter serotonin, which is released in response to a
sensitizing stimulus. Serotonin, in turn, unleashes a com-
plex chain of events, the net result of which is an increase
in the level of neurotransmitter released at the affected
synapses. It was also found that, unlike short-term learn-
ing, long-term learning requires anatomical modifications
in the animal’s neurons, i.e. the growth of new synapses.

In the case of sensitization in Aplysia, repeated applica-
tion of the neurotransmitter serotonin at a synapse initi-
ates a cascade of gene regulation, leading, after a complex
series of steps, ultimately to synaptic growth. Moreover,
even though the gene regulation of course involves the nu-
cleus of the neural cell, rather than affecting all synap-
tic connections made by the cell, the ensuing synaptic
growth is synapse-specific, only affecting synapses that
have been tagged (a process that also involves serotonin,
in the case of Aplysia).

Similarly, short-term habituation in Aplysia has been
found to involve changes in neurotransmitter release
at synapses, whereas long-term habituation requires
anatomical changes [2, 5].

Analytical models of several basic forms of learning
(such as habituation, sensitization, and also classical
conditioning) have been considered by several authors,
in some cases using detailed biophysical models (see
e.g. [3]), in other cases focusing on phenomenological
models [13, 15, 14, 9]. In most cases, rather than being
applied as general computational tools, models of basic
learning have mainly been focused on describing learn-
ing phenomena in biological organisms. However, some
authors have considered the evolution of learning rules
for artificial neural networks (see e.g. [12, 4]). In ad-
dition, computational models of genetic regulatory net-
works have been introduced as well. For example, in
connection with artificial neural networks, several devel-
opmental models have been considered (such as Kitano’s
grammar encoding [6]), in which neural networks are gen-
erated using genotype-to-phenotype mappings of varying
degrees of complexity; see [4] for a review.

Even though several authors have considered both
short-term and long-term aspects of basic learning and
memory formation, the models introduced thus far do not
(to the author’s knowledge) explicitly include a model of
gene regulation to account for dynamic long-term mem-
ory formation (an exception is a model proposed by the
author and investigated in [16]).

The aim of this paper is to introduce and describe a
model combining short-term and long-term learning in
fully recurrent continuous-time neural networks, using
the concepts of artificial gene regulation and synaptic
tagging in connection with long-term memory formation.



2 MODEL

Consider a fully recurrent, continuous-time neural net-
work containing n neurons. The output xi of neuron i
(i = 1, . . . , n) is given by the first-order differential equa-
tion

τiẋi + xi = σ1





n
∑

j=1

wijxj + wi0 + Ii



 , (1)

where τi is a time constant and wij are the (connection)
weights, corresponding to synapses in biological neural
networks. Ii denotes the (external) input signal (if any)
to neuron i. Note that the neurons are not arranged in
layers; any neuron may be connected to any other neuron
(including itself). The activation function σ1(z) is here
taken as

σ1(z) =

{

1 − e−cz if z ≥ 0
0 otherwise.

(2)

where c is a constant, typically set to 1. With this acti-
vation function, the output of any neuron is restricted to
the range [0, 1]. Note that σ1(z) is not differentiable at
z = 0. However, as illustrated in Sect. 3, Example 3, the
constants of the learning model (described below) can be
set using stochastic optimization algorithms such as ge-
netic algorithms or particle swarm optimization, rather
than gradient descent (or other methods involving deriva-
tives), implying that the activation functions need not be
differentiable.

For any given set of input signals, the detailed dynam-
ics of a neural network is determined by its weights and
time constants. In the model presented here, the network
weights will vary with time, and will therefore be referred
to as parameters , rather than constants. By contrast,
quantities that remain unchanged during evaluation of a
neural network (e.g. τi) will be referred to as constants .
In this model, the weights wij (i = 1, . . . , n, j = 0, . . . , n)
are obtained as

wij = wmaxσ2

(

νstm
ij + νltm

ij

)

, (3)

where νstm
ij and νltm

ij (both restricted to [−1, 1]) denote
the short-term and long-term parts of the weight, respec-
tively. The activation function σ2(z) is given by

σ2(z) = tanh cz, (4)

where c is a constant, normally set to 1. The constant
wmax determines the (asymptotic) range of the weights
wij . The short-term memory dynamics is given by

τ stm
ij ν̇stm

ij + νstm
ij = σ2

(

n
∑

k=1

αijkxk

)

, (5)

where αijk are constants (henceforth referred to as mod-
ulatory weights), and

τ stm
ij =

{

τ stm+
ij if sgn(ν̇stm

ij ) = sgn(νstm
ij )

τ stm−
ij otherwise

(6)

Thus, each short-term weight νstm
ij is associated with two

time constants, so that the time scale for rising weight

magnitudes differs from the time scale of falling weight
magnitudes. The variation in the short-term weights is a
result of neural activity. Thus, during initialization (prior
to integration of the network equations), all short-term
weights are set to zero, and the long-term weights νltm

ij

are obtained from the (given) initial weights wij as

νltm
ij = σ−1

2

(

wij

wmax

)

. (7)

Since νltm
ij should be restricted to the range [−1, 1] (see

Eq. (11) below), the initial values of the weights wij

should be sufficiently small, relative to wmax, so as to
generate values within that range. This implies no re-
striction: The value of wmax can always be set (at initial-
ization) to accomodate any desired initial weight values.

During integration of the network equations, the short-
term weights change according to Eq. (5) resulting, in
turn, in a modulation of the synaptic weights wij ac-
cording to Eq. (3). This modulation is equivalent to
the short-term dynamics found in biological neurons, in
which changes in the amount of neurotransmitter re-
leased at a synapse result in a change in synaptic efficacy.

In addition to the short-term dynamics, the model also
includes long-term dynamics that, as in the biological
counterpart (see Sect. 1), depends on synaptic tagging
and gene regulation. Thus, in the model, the variation in
the short-term weights νstm

ij results in an artificial marker
substance, denoted sij , being deposited at the synapse in
question, according to

τ s
ij ṡij + sij = σ2

(

βijν
stm
ij

)

, (8)

where βij are constants. The time constants τ s
ij are given

by

τ s
ij =

{

τ s+
ij if sgn(ṡij) = sgn(sij),

τ s−
ij otherwise

(9)

In other words, synapses undergoing changes are tagged .
Note that the marker substance sij takes values in the
range [−1, 1], and should therefore (in a biological anal-
ogy) be interpreted as a net effect of several marker sub-
stances, rather than as a simple concentration of a single
marker substance. The presence of marker substance at
the synapses of neuron i triggers expression of an artifi-
cial gene gi according to

τ
g
i ġi + gi = σ1





n
∑

j=0

γij |sij | + Γi



 , (10)

where τ
g
i , γij , and Γi are constants. In this model, gene

expression levels take values in the range [0, 1]. For any
given gene, the parameter Γi determines the level of in-
put required for the gene to be activated (i.e. to obtain
expression levels above 0). It should be noted that, as
in biological neurons, rather than being synapse-specific,
the genes are properties of the cell (neuron) as a whole.
However, in order to be useful, the long-term dynamics
must, like the short-term dynamics, be synapse-specific.
Thus, the long-term weights νltm

ij vary according to

τ ltm
ij ν̇ltm

ij = (1 − |νltm
ij |)σ2 (δijsijgi) , (11)
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Fig. 1: The network used in Example 1 (habituation). The mod-
ulatory connection (specified by the modulatory weight α211) is
represented by the line ending with a filled square.

where τ ltm
ij and δij are constants.

This completes the model. During initialization,
the long-term weights νltm

ij are determined as described

above, whereas the short-term weights (νstm
ij ), the marker

substance levels (sij), and the gene expression levels (gi),
and the neuron activation levels (xi) are all set to zero.
During network integration, the short-term weights are
updated according to Eq. (5). The marker substance lev-
els and the gene expression levels are integrated accord-
ing to Eqs. (8) and (10), respectively, and the long-term
weights are obtained from Eq. (11). The weights wij (to
be employed in the next time step of the integration, us-
ing Eq. (1)) are then computed from Eq. (3).

The full specification of a network requires that a large
number of constants should be set, namely τi, wmax,
τ stm+
ij , τ stm−

ij , αijk, τ s+
ij , τ s−

ij , βij , τ
g
i , γij , Γi, τ ltm

ij and

δij (neglecting the parameters c in the activation func-
tions that, as mentioned above, are normally set to 1). In
addition, the initial weight values wij must also be set,
so that the initial values of νltm

ij can be computed. Thus,
the dynamic flexibility of the model comes at a price.
However, as illustrated below, in some cases only a few
of the available constants need take non-zero values.

3 RESULTS

The learning model will now be illustrated by means of
three simple examples, namely habituation (Example 1),
habituation and sensitization (Example 2), and general
signal following (Example 3). In all cases, the network
equations were integrated numerically using a time step
of 0.01 s.

3.1 Example 1: Habituation

The first example considered here will be habituation,
both short-term and long-term. (Here, long-term refers
to any learning lasting more than a few seconds). The
network used is shown in Fig. 1. As can be seen, the
network contains only two neurons, marked x1 and x2.
A single input signal (I1) enters the network via neuron 1
that, in turn, is connected to neuron 2 through the only
non-zero connection weight w21. In addition, the network
contains a modulatory weight denoted α211. Thus, for
this simple network the full set of equations becomes

τ1ẋ1 + x1 = σ1 (I1) , (12)

Table 1: CONSTANTS USED IN THE NETWORK ILLUSTRAT-
ING HABITUATION (EXAMPLE 1).

Neuron dynamics:
τ1 0.050 τ2 0.050
w21 (initial) 2.000 wmax 5.000

Short-term memory dynamics:
τ stm+
21 0.500 τ stm−

21 3.000
α211 -1.000

Long-term memory dynamics:
τ s+
21 5.000 τ s−

21 5.000
β21 1.000
τ
g
2

5.000
γ21 1.000 Γ2 -0.100
τ ltm
21 10.000

δ21 2.000

τ2ẋ2 + x2 = σ1 (w21x1) , (13)

τ stm
21 ν̇stm

21 + νstm
21 = σ2 (α211x1) , (14)

τ s
21ṡ21 + s21 = σ2

(

β21ν
stm
21

)

, (15)

τ
g
2 ġ2 + g2 = σ1 (γ21|s21| + Γ2) (16)

and
τ ltm
21 ν̇ltm

21 =
(

1 − |νltm
21 |

)

σ2 (δ21s21g2) . (17)

Note that, for simplicity, no bias term (w20) has been in-
cluded in the input to neuron 2, since it is not needed in
this example. Note also that any gene regulation involv-
ing neuron 1 can be ignored, as it neither has any bias
term nor receives input from any other neuron.

In order to specify the network, the initial value of
the weight w21 must be set, as well as the constant
α211. Furthermore, the constants wmax, β21, γ21, Γ2,
and δ21 must be set, as well as the time constants
τ1, τ2, τ

stm+
21 , τ stm−

21 , τ s+
21 , τ s−

21 , τ
g
2 , and τ ltm

21 . A set of suit-
able values of the constants (for habituation) is given in
Table 1. In this case, the constants were found through
simple trial-and-error experimentation.

Fig. 2 shows the resulting dynamics. The input sig-
nal I1, shown in the top panel, starts with 10 equally
spaced pulses, of equal magnitude, followed by a period
of around 3.5 s during which no input pulses are applied.
Next, a new sequence of equally spaced input pulses, of
the same magnitude as before, is applied.

The second panel (from the top) shows the output
(x2): Following a strong initial response, the output is
gradually weakened, as a result of short-term depression
of the connection weight w21. Furthermore, the weight
w21 is gradually tagged with a marker substance s21, here
taking negative values, as shown in the third panel of the
figure. The presence of the marker substance eventually
triggers expression of the gene g2, which, in turn, triggers
long-term modification of the weight w21.

The bottom panel of Fig. 2 shows the variation of w21,
resulting from the combination of short-term (νstm

21 ) and
long-term (νltm

21 ) weight variations (not shown). As can
be seen in this panel, as soon as the habituating stimulus
disappears, w21 stages a recovery that, however, only be-
comes incomplete, as a result of the long-term depression
of the weight. Thus, when the second pulse train arrives,
the initial response x2 is weaker than the initial response
to the first pulse train. Furthermore, after around 16.5



0 5 10 15
time HsL

0.5

1.
I1

0 5 10 15
time HsL

0.3

0.6
x2

5 10 15
time HsL

-0.2

-0.4

s21

0 5 10 15
time HsL

0.1

0.2
g2

5 10 15
time HsL

-0.5

1.

2.
w21

Fig. 2: The results obtained for Example 1 (habituation). From
top to bottom, the panels show the variation (with time) of I1, x2,
s21, g2, and w21. The gradual extinction of the response (x2) as a
result of habituation can be seen in the second panel from the top.
For a complete description of the figure, see the main text. Note
that, for clarity, different scales have been used on the vertical axes
of the different panels.

s, w21 becomes consistently negative so that, in fact, the
response is completely extinguished: A case of complete
habituation.

3.2 Example 2: Sensitization and habituation

As a second example, sensitization and habituation will
be considered together. A network capable of exhibit-
ing both features is shown in Fig. 3. Since the network
extends the one considered in Example 1 above, the enu-
meration of the neurons (and constants) present in the
previous network has been kept, to facilitate comparison
between the two networks.

In this example, the network takes two inputs, denoted
I1 and I3. As before, I1 represents a neutral stimulus;
thus, the proper response of the network will be to habit-
uate, giving progressively smaller response (x2) to pulses
entering the network in the form of the signal I1. By
contrast, I3 represents an aversive stimulus (such as an
electric shock, as commonly used in Aplysia studies [5]).
The desired response is one of sensitization, such that,
following the application of a pulse in I3, the response of
the network to a neutral stimulus (I1) should increase.

For the network shown in Fig. 3, the equation for x1

is the same as above; see Eq. (12). Neglecting the bias
terms again, the equation for x2 changes to

τ2ẋ2 + x2 = σ1 (w21x1 + w23x3) , (18)

whereas x3 is obtained from

τ3ẋ3 + x3 = σ1 (I3) . (19)

The short-term memory dynamics now takes the form

τ stm
21 ν̇stm

21 + νstm
21 = σ2 (α211x1 + α213x3) , (20)

x
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Fig. 3: The network used in Example 2 (sensitization and habitu-
ation).

whereas the equations related to long-term memory,
Eqs. (15)-(17), remain unchanged (since νstm

23 ≡ 0).

Again, the constants were set using a process of trial-
and-error, starting from the constants used in habitua-
tion, given in Table 1. The detailed constant values thus
obtained will not be given here; suffice it to say that α211

should be negative and α213 should be positive. Fig. 4
shows the resulting dynamics for one suitable set of con-
stants. In this experiment, a single pulse of the neutral
stimulus (I1, top panel) was first applied, giving a re-
sponse (x2, third panel) with a maximum of around 0.3.
Next, the aversive stimulus (I3, second panel) was ap-
plied five times (with equal magnitude each time). The
aversive stimuli gave rise to strong output pulses, with a
maximum of around 0.7. Next, after a resting period of
around 5 s, a single neutral stimulus was again applied
at t ≈ 15 s. As can be seen in the third panel of the fig-
ure, the resulting output pulse x2 reached a maximum of
around 0.55, i.e. higher than the original response (with a
maximum of around 0.3), indicating sensitization. Next,
starting at t ≈ 18 s, a train of five neutral pulses was
applied. The response to the first pulse reached a maxi-
mum of around 0.35, indicating a lingering sensitization
to the aversive stimuli applied earlier. However, at this
point, the repeated neutral stimuli gave rise to (short-
term) habituation, so that the response to the last four
pulses (ending at t ≈ 23 s) was gradually extinguished.
After another resting period of around 3.5 s, an addi-
tional set of three neutral stimuli was applied, this time
resulting in an initial output pulse with a maximum of
around 0.28, showing that habituation now had elimi-
nated the long-term sensitization. Again, with repeated
application of the neutral stimulus, the response x2 was
rapidly extinguished.

The variation of the weight w21 is shown in the bottom
panel of Fig. 4. As can be seen, the aversive stimuli gen-
erated a rapid increase in the weight, followed by a decay
towards a plateau slightly higher than the initial weight
value, due to an increase in the long-term part (νltm

21 )
of the weight (not shown). Subsequent neutral stimuli
then began to reduce w21. The initial depression of the
weight was of a short-term nature. However, towards the
end of the experiment (around t ≈ 29 s), habituation
had started affecting the long-term part of the weight as
well. Had the experiment been extended, the long-term
part would gradually have fallen towards negative values,
completely reversing the sensitizing effects of the aversive
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Fig. 4: The results obtained for Example 2 (sensitization and ha-
bituation). From top to bottom, the panels show the variation
(with time) of the variables I1 (the neutral stimulus), I3 (the aver-
sive stimulus), x2, and w21. Following an initial application of the
neutral stimulus, a sequence of aversive stimuli are applied, leading
to sensitization, as evidenced by the increased response (x2, third
panel) to subsequent neutral stimuli. For a complete description of
the figure, see the main text. Note that, for clarity, different scales
have been used on the vertical axes of the different panels.

stimuli applied from t ≈ 2 s to t ≈ 10 s. It should be
noted that the network thus could handle both short-
term and long-term memory dynamics for sensitization
and habituation.

3.3 Example 3: Signal following

As a final example, a simple instance of signal following
will be considered. In this example, a single slowly os-
cillating, input signal (I1) was used. This pre-specified
input signal normally varied sinusoidally between 0.2 and
0.8. However, one one occasion, at t ≈ 10 s, the signal
dropped to 0.05, and remained constant for around 2.5
s. The input signal then again oscillated between 0.2
and 0.8 for another 5.5 s. The (somewhat arbitrary) de-
sired output (taken as x2) was as follows: Until the input
signal dropped to 0.05, the output x2 was supposed to
mimic the input signal as closely as possible; that is, the
desired output x2 was then equal to I1. However, once
the input signal had dropped to 0.05, the desired output
signal was changed to 1 − I1.

Thus, the network was required to know that a drop
to 0.05 signalled profound changes in the desired output,
requiring modification of the network weights. Of course,
during the first 10 s of the experiment, the network could
easily obtain a good result with constant weights and a
small time constant τ2. However, after the desired output
changed to 1− I1, the network needed to quickly modify
its connection weights to handle the new situation.

Before proceeding with the example, one should note
that this experiment, of course, represents a toy prob-
lem: The simple signal following considered here can be
solved without neural networks (using instead, for exam-
ple, methods from classical control theory). Thus, the ex-
ample is intended merely as an illustration of the learning

0 5 10 15
time HsL0.

0.5

1.
I1

0 5 10 15
time HsL0.

0.5

1.
x2

Fig. 5: The top panel shows the input signal used in Example 3
(signal following). The bottom panel shows the output (x2) for the
best network found by the GA.

model.
In order to train the network (i.e. to set the constants

to appropriate values), a genetic algorithm (GA) was
used. The network constants were encoded in a genome
consisting of 11 real-valued chromosomes. The constants
encoded by the chromosomes (denoted Ck, k = 1, . . . 11)
were: The initial weights wij (C1, n(n + 1) constants),
αijk (C2, n2(n + 1) constants), βij (C3, n(n + 1) con-
stants), γij (C4, n(n+1) constants), Γi (C5, n constants),
δij (C6, n(n + 1) constants), τi (C7, n constants), τ stm+

ij

and τ stm−
ij (C8, 2n(n + 1) constants), τ ltm

ij (C9, n(n + 1)

constants), τ s+
ij and τ s−

ij (C10, 2n(n + 1) constants), and

τg (C11, n constants). The error measure was taken as
the root mean square error between the actual output
signal (x2) and the desired output signal (i.e. I1 for the
first 10 s of the evaluation, and 1 − I1 thereafter). Ex-
cept for the division of the genome into 11 chromosomes,
a fairly standard genetic algorithm was used, with tour-
nament selection, followed by crossover (with a certain
probability) and mutation (either full range mutation
or creep mutation). Crossover was applied within chro-
mosomes, i.e. with one crossover point for each chromo-
some. Elitism was used as well, such that a single copy
of the best individual in generation G was transferred
unchanged to generation G + 1.

The task of the GA was thus to set the constants of
the network, so as to minimize the error over the evalua-
tion. For any given individual (network), the parameters
(e.g. the network weights) varied during the evalution,
according to the equations given in Sect. 2.

Several evolutionary runs were made, with different
network sizes (number of neurons). For this example,
the best results were obtained using networks with seven
neurons. Fig. 5 shows the input signal (I1, top panel) and
the output signal (x2) of the best seven-neuron network
found by the GA.

Note that the network started with x2 = 0, whereas
the input signal I1 was equal to 0.5 at the beginning
of the evaluation. As can be seen in the figure, after
an initial transient, the network managed to follow the
oscillation of the input signal rather well, albeit with
somewhat smaller amplitude. At around t = 10 s, I1

dropped to 0.05, and the desired output signal changed
to 1− I1. The output promptly rose to a value of around
0.85 (i.e. slightly below the optimal value of 0.95). As
the input signal then began oscillating again, at around
t = 12.5 s, the network generated an out-of-phase output,
as desired. Interestingly, some genes (particularly gene
4, affecting the connection weights of neuron 4) showed



marked up-regulation, starting at around t = 10 s, indi-
cating that the network rewired itself to cope with the
change in the desired output.

Thus, the GA successfully discovered a network ca-
pable of solving the problem. However, before drawing
far-reaching conclusions, one should note that adapta-
tion to a given input signal can, of course, be achieved
without the network actually learning to follow an arbi-
trary input signal. A more stringent test of the model’s
capabilities would require more extensive testing, using
a variety of input signals. Furthermore, one should note
that the evolution of the network discussed above was, in
fact, quite slow, requiring a few thousand generations of
the GA (with a population size of 30) to reach the result
shown in Fig. 5.

4 DISCUSSION AND CONCLUSION

Even though the model of learning, introduced in Sect. 2
above, can reproduce several important aspects of learn-
ing in biological organisms, it can (and should) be im-
proved in various ways.

For example, the activity-dependent short-term learn-
ing, described in Eq. (5), results in a continuous varia-
tion of the short-term part (νstm

ij ) of the network weights,

except in those (uncommon) situations where the input
remains constant for extended periods of time, in which
case νstm

ij asymptotically approaches a constant. Contin-
uous modification of the network weights is not always
desirable; for instance, in Example 3 above, the network
would not really need to modify its weights to track the
signal during the first 10 s of the experiment. This raises
the issue of meta-plasticity, i.e. the modulation of learn-
ing [1] itself. This aspect could be introduced in the
model by turning the modulatory weights (αijk) into tun-
able parameters that only take non-zero values under cer-
tain circumstances, when learning is allowed. Of course,
the question of determining when to allow learning must
then also be addressed.

Another important issue concerns the gene regulation
involved in long-term learning. So far, this model only
features positive regulation, such that long-term learning
becomes possible when the artificial gene gi (associated
with neuron i) is expressed. However, in biological or-
ganisms, it is known that learning also involves memory-
suppressor genes [5] that must be down-regulated for
long-term learning to occur. Such genes may be involved
in determining which events, if any, should be stored in
long-term memory.

An equally important question concerns the reward
signals involved in learning. In the examples presented
in Sect. 3 above, the desired network output was known a
priori in all cases (and in the first two cases even the net-
work structure was known at the outset). In real-world
learning situations, such as those encountered by biolog-
ical organisms, no detailed error signal is readily avail-
able, in most cases. Behavioral learning studies indicate
that, in biological organisms, learning occurs when there
is a discrepancy between predicted reward and actual re-
ward [11]. Thus, in order to achieve general learning, one
must also consider (the evolution of) both reward signals
and internal prediction of rewards.

In conclusion, the model for learning introduced here
is capable of both short-term and long-term memory for-
mation, and can furthermore reproduce some important

aspects of habituation and sensitization, two of the most
fundamental forms of learning in biological organisms.
The issues related to improvements and refinements of
the model are currently under consideration by the au-
thor.
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