
Noname manuscript No.
(will be inserted by the editor)

Improving the prediction of the clinical outcome of breast cancer using

evolutionary algorithms

Mattias Wahde1, Zoltan Szallasi2

1 Department of Machine and Vehicle Systems, Chalmers University of Technology, 412 96 Göteborg, Sweden, e-mail:
mattias.wahde@me.chalmers.se

2 Children’s Hospital Informatics Program, Harvard Medical School, Boston, MA, USA, e-mail: zszallasi@chip.org

Abstract There exist several methods for binary clas-
sification of gene expression data sets. However, in the
majority of published methods, little effort has been
made to minimize classifier complexity. In view of the
small number of samples available in most gene expres-
sion data sets, there is a strong motivation for minimiz-
ing the number of free parameters that must be fitted
to the data. In this paper, a method is introduced for
evolving (using an evolutionary algorithm) simple clas-
sifiers involving a minimal subset of the available genes.
The classifiers obtained by this method perform well,
reaching 97% correct classification of clinical outcome
on training samples from the breast cancer data set pub-
lished by van’t Veer, and up to 89% correct classification
on validation samples from the same data set, easily out-
performing previously published results.

Key words data classification – breast cancer – evo-
lutionary algorithms

1 Introduction

Recent publications indicate that microarray-based gene
expression signatures may in fact improve prediction of
the clinical outcome of breast cancer, such as metastasis
free survival [12], [13]. The predictor in these publica-
tions relies on the most relevant set of genes as deter-
mined by the correlation coefficient between the expres-
sion level of these genes and the disease outcome. Start-
ing with the most relevant gene, more and more genes are
added until no improvement is detected in predicting the
disease outcome. Despite its initial success, reaching 83%
accuracy [12], this method has an important limitation:
Let us assume that there are two independent mecha-
nisms responsible for the tumor phenotype causing early
metastasis. If either of these mechanisms is activated, as
reflected in, for example, the up-regulation of one of the
genes involved and down-regulation of the other, short

metastasis-free survival is detected. Let us further as-
sume, that the first mechanism is activated in 70% of the
short metastasis-free survival cases and the second mech-
anism is activated in 30% of the short metastasis-free
survival cases. By simply considering the relevance of
individual genes the second mechanism would not qual-
ify as a potential classifier, although the two mechanisms
together would predict all short metastasis-free survival
cases.

Furthermore, in [12] and [13], as indeed in other pub-
lications on predicting the metastatic ability of solid tu-
mors [11], the number of features (genes) involved in
the classifiers is on the order of magnitude of about
102. In principle, it is possible that accurate prediction
may require a predictor involving this many genes. How-
ever, this will greatly increase the cost of independent
validation. Microarray measurements are known to pro-
duce strong platform specific biases, as reflected in the
poor correlation of gene expression levels measured in
the same RNA sample by two or more different mi-
croarray platforms [15]. Diagnostic decisions, however,
should be based on gene classifiers that are not microar-
ray platform specific and can be confirmed by indepen-
dent methods such as quantitative RT-PCR. This serves
as a strong incentive to reduce the number of classify-
ing genes to the smallest reliable set. It should also be
noted that, with limited training data available, a clas-
sifier involving few parameters is more likely to provide
accurate predictions on unseen data than one involving
many parameters.

The search for relevant combinations of complemen-
tary gene classifiers, however, suffers from combinatorial
explosion. For example, an exhaustive search of combi-
nations of 4 genes from a set of 10,000 measured genes
involves testing 1016 subsets, a number beyond the reach
of currently available computers. However, there exists
a number of computational methods applicable to the
search for a complementary set of predictor genes, e.g.
support vector machines [2], evolutionary algorithms,
etc. Evolutionary algorithms are particularly well suited



2 Mattias Wahde, Zoltan Szallasi

for searching through large search spaces. The use of
such algorithms in classification based on gene expres-
sion data is relatively new, and has so far been limited
to selecting the genes to be used in a classifier, rather
than determining the classifier itself [8], [10], [3].

In this paper, a classification method that uses evo-
lutionary algorithms1 to search for linear classifiers will
be introduced and applied to a breast cancer derived
microarray based data set [12].

2 Method

Consider the problem of binary classification, i.e. assign-
ing correct classes to the M samples of a gene expression
data set, in which MI elements belong to class I and MII

to class II.

2.1 Classifier definition

The main underlying assumption the method presented
here is that there exists some function h such that the
inequality

h(gi1 , gi2 , . . . , gin
) > 0, (1)

is satisfied for samples belonging to a class I, and not
satisfied for samples in class II. The indices i1, . . . , in
determine which n genes are included in the classifier.

In principle, the function h may take any arbitrarily
complex form, and ij can take any value in the range
[1, N ], where N is the number of genes measured in the
data set. However, invoking Ockham’s razor, motivated
by the small size of the available data sets, a series ex-
pansion is made for h, resulting in

h(gi1 , gi2 , . . . , gin
) ≈ β +

n
∑

j=1

αjgij
+ O(g2

ij
). (2)

Thus, dropping higher-order terms, thereby reducing the
number of unknown parameters, a linear classifier of the
form

β +

n
∑

j=1

αjgij
> 0 (3)

is obtained. This type of classifier will be called a linear,

single-threshold classifier. Thus, for any value of n, the
number of unknown parameters equals 2n + 1, of which
n are the integer index values of the genes included in
the classifier.

1 Evolutionary algorithms (EAs) is an umbrella term incor-
porating various different algorithms, e.g. genetic algorithms
(GAs), genetic programming (GP) etc. The algorithm used
in this paper differs somewhat from the standard GA, and
the abbreviation EA will therefore be used when referring to
this algorithm.

2.2 Data preprocessing: relevance list

Clearly, selecting a few genes among thousands is a diffi-
cult task. However, not all genes are equally likely to be
useful in classifiers. For example, a gene for which the
expression values vary more or less randomly in sam-
ples of both classes is less likely to be useful. Thus, in
the method presented here, a data preprocessing step is
used in which the genes are ordered in a relevance list

based on their performance as single-gene classifiers, i.e.
classifiers of the form

β + gi1 > 0. (4)

Thus, at the top of the relevance list is the gene (or
genes) that, by itself, best classifies the data set. It should
be noted that useful genes may be found far from the
top of the relevance list. Thus, the optimization method,
which will now be described, selects genes from among
the top L genes of the relevance list only with a cer-
tain probability, and otherwise selects genes completely
randomly.

The ranking method employed when forming the rel-
evance list is very similar to the Threshold Number of
Misclassification (TNoM) score introduced in [1].

2.3 Optimization method

In the development of methods for data classification,
one should distinguish between the architecture used for
the classifiers (e.g. linear, single-threshold classifiers) and
the algorithm used for finding those classifiers in large
gene expression data matrices. Thus, with this nomen-
clature, a method is the union of an architecture and an
algorithm. In the method introduced here, the algorithm
for finding linear, single-threshold classifiers is an evolu-
tionary algorithm (EA). EAs are methods for search and
optimization inspired by natural evolution, and they are
known to be particularly useful in large, complex search
spaces with many local optima. For an introduction to
EAs, see e.g. [9] or [4]. A comprehensive introduction to
the use of EAs in bioinformatics can be found in [5].

A computer program (EA_classifier) for search-
ing for linear, single-threshold classifiers as introduced
in Eq. (3) has been written. In order to make clearer the
distinction between the artificial genes used in the EA
and the genes measured in the expression matrix, the
former will henceforth be denoted EA-genes.

The search for classifiers is performed using a EA
with variable chromosome length. The chromosomes en-
code, in their 2n + 1 EA-genes, the identities of the n
genes, the coefficients αj , j = 1, . . . , n, and the coefficient
β. Each EA-gene is a real-valued number in the range
[0, 1[. During the decoding procedure, when an individ-
ual (a classifier) is formed from a chromosome, the value
of each EA-gene is rescaled to an appropriate range (e.g.



Improving the prediction of the clinical outcome of breast cancer using evolutionary algorithms 3

[−1, 1]). The ranges of the coefficients αj and β are set
by the user.

The user also specifies the probability pr to select,
during mutation, genes from the relevance list (truncated
to length L, also set by the user, typically in the range
[30, 100]), rather than from the entire set of genes avail-
able in the gene expression matrix. Thus, if pr = 1, only
genes present among the first L elements in the relevance
list are allowed in the classifiers. Typically, pr is chosen
in the range [0.6 − 0.8].

Each run of the EA begins with the construction of a
stochastically generated population containing Np chro-
mosomes, each generated by selecting genes in the man-
ner just described, and selecting parameters randomly
in the allowed range. The number of EA-genes in each
chromosome is also set to a random value (2n+1, where
n ∈ [nmin, nmax], with the two parameters nmin and nmax

specified by the user).
The classifiers are obtained by decoding the 2n + 1

EA-genes in the chromosome. Then, each classifier is
evaluated and assigned a fitness score based on its abil-
ity to classify correctly the samples in the data set (the
choice of fitness measure will be discussed below). When
all classifiers have been evaluated, a new set of chro-
mosomes, constituting the next generation, is formed
through the processes of selection, crossover and mu-
tation.

Selection is performed using the tournament method,
in which two individuals are pitted against each other,
and the best one (i.e. the one with the highest fitness
score) is selected with probability pt. With probability
1− pt, the individual with lower fitness is chosen. Typi-
cally, pt is chosen in the interval [0.7, 0.8].

Crossover between two selected individuals is per-
formed with probability pc, and only if the two individu-
als contain the same number of EA-genes. Thus, by only
allowing crossover between individuals of equal size, the
equivalent of species is introduced.

Mutations are performed in two fundamentally dif-
ferent ways: structural mutations change the size of the
chromosome, whereas parametric mutations change the
values of the EA-genes in the chromosomes.

Structural mutations, typically occurring with a low
probability, either add (with probability 0.5) a gene, or
remove a gene. Addition of a gene is achieved by adding
two EA-genes: one for the identity of the gene, and one
for the corresponding α-parameter. The EA-gene repre-
senting the parameter is chosen randomly in the allowed
range, and the EA-gene representing the gene identity is
chosen as described above, using the relevance list with
probability pr. Parametric mutations for EA-genes rep-
resenting gene identities are also performed in this way.
For EA-genes representing α-parameters or the β param-
eter two different mutation methods are used: full-range

mutations, in which the new value is selected randomly
in the allowed range, and creep mutations, for which the
new value is chosen in a narrow interval around the old

Gene ID # correct

4730 61
50 61
62 60
1 60

Table 1 The top four entries of the relevance list, based on
the 78 samples in the training data set. The second column
shows the number of correctly classified samples.

value of the EA-gene in question.The various mutation
probabilities are also set by the user.

In addition to the procedures just outlined, elitism

is used, i.e. each new generation includes one unchanged
copy of the best individual from the previous generation.

While the user must to set quite a number of param-
eters before each run, the search procedure is not very
sensitive to the exact values of most of the generic EA-
parameters such as the population size, the crossover
probability, the mutation rates (parametric and struc-
tural) etc., and the method is therefore very easy to use.

2.4 Fitness measures

As is well known, the results obtained from an EA are
often strongly dependent on the choice of fitness mea-
sure. Thus, it is crucial that this choice be made in the
best possible way.

For the classification problem studied here, the fit-
ness measure can be defined in several ways. The sim-
plest is to take the fitness f as

f1(Mc) =
Mc

M
(5)

where Mc is the number of correctly classified samples
out of the total M samples. With this fitness measure,
the EA will search for high-quality classifiers, but will
not make any attempt to achieve maximal separation
between the two classes. In fact, with the fitness measure
f1, the EA often produces classifiers such that several
samples are located very near the separating hyperplane.
An alternative fitness measure is given by

f2(Mc, dc) =
Mc

M
+ ε1dc, (6)

where dc is the average distance between correctly clas-
sified samples and the separating hyperplane, and ε1 is
a small constant. The exact value of ε1 is irrelevant, as
long as it is small enough so that a classifier with m + 1
correctly classified samples always receives higher fitness
than one with m correctly classified samples. A still more
sophisticated fitness measure is

f3(Mc, Mc,r, dc,r) =
Mc

M
− ε2

(

Mc,r − ε3dc,r

)

, (7)



4 Mattias Wahde, Zoltan Szallasi

where dc,r is the average distance from the separating
hyperplane of those correctly classified samples that are
located within a range r of the same hyperplane, and
Mc,r is the number of such samples. ε2 and ε3 are two
arbitrary, small positive constants. It is clear that this
fitness measure will, unlike f1 and f2, specifically at-
tempt to minimize the number of samples located within
the range r of the separating hyperplane, and maximize
the distance from that plane of those samples that it fails
to remove from the range.

2.5 Data and Classifier Evaluation

The foremost test of the usefulness of a classifier involves
testing its predictive capacity, i.e. its ability to classify
correctly previously unseen samples.

In this paper, the simple procedure of dividing the
data set into two subsets, a training set and a valida-
tion set, was employed. There is no strict solution to the
problem of selecting the relative size of the two subsets.
However, a common rule of thumb [6] is to use around
80% of the data for training and 20% for validation.

In this study, the data set published by van’t Veer et

al. [12], with 5,277 genes and 97 samples has been used.
This data set was produced to extract classifiers from
large-scale gene expression profiling of primary breast
tumors with short and long metastasis free survival. A
total of 51 samples in this data set belong to the class of
long (over 5 years) metastatis free survival (arbitrarily
denoted class I), whereas the remaining 46 samples be-
long to the class of short metastasis free survival (class
II).

Using the above rule of thumb, a training set with
78 samples (of which 44 in class I) and a validation
set with 19 samples (7 in class I), were obtained.2 The
expression values for all genes were normalized to the
range [−2.0, +2.0] using the minimum and maximum
expressions over all data samples. Note that, in order
to generate the data set with 5,277 genes, the raw data
was filtered according to the instructions provided by
van’t Veer et al. [12]. All gene indices used henceforth
in the paper refer to the filtered data. The mapping
from gene indices to actual gene names can be found
at www.me.chalmers.se/~mwahde/EAclassifier.htm.

3 Results

The EA_classifier computer program searches for clas-
sifiers according to the method outline above. The sim-
plest possible classifier would be of the form gi > β,
where the index i and the threshold β are initially un-
known parameters. The indices i of the best single-gene

2 In general, the superscript T is used to refer to the train-
ing set, whereas the superscript V refers to the validation
set.

n MT

c % correct n MT

c % correct

2 68 87.2% 6 74 94.9%
3 71 91.0% 7 76 97.4%
4 74 94.9% ≥8 ≤76 97.4%
5 74 94.9%

Table 2 Classifier performance as a function of n: The sec-
ond column shows the number of correctly classified samples
in the training set (MT

c ) for the best classifiers found, as a
function of n. For some n > 2, several different such classifiers
were found.

classifiers, as well as the number of correctly classified
samples, are shown in Table 1. Such a list, which can
be obtained in a matter of seconds from the computer
program, constitutes the relevance list introduced above,
which is used for selecting genes in the multi-gene classi-
fiers. As can be seen in the table, genes 4730 and 50 top
the list, with 61 correctly classified samples (78.2%).

3.1 Two-gene classifiers

In principle, the EA can be applied to the search for
two-gene classifiers. However, for such classifiers, it is
actually possible to perform an exhaustive search for the
best gene pair. In this case, the search procedure runs
through all Ng(Ng −1)/2 gene pairs, and determines the
best parameters α1, α2, and β for each gene pair.

In order to find the best parameter values for any
given gene pair, a projection technique is used, in which
the two-gene distribution is projected onto a line inclined
at an angle γ relative to the horizontal axis the first gene
in the pair, generating a one-dimensional projected dis-
tribution, the performance of which can easily be deter-
mined. As the line rotates through the angular interval
γ ∈ [0, 2π[ all possible projections are tested, and the
best parameter set for the gene pair can thus be deter-
mined.

For the data set used here, with 5,277 genes and thus
13,920,726 distinct gene pairs, the exhaustive search for
n = 2 lasted approximately 48 CPU hours on a 2.53GHz
P4 computer.

The best 2-gene classifier thus found, achieving 68
correctly classified samples (87.2%), is shown in the top
row of Table 3.

3.2 Multi-gene classifiers

A number of runs were performed with the aim of finding
the best n−gene classifiers, for various (small) values
of n. Table 2 shows the number of samples classified
correctly, for different values of n, by the best classifiers
found. In Table 3, detailed information about some of
those classifiers is shown.



Improving the prediction of the clinical outcome of breast cancer using evolutionary algorithms 5

Name n Classifier Result

C2

1 2 −0.5090g1 + 0.8607g689 > 0.0779 87.2%
C3

1 3 −0.5248g13 − 0.6366g1278 + 0.5651g3353 > −0.0129 91.0%
C3

2 3 −0.4355g1 + 0.8270g689 − 0.3555g4148 > 0.0894 91.0%
C3

3 3 −0.4283g1 + 0.6286g61 − 0.6492g5247 > 0.1275 91.0%
C4

1 4 −0.3153g1 − 0.3381g2 + 0.6517g689 − 0.6013g4723 > 0.0873 94.9%
C5

1 5 −0.2960g13 − 0.4546g42 − 0.4900g46 + 0.4584g62 − 0.5054g4401 > 0.1189 94.9%
C6

1 6 −0.4688g1 + 0.5259g50 + 0.4569g62 − 0.4816g391 − 0.2346g819 − 0.0890g5247 > 0.2693 94.9%
C6

2 6 −0.3023g1 + 0.5954g50 + 0.5171g62 − 0.2137g391 − 0.2811g879 − 0.4026g1917 > 0.2693 94.9%
C6

3 6 −0.3215g1 + 0.5133g61 + 0.6458g689 − 0.3627g4148− 0.0823g4574 − 0.2788g5247 > 0.1309 94.9%
C6

4 6 −0.5243g1 − 0.4239g8 + 0.5188g689 + 0.3226g1305 + 0.0191g2509 + 0.4145g5120 > 0.0619 94.9%
C7

1 7 −0.3504g1 − 0.1534g13 − 0.1107g47 + 0.5495g61 + 0.5200g689 + 0.0959g1989 − 0.5097g5247 > 0.1007 97.4%

Table 3 Structure of the best classifiers for various values of n. In all cases, the classifiers have been normalized so that the
sum of the squares of the coefficients is equal to 1.

Name MT

c MT

c,0.02 d
T

c MV

c MV

c,0.02 d
V

c

C3

1 71 6 0.1629 13 4 0.1563
C3

2 71 6 0.2208 13 1 0.2018
C3

3 71 4 0.2724 15 1 0.2884

C4

1 74 7 0.1986 14 3 0.1507

C5

1 74 6 0.2430 13 2 0.2641

C6

1 74 5 0.3264 12 2 0.2340
C6

2 74 3 0.2527 13 1 0.2091
C6

3 74 4 0.2361 16 2 0.2011
C6

4 74 4 0.2931 13 3 0.2686

C7

1 76 5 0.2611 17 0 0.2249

Table 4 Validation performance: The second and fifth columns of each row show the performance of the corresponding
classifier on the training and validation sets, respectively. The third and sixth columns show the number of samples located
within a distance 0.02 of the separating hyperplane, in the training and validation sets, respectively. The fourth and seventh
columns show the root mean square distance between the separating hyperplane and correctly classified samples in the training
and validation set, respectively.

For several n > 2, many classifiers were found that
achieved the maximum values (for each n) shown in Ta-
bles 2 and 3. However, classifiers not shown in Table
3 involved the same combinations of genes as the ones
shown, but with slightly different parameters. Hence-
forth, classifiers will be called distinct if they involve
different combinations of genes and, with one exception
(see Table 5), only distinct classifiers are shown in the
tables.

Furthermore, while the search was exhaustive for n =
2, it becomes ever less so as n increases. For example, for
n = 10, the selection of the 10 genes among the total of
5,277 can be made in 4.6× 1030 different ways of which,
naturally, only very few are evaluated in any given run.
The ease by which the maximum number of correctly
classified training samples is reached varies with n. For
example, for n = 4, only a single distinct classifier with
maximum performance was found, whereas for n = 3,
three such classifiers were found. However, these classi-
fiers varied in their performance on the validation set:
C3

1 , C3
2 , and C3

3 , classified 13, 13, and 16 validation sam-
ples correctly, respectively.

Several long runs were made using many (more than
7) genes. However, in no case was a classifier found that
performed better (during validation) than C7

1 .
In the runs reported so far, the fitness measure f1 was

used. Other than measuring the number of correctly clas-
sified samples, f1 makes no attempt to judge the qual-
ity of the classifier, and therefore the variability in the
performance on the validation set is not surprising. In
order to judge the quality of a classifier, it is important
to study the distance between the samples and the sep-
arating hyperplane. The results of such an investigation
are shown in Table 4. For the purposes of evaluating
the quality of classifiers, the following definition is intro-
duced: the region within a given distance r of the sep-
arating hyperplane is called the gray zone, and samples
located in this zone are called gray zone samples.

In the third column of the table, the number of sam-
ples in the training set located in the gray zone (the
width of which was chosen somewhat arbitrarily to be
0.02) is shown. For classifiers derived using the f1 fit-
ness measure, there appears to be no advantage for a
classifier to achieve a large root mean square distance
between the samples and the separating hyperplane, ex-
cept for the case n = 3.



6 Mattias Wahde, Zoltan Szallasi

3.3 Classifiers with maximum separation

While the results shown in Table 4 do not indicate a
strong influence on classifier performance of either the

average distance d
T

c or the number of samples in the gray
zone (MT

c,0.02), the issue should be investigated more
thoroughly (as the f1 fitness measure completely ignores
these two possible criteria). Thus, additional runs were
made, using the fitness measures f2 and f3. Some re-
sults from these runs are shown in Tables 5 and 6. In
general, the selection of genes for these runs was based
on the results shown in Table 3. As can be seen from
Table 6, fitness measures f2 and f3 resulted in a slight
improvement in the average separation of the samples
from the separating hyperplane. The validation perfor-
mance was also improved in several cases. For example,
classifier C̃4

1,I achieved 16 correct classifications in the

validation set, compared to 14 for C4
1 . Furthermore, us-

ing f3, the total number of samples (in the training and
validation sets) in the gray zone decreased (e.g. from 10
to 7, going from C4

1 to C̃4
1,II). The most dramatic effect

occured in the 7-gene classifier C̃7
1,I for which no samples

remained in the gray zone of width 0.02. The gray zone
width was increased to 0.05 in an attempt to improve
further the classifier performance. The EA managed to
press down the number of training set samples in this
wider gray zone to 4. However, 3 of these were located
within a distance 0.02 from the separating hyperplane.
Thus, no further improvement was obtained.

3.4 Targeted runs

A few additional runs were made, in which a customized
relevance list was used, consisting of all the genes ap-
pearing in the best classifiers in Table 3. The relevance
list usage parameter was set to pr = 0.80 in some runs,
and pr = 1.00 in other runs. n was allowed to take
any value in the range 3 to 26 (the number of distinct
genes in Table 3). In one such run, a 26-gene classifier
achieving 77 correctly classified samples (98.7%) was in
fact obtained. However, the performance on the valida-
tion set was abysmal: only 10 correctly classified samples
(52.6%), indicating a strong case of overfitting.

4 Analysis and Discussion

4.1 Classification using EAs: related work

While evolutionary algorithms are rapidly becoming in-
creasingly widespread in many fields of science, their use
in classification of gene expression matrices has so far
been very limited.

Ooi and Tan [10] considered the problem of multi-
class classification, and used a GA to select genes that
were then used in a maximum-likelihood classification

method. Li et al. [8], have used a GA for selecting genes
that are subsequently used in a k nearest neighbor (KNN)
classifier. The number of genes selected by the EA was
set to between 5 and 50. The GA was then run many
(104) times, and genes were selected based on their fre-
quency of appearance in the classifiers thus obtained.
Their method also involves a post-processing step, in
which the number of (ranked) genes to be used is se-
lected. Deutsch [3] developed a GA-based method for
minimizing the number of genes selected for inclusion
in classifiers. Applying this method, Deutsch achieved
an order-of-magnitude reduction in the number of genes
needed for classification of small round blue cell tumors,
arriving at a classifier containing of order 101 genes as
compared to of order 102 genes in the classifier reported
by Khan et al. [7]. However, as Li et al. [8], Deutsch
used the GA only for finding the relevant genes, and
then employed the KNN method for the classification.
By contrast, in the present paper, not only the relevant
genes but also the classification rule is obtained by the
evolutionary algorithm.

4.2 Classifier complexity

The fact that the best classifier found by the method
introduced here used only 7 genes justifies the basic idea
of this paper, namely to look for classifiers with as few
genes as possible. On the other hand, it also indicates the
difficulty (due to combinatorial explosion) of searching
the space of classifiers for large n. Thus, it cannot be
excluded that a classifier with better performance than
C7

1 could be found. However, any improvement over C7
1

would be slight, since this classifier comes close to perfect
classification for both the training and validation sets.
Note also that, already with 3-4 genes, excellent classifier
performance can be achieved.

4.3 Classifier structure

It is interesting to note that the best classifiers to some
extent have similar structure, with classifiers with larger
n building upon their small-n counterparts. For example,
all but two classifiers in Table 3 contain gene 1, with a
negative coefficient, and 6 of the 11 classifiers in the same
table contain gene 689, always with a positive coefficient.
Gene 5247 appears in 4 of the classifiers, always with a
negative coefficient, and gene 61 appears in 3 of the 11
classifiers, always with a positive coefficient.

Note that this state of affairs was not enforced by the
computer program: each run was started from a random
set of classifiers. The presence of gene 1 is perhaps not
so surprising, given its location near the top of the rel-
evance list (see Table 1). However, gene 5247, with 57
correctly classified samples (taken as a single-gene clas-
sifier), is located in the range [27, 44] in the relevance
list (together with 22 other genes that also achieve 57



Improving the prediction of the clinical outcome of breast cancer using evolutionary algorithms 7

Name n Classifier Result

C̃3

3,I 3 −0.4524g1 + 0.6263g61 − 0.6349g5247 > 0.1314 91.0%

C̃4

1,I 4 −0.3739g1 − 0.3868g2 + 0.5662g689 − 0.6246g4723 > 0.0900 94.9%

C̃4

1,II 4 −0.3186g1 − 0.3767g2 + 0.6113g689 − 0.6188g4723 > 0.0903 94.9%

C̃7

1,I 7 −0.3465g1 − 0.0885g13 − 0.2066g47 + 0.5417g61 + 0.5234g689 + 0.1305g1989 − 0.4950g5247 > 0.1233 97.4%

Table 5 Structure of the best classifiers found for various values of n, using fitness measures f2 and f3. In all cases, the
classifiers have been normalized so that the sum of the squares of the coefficients is equal to 1.

Name MT

c MT

c,0.02 d
T

c MV

c MV

c,0.02 d
V

c Fitness Gray zone range

C̃3

3,I 71 3 0.2760 16 1 0.2937 f2 –

C̃4

1,I 74 7 0.2194 16 2 0.1474 f2 –

C̃4

1,II 74 3 0.2034 15 4 0.1457 f3 0.02

C̃7

1,I 76 0 0.2638 17 0 0.2330 f3 0.02

Table 6 Validation performance, using the f2 and f3 fitness measures. The columns correspond to those in Table 4. The
last two columns give information concerning the fitness measure used. Classifiers denoted C̃i

j,k contain the same genes as the
corresponding classifier Ci

j in Table 3.

correctly classified samples), and genes 689 and 61, with
56 correctly classified samples, are located in the interval
[45, 106].

4.4 Selected genes

In the runs leading to the results in Table 3 (for n > 2),
the truncation L of the relevance list was set either to
30 or 100, and genes were selected (during mutations
in the EA) from this list with probability pr = 0.80.
One of the strenghts of the method introduced here is
that it the selection of genes is not limited to the first
L genes in the relevance list. In fact, in many of the
top-performing classifiers, one or several genes from far
down the relevance list were included (e.g. gene 3353 in
C3

1 , which is number 1521 on the list).

4.5 Biological relevance

One of the main motivations to develop a reliable method
for discovering few-gene classifiers has been the well-
documented platform specific bias of microarray based
gene expression measurements [15]. Due to this bias, a
classifier derived using a given platform, such as the one
used by van’t Veer et al. [12], cannot be transferred onto
data sets using a different microarray technology. Reli-
able classification, however, should preferably be based
on longitudinal studies using widely and readily repro-
ducible gene expression measurements such as quanti-
tative RT PCR. Our method provides a more accurate
classifier for metastasis-free survival with one order of
magnitude fewer genes than the one provided by van’t
Veer et al. [12].

The method presented here provides only an effi-
cient analytical framework to produce classifiers with
improved accuracy and the actual results presented here

should be placed into the context of the appropriate bio-
logical system analyzed. Binary classification involves a
somewhat arbitrary discretization of the samples. In this
case, short or long metastasis-free survival was defined
as less or more than 5 years without detected metasta-
sis. Considering the cases with 4.9 years and 5.1 years of
metastasis-free survival falling into different categories
the binary classifier will without doubt lead to a certain
level of overfitting.

However, our method can readily be modified to ac-
commodate a continuous classifier or possibly classifi-
cation based on fuzzy logic. Work along these lines is
already in progress. The suggested biological meaning
of the classifiers should also be pointed out: The data
set examined contains log ratio values - therefore nega-
tive and positive coefficients in a classifier would indicate
decreased or increased expression of the corresponding
genes. The criteria of increased and decreased gene ex-
pression levels in tumors with varying malignancy can
be readily associated with the corresponding biology -
for example, the well-known combinatorial involvement
of increased levels of oncogenes and decreased levels of
tumor suppressors in cancer development [14].

5 Conclusion

In this paper, a method for binary classification of gene
expression data has been introduced and applied to the
breast cancer data set obtained by van’t Veer et al. [12].
The method makes use of a EA to search through the
vast space of possible classifiers. The algorithm operates
with a varying chromosome length, so that classifiers of
different size can be handled.

The best classifier found contained 7 genes, but useful
classifiers with fewer than 5 genes were discovered as
well. It was also found that the validation performance of
classifiers could be enhanced further by forcing the EA to



8 Mattias Wahde, Zoltan Szallasi

search for classifiers minimizing the number of samples
in the immediate vicinity of the separating hyperplane.

Acknowledgments

This work was in part supported by the National Insti-
tutes of Health grants U01 HL66805-01 (NHLBI), U 01
HL066582-01 (NHLBI), and 1PO1CA 092644-01 (NCI)
and by a grant from Vetenskapsr̊adet (The Swedish Re-
search Council).

References

1. Ben-Dor A et al (2000) Tissue classification with gene
expression profiles, J. Comp. Biol. 7: 559-584

2. Brown MP et al (2000) Knowledge-based analysis of
microarray gene expression data by using support vector
machines, Proc Natl Acad Sci U S A. 97(1): 262-267

3. Deutsch JM (2003) Evolutionary algorithms for finding
optimal gene sets in microarray prediction, Bioinformat-
ics 19: 45-52

4. Fogel DB (1999) Evolutionary computation: toward a
new philosophy of machine intelligence, 2nd Ed. Wiley-
IEEE Press

5. Fogel G, Corne DW (2002) Evolutionary computation
in bioinformatics, Morgan Kaufmann.

6. Haykin S (1998) Neural Networks: A Comprehensive
Foundation, 2nd Ed. Prentice-Hall

7. Khan J et al (2001) Classification and diagnostic pre-
diction of cancers using expression profiling and artificial
neural networks, Nat. Med. 7: 673-679

8. Li L et al (2002) Gene selection for sample classifica-
tion based on gene expression data: study of sensitivity
to choice of parameters of the GA/KNN method, Bioin-
formatics 17: 1131-1142

9. Mitchell M (1996) An Introduction to Genetic Algo-
rithms. MIT Press, Cambridge, MA.

10. Ooi CH, Tan, P (2003) Genetic algorithms applied to
multi-class prediction for the analysis of gene expression
data, Bioinformatcs 19: 37-44

11. Ramaswamy S et al (2003) A molecular signature
of metastasis in primary solid tumors, Nature Genetics
33(1): 49-54

12. van’t Veer LJ et al (2002) Gene expression profiling
predicts clinical outcome of breast cancer, Nature 415:
530-536.

13. van de Vijver MJ et al (2002) A gene-expression sig-
nature as a predictor of survival in breast cancer, New
England Journal of Medicine 347: 1999-2009

14. Vogelstein B, Kinzler KW (1998) The genetic basis
of human cancer. McGraw-Hill

15. Yuen T et al (2002) Accuracy and calibration of com-
mercial oligonucleotide and custom cDNA microarrays,
Nucleic Acids Res. 30(10): e48


