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Abstract— This paper describes a method for optimization
of waypoint selection for potential field navigation in au-
tonomous robots. In the method presented here, a genetic
algorithm (GA) is used for optimizing the potential field.
The chromosome of each individual encodes parametrizations
for the potential field generated by waypoints, obstacles,
and goals. The waypoints themselves are obtained through
a Voronoi tessellation of the environment in which the robot
is operating. It is demonstrated that the algorithm allows a
robot to navigate safely and efficiently through spaces with
many obstacles, even in cases where these are placed in a
strongly unfavorable way.

Furthermore, the results from simulations were imple-
mented successfully in an actual Khepera robot. Using a
slightly simplified navigation procedure, in which the robot
comes to a standstill between successive steps in the naviga-
tion, the Khepera robot managed to navigate through one of
the most difficult environments used in the simulations.

Finally, the paper briefly describes a different implemen-
tation of potential field navigation, in the path planning
adaptation submodule of a more advanced simulated mobile
robot (VirBot).

I. I NTRODUCTION

In structured environments, where the locations of obsta-
cles remain constant or, at least, can be predicted, potential
field navigation is a useful method for robotic navigation,
provided that the robot can obtain information about its
location, either directly via e.g. GPS or indirectly via e.g.
visual sensors combined with dead reckoning. Potential
field navigation was introduced in 1986 by Khatib [1], and
has since then been used in many different applications (see
e.g. [2], [3], [4], [5], and [6]). However, a robot using the
simplest form of potential field navigation will often get
stuck, due to the presence of local minima in the potential
field: since the method is gradient-based, the robot will be
unable to escape from a local minimum. The problem can
be solved by the introduction of waypoints, i.e. local goals
(attractive potentials) along the path of the robot. It is not
trivial, however, to select the location of waypoints and the
exact shape of waypoint potentials.

In [7] the authors used series of waypoints in order to
reach the designated goal in a path planning application.
However, between each waypoint the path was constrained
to be a straight line and the genetic algorithm was used
solely for the optimization of the number of waypoints and
their locations; no potential fields were used in conjunction
with these waypoints.

The aim of this paper is twofold: (1) to describe a
method for waypoint placement in potential field naviga-
tion and (2) to introduce a method for automatic generation
of the potential field generated by the navigation goal,
obstacles, and waypoints.

II. POTENTIAL FIELD NAVIGATION

In potential field navigation the robot is considered as a
particle under the influence of an artificial potential fieldU

whose local variations reflect e.g. the positions of obstacles
and of the goal that the robot is supposed to reach [8]. The
potential field function is defined as the sum of an attraction
field that pulls the robot towards the goal and a repulsive
field that repels it from the obstacles. The movement is
executed in an iterative way, in which an artificial force is
induced by

~F (q) = −~∇U(q) (1)

that forces the robot to move to the direction that the
potential field decrees, where~∇ is the gradient with respect
to q andq = (x, y) represents the coordinates of the robot
position. The complete potential field is a superposition of
contributions from obstacles, waypoints (if applicable),and
the goal:

U(q) =

no∑

j=1

Uo
j (q) +

nw∑

j=1

Uw
j (q) + Ug(q), (2)

where no and nw denote the number of obstacles and
waypoints, respectively, andUo

j andUw
j are their potential.

Ug is the potential generated by the goal (navigation
target).

A. Path generation using potential fields

In general, the force defined in Eq. (1) is not applied
directly to dictate the motion of the robot, since the mag-
nitude of the force (and hence the resulting acceleration)
may vary strongly depending on the location of the robot.
Instead, the force equation is normalized as

~f(q) =
~F (q)

‖ ~F (q)‖
, (3)

and thus only used for generating the desireddirection
(heading) of the robot. In the simulations reported below,



the equations of motion of the simulated robot are taken
as

Mv̇ + αv = A (τL + τR) , (4)

and

Iϕ̈ + βϕ̇ = B (−τL + τR) , (5)

whereτL and τR denote the torques on the left and right
wheel, respectively,v is the speed of the robot andϕ its
direction of motion.M is the mass of the robot andI
its moment of inertia.α, A, β, and B are constants. The
parameters were set so that the simulated robots were
similar to a Khepera robot, which has a diameter of 55
mm and weighs around 80 grams.

The potential field provides a desired directionϕref .
Furthermore, a reference speedvref should be specified.
The motion control is performed by means of a simple
proportional control law. Using the notationτv = τL + τR

andτϕ = −τL + τR, the control law is defined by the two
positive parametersC andD in the equations

τv =
αvref

A
− C (v − vref) , (6)

and

τϕ = −D (ϕ − ϕref) . (7)

In the simulations described in Sect. IV,vref is kept at a
single, low valuev1

ref throughout the motion, except near
obstacles where an even smaller value,v0

ref , is used.
In implementations in actual robots rather than simulated

ones, exact positions may be more difficult to obtain. In
prepared environments, the robot may be given its locations
using e.g. triangulation. Direct position information via
GPS can also be used (in principle), but the requirements
on accuracy may be too severe in most environments: in
many cases, the robot must pass within centimeters from
obstacles.

However, in other environments, which have not been
specifically prepared for robotic navigation, the robot may
have to rely on dead reckoning (occasionally re-calibrated
at certain pre-specified locations). In such cases, it is
imperative that the robot move in such a way that it can
perform dead reckoning as accurately as possible. This
topic will be discussed further in Sect. V-A below.

B. Specific potentials

Potentials of goals and waypoints should be attractive,
whereas potentials of obstacles should be repulsive. In
general, the equation

U(q) = a e−
(q−qp)2

b2 , (8)

is used, whereqp is the position of the object (goal,
waypoint, or obstacle),b is a positive constant, anda is
a negative constant in the case of attractive potentials, and
a positive constant in the case of repulsive potentials.

Fig. 1. An illustration of a potential generating a locking phenomenon.
A simulated robot released in the upper left corner would be attracted
towards the goal position in the lower right corner of the figure, only to
find itself stuck inside the wedge-like obstacle configuration.
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Fig. 2. A Voronoi diagram. The black dots represent the centers of
obstacles, and the rings at the vertices of the resulting Voronoi diagram
represent the locations of waypoints.

C. Navigation waypoints and their placement

In potentials field navigation, it is a common occur-
rence that a robot gets stuck in a local minimum of
the potential field, a situation that will be referred to as
the locking phenomenon. Local minima may appear, for
example, due to an unfortunate placement of obstacles.
One such situation is described in Fig. 1, in which a
robot is attracted towards a goal position in the lower right
corner of the figure, but ends up stuck in a wedge-shaped
obstacle from which it cannot escape. In order to avoid
such situations, the potential field can be augmented with
waypoints represented by shallow attractive potentials, that
help steer the robot towards the goal position. However, if
waypoints are to be used, the problem ofwhere to place
them must be solved. Voronoi diagrams are a possible
solution to this problem, and the method of choice in
this paper. The method for generating such diagrams is
described in [9], and can be summarized briefly as follows:
the obstacles are considered as point-like objects, and are
taken as central points (Voronoi generators) for the spatial
tessellation. Next, polygons are shaped by drawing lines
perpendicular to the lines connecting Voronoi generators,
and the corners of the resulting polygons are taken as
the waypoint locations. The procedure is illustrated in
Fig. 2. When the waypoints have been placed (and their
potentials determined, see Sect. IV), navigation proceedsas
in standard potential field navigation, with the direction of
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Fig. 3. Four snapshots showing a successful simulated robotmoving from its starting position in the upper left corner ofthe environment to the goal
position, marked with an X, in the lower right corner. The large black circles represent obstacles, and the small black dots represent waypoints. Note
that the waypoints are successively removed as the simulated robot passes in their vicinity.

motion provided by the potential field, the only difference
being that waypoints are successively removed as the robot
passes in their vincinity to prevent it from being attracted
back towards waypoints that have already been passed.

In this paper, the obstacles are all circular and thus well
represented by the potential shown in Eq. (8). However, the
waypoint placement procedure can be extended to larger,
non-circular obstacles as well. Such obstacles would be
divided into several smaller pieces, each of which could
be represented by the potential given in Eq. (8).

D. Potential field optimization

Once the location of obstacles in a given environment
is known, the location of waypoints is generated deter-
ministically through the procedure just described. What
remains to be determined is the depth (or height, in the
case of obstacles) of the potentials, denotedag, ao, and
aw, for the goal, obstacles, and waypoints, respectively,
as well as the width of the potentials, denotedbg, bo, and
bw. Furthermore, the values of the set speedsv1

ref (general
navigation) andv0

ref (near obstacles) must be determined as
well as the distancedo from the closest obstacle at which
a simulated robot lowers its set speed fromv1

ref to v0
ref .

Finally, the distancedw (between a waypoint and the robot)
at which the waypoint is removed must also be determined.
Thus, in all, a total of 10 parameters must be set and, in
the implementation used here, their values are optimized
using a standard genetic algorithm (GA) with tournament
selection, single-point crossover, and mutation.

The chromosome consists of 10 values in the range
[0, 1[, which, during the decoding procedure, are rescaled
to appropriate ranges (see Sect. IV).

III. S IMULATOR

A simulator was written, using the Delphi 5 (Object-
oriented Pascal) language, for the purpose of investigating
optimization of potential field navigation. The simulator
generates environments containingNo circular obstacles
of width wo

1 and one goal position. The simulated robots
are evaluated inNe different environments. Each simulated
robot is associated with a chromosome, and the evaluation
begins with a decoding procedure, during which the param-
eters in the chromosome are rescaled to appropriate values.
Next, for each simulated environment, the robot is allowed
to move under the influence of the potential field (whose
exact shape is determined by the parameters obtained from
the chromosome), until one of three things occurs, namely
(1) the goal is reached, (2) the simulated robot hits an
obstacle, or (3) a maximum timeTmax is reached. Next,
the fitness of the simulated robot for the environment in
question is calculated as

fi =
Tmax

T
e−

d
D , (9)

whereT is the time at which the evaluation was terminated,
d is the distance between the robot and the goal at the

1Note that theactualwidth of an obstacle, and the width of its potential,
determined by the parametersao andbo, may be very different.



termination point, andD is the initial distance between the
robot and the goal. If the robot physically hits an obstacle,
the evaluation is terminated immediately andT is set to
Tmax. With this fitness measure, the robot is rewarded for
moving quickly, and without collisions, towards the goal.

When the simulated robot has been evaluated in allNe

environments, the fitness valuesfi, i = 1, . . . , Ne are
weighed together in one of two ways, either

f (1) =
1

Ne

Ne∑

i=1

fi, (10)

or
f (2) = min

i
fi. (11)

IV. RESULTS FROM SIMULATIONS

Several simulation were performed, using both fitness
measures defined above (see Eqs. (10) and (11)). All runs
lasted for1 500 generations, and the population consisted
of 200 individuals. Each simulated robot was evaluated
againstNe = 20 randomly generated (but fixed, throughout
all runs) environments, withNo (the number of obstacles)
in the range[7, 12]. The size of each environment was1
meter by1.5 meters, i.e of order 15-20 times the diameter
of the Khepera robot.Tmax was set to 200 s, even though
the evolved robots usually managed to traverse the arena
much faster (see Fig. 3).

In the decoding procedure, during which the 10 param-
eters of the chromosome are obtained, the set speed values
v1
ref and v0

ref were rescaled to the interval[0.02, 0.10]
m/s, and the parameterdw was rescaled to the interval
[0, 0.20] m. No rescaling was applied to the parameter
do, which therefore took values in the full range[0, 1[.
The six first parameters in the chromosome, determining
the exact shape of the potential field, were not rescaled
(except thatag and aw were negated), since all that is
relevant is the direction (not the magnitude) of the force
obtained from Eq. (1). Experiments were performed using
different (physical) obstacle diameters. In order to simplify
the search performed by the GA, in some runs four of
the 10 parameters (namelybw, do, v1

ref , and v0
ref ) in

the chromosome were given pre-specificed values, thus
reducing the number of GA-optimized parameters to six in
those runs. The setup for eight representative runs is given
in Table I, and the results of the runs are shown in Tables
II and III. As is evident from the tables, the procedure
of generating potentials through Voronoi diagrams and
parameter optimization by means of GAs was successful in
all cases where fitness measuref (2) was used, whereas runs
using fitness measuref (1) reached less satisfactory results.
This is understandable, as the fitness measuref (1) only
measures average performance. Thus, with that fitness mea-
sure, it is possible for the simulated robot to fail completely
in environments and still achieve a rather high average.
By contrast, fitness measuref (2) focuses completely on
the worst performance of the robot, and tends to generate
much more robust results. In fact, inall runs with this
fitness measure, the simulated robot corresponding to the

TABLE I

SIMULATION SETUP FOR EIGHT REPRESENTATIVE RUNS. wo IS THE

PHYSICAL OBSTACLE DIAMETER, Pcross IS THE CROSSOVER

PROBABILITY AND Pmut THE MUTATION RATE, USED BY THE GA.

THE POPULATION SIZE WAS EQUAL TO200 IN ALL RUNS .

Run # wo [m] Pcross Pmut fitness measure
1 0.05 0.80 0.100 f(1)

2 0.07 0.70 0.080 f(1)

3 0.05 0.80 0.100 f(1)

4 0.07 0.80 0.100 f(1)

5 0.05 0.50 0.100 f(2)

6 0.05 0.75 0.100 f(2)

7 0.07 0.50 0.075 f(2)

8 0.10 0.80 0.050 f(2)

TABLE II

RESULTS FORRUNS 1-8. THE SECOND COLUMN SHOWS THE NUMBER

OF ENVIRONMENTS(OUT OF A MAXIMUM OF 20) IN WHICH THE BEST

AGENT IN THE CORRESPONDING RUN MANAGED TO REACH THE GOAL

POSITION IN TIME Tmax OR LESS, AND THE THIRD COLUMN SHOWS

THE FITNESS VALUES. NOTE THAT THE FITNESS VALUES OFRUNS 1-4

ARE NOT DIRECTLY COMPARABLE TO THOSE OFRUNS 5-8.

Run # # goals reached maximum fitness fitness measure
1 20 0.0869 f(1)

2 18 0.0478 f(1)

3 14 0.1492 f(1)

4 19 0.1173 f(1)

5 20 0.0722 f(2)

6 20 0.1274 f(2)

7 20 0.0962 f(2)

8 20 0.0466 f(2)

best individual managed to reach its goal position in all
environments. The parameter configurations obtained in
those runs allow the robot to navigate safely in a large
variety of environments containing obstacles of a given
size. Thus, it would not be necessary to rerun the the
optimization procedures if the positions of the obstacles
were altered.

The waypoints turned out to play a pivotal role. Even
though their influence was strongly localized to their imme-
diate vicinity, they helped guide the simulated robot safely
towards its goal. If the waypoint potentials were turned off,
the robot usually failed to reach the goal position.

V. I MPLEMENTATIONS IN ACTUAL ROBOTS

A. Khepera robots

It is of essential importance to verify, in actual robots,
the results obtained in simulations [10]. Thus, a preliminary
test of the simulation results has been performed, using
a Khepera robot2 in standard configuration (i.e. without
added sensors or means of communication). These robots
are equipped with incremental encoders, on the motor axis
of each wheel, that can be used for determining the distance
traveled by the robot. It was soon realized, however,

2The Khepera is a small, differentially steered two-wheel robot, man-
ufactured by K-team (www.k-team.com).



TABLE III

PARAMETERS OBTAINED FOR THE BEST INDIVIDUALS INRUNS 1-8. THE VALUES FOR THE FIRST SIX PARAMETERS ARE IN ARBITRARY UNITS,

AND THE LAST FOUR PARAMETERS ARE GIVEN INSI UNITS. PARAMETERS IN italics WERE KEPT CONSTANT, I .E. THE VALUES OBTAINED FROM

THE CHROMOSOME WERE NOT USED. IN CASES WITHdo = 0, THE PARAMETERv0
ref IS IRRELEVANT (AND THUS NOT GIVEN), SINCE IT WILL

NEVER BE ACTIVATED.

Run # ag bg ao bo aw bw dw v1
ref v0

ref do

1 0.746 0.352 0.644 0.045 0.018 0.190 0.198 0.040 — 0.000
2 0.975 0.637 0.130 0.084 0.009 0.341 0.188 0.040 — 0.000
3 0.586 0.344 0.169 0.060 0.002 1.295 0.123 0.043 0.099 0.594
4 0.885 0.631 0.492 0.057 0.002 1.064 0.079 0.100 0.041 0.082
5 0.836 0.390 0.611 0.045 0.010 0.494 0.155 0.040 — 0.000
6 0.886 0.434 0.425 0.045 0.016 0.200 0.086 0.099 0.039 0.115
7 0.777 0.397 0.565 0.057 0.016 0.539 0.006 0.099 0.044 0.085
8 0.569 0.463 0.263 0.057 0.346 0.063 0.167 0.098 0.029 0.128

that the navigation accuracy obtained by performing dead
reckoning using the incremental encoders on the Khepera
was not sufficient for dynamic motion according to Eqs. (6)
and (7). Instead, a simplified scheme was implemented, in
which the robot navigates in discrete steps. In each step the
robot starts from a standstill, determines (via the potential
field U(q)) its desired direction of heading, rotates to face
this direction, moves a distanceδ in this direction, so that
the position changes according to

qi+1 = qi + δ ~f(q), (12)

and then stops again to compute a new desired direc-
tion etc. Provided thatδ is chosen sufficiently small, i.e.
smaller than the typical length scale of variations in the
potential field, this navigation procedure represents a slow-
motion version of that used in the simulations. Using this
procedure, and after some calibration of the incremental
encoders as well as the acceleration and deceleration
phases of each movement, the Khepera rather successfully
(but slowly) navigated through one of the most difficult
environments used in the simulations, namely that shown in
Fig. 3. A snapshot of the navigating robot is shown in Fig.
4. On some occasions, however, the Khepera was unable
to reach the goal. The failure could be attributed partly to
the limited accuracy provided by the incremental encoders,
which caused a continuously increasing deviation between
the actual and estimated position of the robot. Furthermore,
there was a small problem with the motors in the Khepera
robot, when running on batteries: for a few steps of the
motion, one of the motors would temporarily cease to
function, probably because of a malfunctioning battery,
since the problem could be eliminated when using an
external power source. Finally, in narrow passages between
obstacles, the robot sometimes displayed an oscillatory
behavior. This is a well-known phenomenon [11] in poten-
tial fields navigation, and was indeed noticed also in the
simulations (see the two bottom panels in Fig. 3). While
the oscillations are harmless in the simulations, they tend
to further deteriorate the accuracy of the dead reckoning
in the Khepera robot experiments.

Fig. 4. A snapshot of the Khepera robot navigating through one of the
environments used in the simulations (cf. Fig. 3). The navigation goal is
marked with a cross, and the Khepera robot is located close tothe middle
of the figure..

B. VirBot

The VirBot system [12], illustrated in Fig. 5, is a
considerably more advanced robotic system than Khepera.
While VirBot also is a simulated robot, the VirBot structure
illustrated in Fig. 5 has been implemented in an actual No-
mad type robot. Potential field navigation using waypoint
optimization has been implemented in the path planning
submodule of the VirBot system. While the implementation
shares certain basic features with the simulated systems and
the Khepera implementation described above, the VirBot
implementation is different in the sense that it attempts
to optimize thepositionsof waypoints rather than having
them generated automatically using the Voronoi tessellation
procedure. A simulator for the VirBot system has also
been written, and it has been tested successfully in a
variety of environments. However, because of the need
to evolve the locations of waypoints (which may be very
time-consuming) for each new environment, this method is
perhaps less suitable in realistic applications.

VI. D ISCUSSION AND CONCLUSION

The exact potentials that evolved for the waypoints
varied quite strongly, as evidenced by the results shown



Fig. 5. The VirBot system.

in Table III. In some runs (e.g. Run 3), shallow but
wide-ranging waypoint potentials were evolved, whereas
in others (e.g. Run 8), the waypoint potentials were deep
but narrow. It is interesting to note that the GA was able
to find both these types of waypoints, and the results
indicate that, while the use of waypoints is crucial to avoid
locking phenomena, their exact shape can be chosen in
many different ways.

Another indication that the GA may choose to use
the available parameters in a way that differs from the
intentions of the experimenter is given by Run 3, in which
the speed near obstacles (v0

ref ) was actually set to ahigher
value than the nominal navigation speed. However, in this
run, the parameterdo was also set to a very high value,
so that the simulated robot considered itself to be near
obstacles almost all the time. In this case, the simulated
robot moved quite fast, and obtained a high fitness value
in those environments for which it managed to reach the
goal, but at the cost of many complete failures. Indeed, the
goal was only reached in 14 out of 20 environments, as
shown in Table II.

The behavior of simulated robots evolved with fitness
measuref (2) was more robust, and their navigation more
careful than that of simulated robots evolved with fitness
measuref (1).

The main conclusion of this investigation is that it is
indeed feasible to evolve potential fields, containing way-
points, for efficient and robust robotic navigation, provided
that the fitness measure used by the GA is chosen carefully.
Even though the runs lasted1 500 generations, satisfactory
results were often obtained after a few hundred generations.

As is often the case when GAs are used, the performance
of the algorithm depended quite strongly on the choice
of fitness measure, and the general conclusion is that a
more challenging fitness measure, if properly chosen, will
generate more robust results.

As for the preliminary tests that were performed using a

Khepera robot, the conclusion is that it is indeed possible,
in this case, to transfer the simulation results more or less
directly to an actual robot. However, not surprisingly, the
results obtained with the Khepera are not very robust, due
to the limited accuracy of the incremental encoders, and
the occasional problems with the batteries reported above.

More tests are underway, in which attempts are made
to find the optimal distanceδ between successive readings
of the potential field. In addition, adding a camera to the
Khepera robot, attempts will be made to supplement the
dead reckoning with landmark recognition, allowing the
robot to navigate in a similar fashion to e.g. desert ants
[13], by taking and storing snapshots of useful features
in the environment. Interesting issues in this respect are
the problems of determiningwhen to take snapshots of
landmarks, as well as determiningwhen and how to use
them.
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