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Abstract. In this paper, it is argued that the standard taxonomy of
behavior selection is incomplete. In order to overcome the limitations
of standard behavior selection, a novel method for decision-making, the
extended utility function (EUF) method, has been developed. Based on
the concept of utility as a common currency for decision-making, the
method handles decision-making involving both cognitive processes and
(motor) behaviors, and is applicable as a general-purpose framework for
decision-making in autonomous robots (as well as software agents). The
EUF method is introduced and described, and it is then illustrated by
means of an example. Preliminary tests indicate that the method per-
forms well, allowing users rapidly to set up a decision-making system.
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1 Introduction

Traditionally, decision-making in behavior-based robotics has been referred to as
behavior selection or action selection (see e.g. [1] for a recent review). The stan-
dard taxonomy of behavior selection systems [2] identifies two main approaches
to the problem. In arbitration methods, normally a single behavior controls the
robot at any given time, other behaviors being inactive. By contrast, in com-

mand fusion methods, the action taken by a robot represents a weighted average
of the actions suggested by several different behaviors. However, this taxonomy is
incomplete. First of all, it is strongly directed towards motor behaviors, i.e. be-
haviors that use one or several motors in order to move the robot or a part
thereof. Indeed, the entire approach of behavior-based robotics (BBR) has been
criticized for its inability to generate solutions to anything other than simple
toy problems. In BBR, one commonly ties action directly to sensing; in other
words, not much (cognitive) processing occurs. Second, even though coopera-
tive methods (such as, for example, potential field navigation [3]) allow a robot
to generate an action as a weighted average of the suggestions from several el-
ementary behaviors, the taxonomy described above does not include methods
that allow, for example, one or several cognitive processes (”thinking”, ranging
from very simple low-level skills to much more complex processes) to execute
simultaneously with a motor behavior (”acting”).



2 Mattias Wahde

The purpose of this paper is to introduce a new approach to robotic decision-
making, referred to as the extended utility function (EUF) method. The EUF
method aims to overcome many of the limitations inherent in the methods de-
fined in the framework of the taxonomy described above and to allow users of
the method to define robots displaying sufficiently advanced overall behavior to
be useful in industrial and other applications.

2 The EUF Method

The EUF method has been developed as an extension of the utility function
(UF) method [4], which, being an arbitration method in the taxonomy described
above, has mainly been used for handling behavior selection among motor be-
haviors. The field of behavior-based robotics includes a bewildering array of
terms that are often used slightly differently by different authors. Thus, before
describing the actual method, an attempt will be made to clarify the various
terms used in connection with the EUF method.

2.1 Nomenclature

The term robotic brain will be used to describe the program (running in the
processor(s) of the robot) responsible for making decisions and taking actions.
The term control system is specifically not used, as it signifies the more limited
systems defined in the field of classical control theory. This is not to say that
classical control is irrelevant: On the contrary, in (motor) behaviors (see below),
the basic actions taken are often formulated in the form of classical control
systems, such as e.g. PID controllers. However, the decision-making of the robot
(i.e. selecting behaviors for activation or de-activation) is clearly another matter,
hence the use of the term robotic brain. It should also be noted that this term
does not imply that neural networks are used by default. Certain behaviors may

of course make use of neural networks, but the term robotic brain, as used in the
EUF method, does not in itself indicate that such structures are employed. Thus,
one may say that the term is more oriented towards the overall functionality of
a brain rather than its detailed structure.

In the EUF method, the robotic brain consists of a decision-making system
(described below) and a repertoire (i.e. a set) of brain processes. Three kinds of
(brain) processes are defined in the EUF method: (i) cognitive processes that do
not involve any motor action, (ii) locomotive behaviors that displace the entire
robot, using its motors, and (iii) movement behaviors that carry out movements
not related to locomotion, such as moving the arms or the head (if available on
the robot), or any combination thereof. Locomotive and movement behaviors
both constitute motor behaviors. Thus, what one normally thinks of as a behav-
ior (in BBR) is a special case of a brain process in the EUF method. Typically,
a robot defined in the EUF framework is equipped with several cognitive pro-
cesses and several motor behaviors. As for the motor behaviors, most wheeled
and legged robots are equipped with at least some locomotive behaviors. On the
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other hand, movement behaviors are commonly used in, say, humanoid robots,
whereas wheeled robots (of the kind considered in the example below) without
arms or other manipulators normally do not use movement behaviors. A few
specific examples of brain processes are given in connection with the example
presented in Sect. 4 below.

In addition to the repertoire of brain processes, a decision-making system is
defined, which is responsible for activation and de-activation of the various brain
processes, in response to the different situations encountered by the robot.

2.2 Brain processes

First and foremost, the EUF method deals with decision-making, i.e. selecting
brain processes for activation, rather than the problem of actually generating the
brain processes in the first place. However, in order to apply the EUF method,
one must first generate a set of brain processes that will be used in the robot.
Thus, a set of basic brain processes, briefly described in Sect 4.1 below, have
been defined for the purpose of testing the method. For the remainder of this
section, it will be assumed that such a set of brain processes is available.

2.3 Description of the method

In the EUF method, the decision-making is based on the concept of utility, which
can be seen as a common currency used for weighing different brain processes
against each other in any given situation. The concept of utility, which was
originally formalized by von Neumann and Morgenstern [5], has been applied
in fields as diverse as economics, ethology and robotics [6]. However, before
describing the use of utility in the decision-making process, it is necessary to
introduce the concept of state variables.

State variables A robot normally obtains information via its sensors or other
input devices such as keyboards or touch screens. Some sensors, such as infrared
(IR) sensors, provide a scalar reading that (in the case of IR sensors) can be used,
for example, in proximity detection. Other sensors provide vector-valued readings
(e.g. laser range finders) or matrix-valued readings (e.g. digital cameras). In
principle, all those readings could be used for determining the state of the robot.
However, the data flow would be massive. Taking a cue from biology, one may
note the ability of the (human) brain to filter out irrelevant information, in such
a way that a person will only be consciously aware of information that is likely
to be relevant for assessing the situation at hand. Thus, in the EUF method,
a sensory preprocessing system (SPS) is introduced, which maps the raw data
obtained through all the sensors (or a subset thereof) to a manageable number
of state variables.

A variety of sensory preprocessing methods can be envisioned, and the EUF
method does not introduce any restrictions on the type of mappings used in
the SPS. As a simple example, a state variable z1 that measures proximity to
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obstacles may be defined as the average value of the distances measured over an
angular range (say [−0.25, 0.25] radians, relative to the direction of heading of
the robot), using a laser range finder (LRF), assuming that the robot is equipped
with such a sensor. An SPS normally contains many mappings, each of which
produces a scalar output zk. The state variables are then collected in a vector
(denoted z) containing all outputs from the SPS. This vector is used as input to
the utility functions, which will be described next.

Utility functions In the EUF method, each brain process is equipped with
a utility function that determines the relative merit of the brain process in the
current situation. The utility ui of brain process i is determined as

τiu̇i + ui = σi

(

m
∑

k=1

aikzk + bi + Γi

)

, i = 1, . . . , n, (1)

where n is the number of brain processes, τi is a time constant determining the
reaction time of the robot (typically set to around 0.1 s), m is the number of
state variables1, aik and bi are tunable parameters (the procedure of setting pa-
rameters is exemplified in Sect. 4.2 below), and σi(x) is taken as tanh(cix), where
ci is a positive constant. Thus, the squashing functions σi serve to keep utility
values in the range [−1, 1] provided, of course, that the values are initialized in
this range.

The parameter Γi, which is normally equal to zero, allows direct activation
or de-activation of a brain process. Ideally, the state variables zk (k = 1, . . . , m)
should provide the robot with all the information needed to make an informed
decision regarding which brain processes to keep active in any situation encoun-
tered. In practice, of course, it is very difficult to summarize, in a set of scalar
state variables, all the many situations that may occur. As an alternative, a
brain process j may set the parameter Γi of some brain process i either to a
large positive value (in order to raise the utility ui, so as to activate process i) or
a large negative value (to achieve the opposite effect, i.e. de-activation of process
i). However, once the intended result has been achieved, Γi should return to its
default value of zero. This is achieved by letting Γi vary (at all times) as

τΓ

i Γ̇i = −Γi (2)

where τΓ

i
is a time constant2, determining the decay rate of Γi. Thus, in the

normal situation Γi is equal to zero, whereas if some brain process abruptly sets
Γi to a value different from zero, it subsequently falls off exponentially.

1 In practice, Eq. (1) is discretized and is integrated with a time step (typically around
0.01 s) much smaller than the smallest time constant. Note that the latest available
state variables are used as inputs to the utility functions. Some state variables may
change very frequently, whereas others (e.g. those based on LRF readings) are up-
dated more seldom (typically with a frequency of 10 Hz, in the case of an LRF).

2 The superscript (which is not an exponent!) is introduced in order to distinguish
this time constant from τi defined in Eq. (1).
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repeat

t ← t + dt

Update sensor readings

Determine state variables, using the SPS

Obtain non-zero Γi parameters (if any) from the (active) brain processes

Update the utility functions and the Γi parameters

Activate and de-activate brain processes based on the utility values

Execute active processes (for a time interval of length dt)

until (Terminated)

Fig. 1. Pseudo-code summarizing the activities taking place in a robotic brain defined
in the framework of the EUF method. SPS = sensory preprocessing system. See also
Eqs. (1) and (2). The integration time step dt is set to a value smaller than the smallest
time constant in the system.

The differential form of Eq. (1), has the important effect of filtering out the
inevitable noise present in the sensor readings and therefore transmitted to the
state variables.

Decision-making The generation of a specific decision-making system in the
EUF method consists of setting the parameters of the utility functions, as well
as specifying both the mappings constituting the SPS and the use (if any) of
the Γi parameters, so as to achieve the desired overall result. In many cases, this
is in fact easier than it sounds. However, in complex cases, it may be difficult
to provide appropriate parameter values by hand, as noted also in connection
with the original UF method [4]. One may then resort to optimization of the pa-
rameters, using stochastic optimization algorithms such as, for example, genetic
algorithms or particle swarm optimization.

In any case, assuming that one has been able to find appropriate values
for the parameters (either by hand or using some optimization method), the
forms of the state variables and the utility functions are thus determined. At
this stage, decision-making is quite simple in the EUF method, and works as
follows: Any cognitive process with utility larger than zero is active. Thus, it
is possible for several cognitive processes to be active at the same time. By
contrast, exactly one locomotive behavior is active at any given time, motivated
by the fact that the robot cannot move in two different directions at the same
time. In the EUF method, the locomotive behavior with highest utility is active,
and all other locomotive behaviors are inactive. Of course, this does not imply
that the robot must constantly be on the move: A locomotive behavior may also
allow the robot to stand still. The activation of movement behaviors (if available)
works in the same way: Exactly one such behavior is active at any given time,
namely the one with highest current utility among the movement behaviors.
Note, however, that movement behaviors may, of course, combine the use of
several (non-locomotive) motors. For example, in a robot consisting of a wheeled
base and a humanoid upper body, a movement behavior may be responsible
for turning the head (and, possibly, the eyes) as well as moving the arms, to
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carry out a hand-eye coordination task. At the same time, the active locomotive
behavior may move the entire robot forward. It should also be noted that the
utility functions of all brain processes are continuously updated, meaning that an
inactive process can be activated, should its utility value become sufficiently high.
The activities occurring in the brain of the robot are summarized in pseudo-code
in Fig. 1.

3 Implementation

Even though the EUF method is defined irrespective of any particular imple-
mentation, in order to actually use the method one must, of course, provide an
implementation, normally in the form of a computer program. As in any prob-
lem involving autonomous robots, one may implement the method either in a
computer simulation or in the processor(s) of a real robot. Ultimately, it is the
ability of the method to provide a decision-making system for real robots that
is of importance. However, simulations are useful in the early stages of the de-
velopment of an autonomous robot since, for example, the construction of the
actual robot is normally a costly and time-consuming process. Using simulations,
one may reduce the risk of making serious mistakes in the construction process
such as, for example, fitting the robot with inappropriate sensors for the task
at hand. Also, if the development of the robot (body or brain, or both) involves
some form of optimization, the time required for carrying out such a procedure
in a real robot is often prohibitively long. On the other hand one should be
careful to remember that the results obtained in a simulator at best represent a
very rough approximation of the performance of the corresponding real robot,
and only if the simulator manages to capture (most of) the relevant aspects of
the real world such as, for instance, noise in sensors and actuators.

Note that using simulations for evaluating the EUF method is well motivated,
since the complexity of the actual decision-making process is no different in a
simulation (with appropriate noise levels in sensors, actuators etc.) than in the
real world. In addition, the EUF method may, in fact, be used for decision-
making in software agents (in computer games, information systems etc.), further
motivating the use of simulations.

The EUF method has been implemented in a simulation program. Written
in Delphi (object-oriented Pascal), the simulator allows a user to set up a simu-
lation involving a differentially steered robot equipped with a repertoire of brain
processes as well as a decision-making system following the EUF method (with
an SPS, utility functions etc., as described above). The simulator introduces
appropriate noise levels in both actuators and sensors. The detailed description
of the robotic brain (i.e. the brain process repertoire, the parameter values of
the decision-making system, the SPS mappings etc.) must be provided, by the
user, in the form of a text file. Similarly, the parameters of the robot (physical
characteristics, motors, sensors etc.) must also be provided, in the same way. A
third text file, describing the arena, should also be generated. As these files tend
to become rather complex, a set of template files has been generated, so that
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Fig. 2. Left panel: A screenshot from a simulation, showing a wheeled robot in a
typical office environment. Middle panel: A schematic view (from above) of the office
environment in which the simulations were carried out. Right panel: The physical
counterpart (currently under construction) to the robot used in the simulations.

the user normally only needs to make minor modifications to those files. Once
the setup files have been generated, the simulation can be executed. The pro-
gram allows 3D visualization using OpenGL, so that the user easily can follow
the performance of the robot, and also stop execution in order to modify, for
example, the parameters determining the decision-making procedure.

An important aspect of the simulation is the possibility of emulating parallel
processing, since the EUF method allows any number of cognitive processes
to be active simultaneously, in parallel with one locomotive behavior (and, if
available, one movement behavior). Thus, the simulator has been equipped with
this feature, in such a way that all active brain processes are allowed to execute
for dt s (the time step length) before an actual movement of the robot is carried
out. Since the simulator typically runs much faster than real time, an illusion of
parallel processing is easily obtained.

As for implementation in real robots, the simulation code is currently being
translated to C#, which was deemed more suitable for this purpose. Here, the
parallel execution of brain processes is handled using multi-threading, in which
each brain processes runs as a separate thread (in Microsoft Windows).

4 Examples and results

The EUF method is currently being tested and evaluated. A brief summary of
such a test will now be given, in which a robot is tasked with navigating be-
tween two arbitrary points in a typical office arena. In practical applications,
such a robot could be used, for example, in delivery tasks. The physical robot,
shown in the right panel of Fig. 2, is currently being constructed. It is equipped
with two (DC) motors, one for each drive wheel, and is supported underneath
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by two castor wheels. For sensing, the robot has been fitted (on its top plane)
with a Hokuyo URG-04LX LRF and three infrared proximity detectors. It is
also equipped with wheel encoders, providing the raw data for odometry (de-
scribed below). The robotic brain will be implemented on a small laptop (not
shown) placed on the robot. Here, only the results obtained from simulations
will be described. These simulations (involving a simulated version of the robot
just described) have been carried out mostly to test the EUF method, but also
as a part of an iterative procedure, involving both simulations and hardware
construction, aiding the process of designing the physical robot. A screenshot
from the simulator is shown in the left panel of Fig. 2, and a schematic view of
the arena is given in the middle panel of the same figure.

4.1 Simulation setup

The brain of the (simulated) robot consisted of a decision-making system in
the EUF framework. The behavioral repertoire contained five brain processes,
namely Potential field navigation (B1), Side collision avoidance (B2), Frontal

collision avoidance (B3), Odometry (B4), and Localization (B5). B4 is a cognitive
process, whereas the other four are locomotive processes. In B1, the robot follows
a potential field [3], with (stationary) obstacles defining bumps in the field and
the goal defining a gently sloping valley attracting the robot. Hence, just like B2
and B3, B1 also handles obstacle avoidance to some extent. However, potential
field navigation is dependent on accurate positioning. Thus, B2 and B3 are
needed in cases where the robot’s positioning (through the odometry process
described below) is inaccurate so that, for example, the robot may be headed
for, say, a wall, even though the potential field (based on the inaccurate position)
tells it that the path is clear. B2 and B3 can also be used for avoiding collisions
with moving obstacles (e.g. people) that are not included in the potential field.
B2 handles situations in which, for example, the robot moves along an extended
obstacle (e.g. a wall) in a slightly incorrect direction, i.e. towards the obstacle
rather than parallel to it. By contrast, B3 is used for avoiding head-on (or near
head-on) collisions. B4 generates estimates of position, velocity and heading
angle, based on the readings of wheel encoders on the motors. The localization
process (B5) is used in order to counteract the inevitable drift in the odometry.
When activated, this process matches the latest available wide-angle readings
from the LRF to a map provided (along with the potential field) to the robot.
This behavior is, in fact, quite complex, and has been tested thoroughly both in
simulations and in physical robots [7], using the Hokuyo URG-04LX LRF.

Thus, in order for the robot to solve its navigation task successfully, it must
handle several instances of decision-making. For example, while its task is to
reach the current target position as fast as possible, it must do so without hitting
any obstacles. Thus, the robot must occasionally activate B2 or B3 even though
their activation delays the robot’s arrival at the navigation target. Furthermore,
from time to time, the robot must also activate B5 in order to recalibrate the
odometry. However, this should not be done too often, since B5 (in its current
form) requires the robot to reach a standstill, thus causing another delay.
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Fig. 3. The variation of utility values for brain processes B1 (solid, almost constant),
B3 (solid, with spikes), and B5 (dotted), during a simulation.

4.2 Decision-making system

The state variables needed for the utility functions (see Eq. (1)), were obtained
from an SPS that, in this case, contained three mappings, each formed as an
average over LRF readings. For example, the state variable z1 was defined as the
average of the distances detected by the LRF in the angular interval [−0.25, 0.25].
Thus, a low value of this variable would signal an imminent frontal collision.
Using the three state variables, the five utility functions (one for each behavior)
were set up. In the preliminary test described here, the parameters (i.e. aik, bi

etc.) were set by hand, which was possible in this rather simple example.

First of all, τ1, τ2, τ3, and τ4 were all set to 0.1 s, representing the reaction
time of the robot. For B4, all a4k were set to zero, and b4 was set to a small
positive value. The parameter Γ4 was not used by any brain process. Hence,
following Eq. (1), u4 was always positive, meaning that the odometry process
was constantly active. For the locomotive behaviors, where only the process with
highest utility is active, it implies no restriction to set the utility of one such
process to a constant value. Thus, the utility of B1 was set as that of B4. For
the other three processes, some experimentation was needed and, in the end,
B2 and B3 were, in fact, the only processes with non-zero aik parameters. For
B5, τ5 was set to 1.0 s. The bias (b5) was set to a positive value, and the Γ5

parameter was used to make sure that localization, when activated, was normally
allowed to run to completion. Thus, upon activation, B5 would itself set Γ5 to a
large positive value, raising (within the next second or so) its utility. The fall-off
of Γ5 was regulated by setting the τΓ

5 parameter to an appropriate value (2 s,
in this case). In cases where B5 managed to complete its task rather quickly,
instead of waiting for u5 to drop, B5 would then essentially de-activate itself
by setting Γ5 to a large negative value. After only a few iterations involving
different parameter settings, appropriate settings were found, and the robot was
then capable of navigating reliably between arbitrary points in the arena.

An illustration of the robot’s decision-making is shown in Fig. 3. The figure
shows the variation in utility for B1, B3, and B5 over a simulation. For clar-
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ity, the utility functions for B2 and B4 have been omitted from the figure. In
this particular run, B2 was never activated, whereas the cognitive process B4
(odometry) had positive utility throughout the run, and was therefore continu-
ously active. The robot began by activating B4 and B1. B1 was then deactivated
after around 1 s, when instead an initial localization (B5) was carried out. Next,
the robot resumed its navigation until, after around 10 s, B1 was deactivated in
favor of B3, in order to avoid a collision etc. Having covered the entire length of
the arena, the robot reached its target after 53 s.

5 Discussion and conclusion

The EUF method for decision-making in autonomous robots has been introduced
and described. The preliminary tests carried out thus far are promising, and indi-
cate that the EUF method allows a user to set up the decision-making structure
quite rapidly, even though optimization is likely to be needed in complex cases.
The use of differential equations for determining the utility functions effectively
filters out the noise in the state variables. This represents an improvement over
the earlier versions of the method (see e.g. [4]), where utility values were de-
termined directly, i.e. without the derivative term present in Eq. (1). Current
work involves implementation of the EUF method in physical robots, as well
as the formulation of more complex test cases, involving even larger behavioral
repertoires (including, for example, processes for human-robot interaction).
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