
Improved time series prediction using
evolutionary algorithms for the generation
of feedback connections in neural networks

Erik Hulthén, Mattias Wahde1

Department of Machine and Vehicle Systems,

Chalmers University of Technology, Sweden

1. Corresponding author

Abstract

Some results from a method for generating recurrent neural networks (RNN)
for prediction of financial and macroeconomic time series are presented.
In the presented method, a feedforward neural network (FFNN) is first
obtained using backpropagation. While backpropagation is usually able to
find a fairly good predictor, all FFNN are limited by their lack of short-term
dynamic memory. RNNs, by contrast, may exhibit short-term memory due
to feedback connections in the network. In the method presented here, the
RNNs are generated by an evolutionary algorithm (EA). The preliminary
results indicate that the evolved RNN indeed outperform, by a few per cent,
the FFNN obtained through backpropagation on several time series. How-
ever, it is noted that, regardless of the predictor used, the prediction error
cannot be much improved over that obtained from a very simple predictor.
Finally, another approach is tested as well, in which the evolved RNN gener-
ate not only a prediction but also a measure of confidence in the prediction.
Key words: time series prediction, evolutionary algorithms, neural networks



1 Introduction

Time series prediction, i.e. the process of predicting future values in a series
of data, is of central importance in many fields of science, e.g. meteorology,
finance, and macroeconomics. In the physical sciences, it is often possible
to derive a sufficiently accurate model of the system, thus reducing the
prediction problem to the task of finding the correct parameter values within
the framework of the model. However, in finance and macroeconomics a set
of fundamental equations that govern the dynamics of the system sufficiently
accurately to be useful in time series prediction can rarely be found. Thus,
one must instead resort to methods that are model-free or, more accurately,
that build their own model. Artificial neural networks (ANN) have been used
for economic and macroeconomic time series prediction by several authors,
e.g. Dunis et al [1], Giles et al [2], and Moody [3].

There are several ways of generating ANN for time series prediction. A
common method is to use backpropagation to train feedforward neural net-
works (FFNN) (Haykin [4]). Backpropagation is easy to use, and gener-
ally exhibits stable convergence towards small prediction errors. However,
FFNNs suffer from an inherent weakness, namely their lack of short-term
memory (see Sect. 2). Thus, the selection of the number of input signals
(henceforth referred to as the lockback length, L) is crucial in determining
the predictions of an FFNN. However, backpropagation gives no informa-
tion concerning the optimal value of L, and neither does it allow L to vary
during training.

In order to overcome the problem caused by the lack of short-term mem-
ory in FFNN, and to make the networks more independent of the number
of inputs, a recurrent neural network (RNN), i.e. a network with feedback
connections, can be used. In principle, an RNN can store information con-
cerning all previous values of a time series, and is therefore not limited by
the memory horizon present in FFNNs. On the other hand, the training of
RNN is much more complicated. Gradient-based methods, such as backprop-
agation through time (BPTT) (Werbos [5]) or real-time recurrent learning
(RTRL) (Williams et al [6]) are applicable in principle, but do not easily
accommodate variations in the network architecture during training, which
is a crucial drawback since one of the main motivations for using ANNs in
the first place is the lack of accurate mathematical models, implying that
the training method should allow as much flexibility as possible concern-
ing the network architecture. Furthermore, gradient-based methods require
that error signals can be formed, and are thus only applicable to supervised
learning. In its simplest formulation, the problem of time series prediction



Figure 1: Inherent limitations of FFNN; for a given input (with L elements),
an FFNN will always produce the same output.

is a supervised learning problem. However, in more advanced applications,
in which the ANN is supposed e.g. to provide not only a prediction but also
a measure of its confidence in that prediction, the problem is no longer an
example of supervised learning.

Combining ANNs with evolutionary algorithms (EAs), as proposed by
Yao [7] and others, is another alternative. EAs are known to be very efficient
methods for search and optimization in complex search spaces containing
many local optima, in which gradient-based methods, such as backpropaga-
tion, are likely to get stuck (Holland [8]). However, evolving ANNs starting
from a random network is a very time-consuming process, especially since
the crossover operator, which in an EA combines material from two individ-
uals (see below) to form new individuals, is rarely useful. This is an effect
of the distributed nature of computation in ANNs: the computation is an
emergent property of the entire neural network, and therefore the process
of splitting networks and recombining the parts will most often result in a
degradation in performance.

Here, an alternative method will be presented, in which FFNN are first
trained with backpropagation. Then, the resulting network is mutated slightly
to form an initial population for an EA that continues the optimization of
the network, transforming it to an RNN by introducing feedback connec-
tions if necessary.

2 Method

In this section, the methods used for generating RNNs will be introduced
and described.



2.1 Data sets for time series prediction

A time series can be defined as a sequence X(i), i = 1, . . . , N of time-ordered
values, and time series prediction can be defined as the problem of predicting
X(j) given X(j−1), X(j−2), . . . , X(j−L), where L is the lookback length.

A common problem when training ANNs for time series prediction is
overfitting, where the training algorithm achieves a very low training error
by fine-tuning the weights of the ANN, but at the cost of a reduction in
predictive performance, manifested as an increase in the prediction error
on new data (i.e. data that were not used during the training procedure).
In order to avoid overfitting, and to assess the performance of the ANN
in general, it is common to divide the data set into a training set and a
validation set (Haykin [4]). The error obtained over the training set is used
during training, and the error over the validation set, which is not provided
to the training algorithm, is used for determining when to terminate the
training.

2.2 Network architectures

If the lookback L is given, the prediction can be performed using two-layer
FFNN with L input elements, nH hidden neurons, and one output neuron.
The elements of the input signal x will thus be x1 = X(j−1), x2 = X(j−2)
etc. and the output signal will be the prediction X̂(j) of X(j). Such an
FFNN is shown in the left panel of fig. 2. For the FFNN, the output xH of
the hidden neurons is computed as

xH

i = σ



bi +
L

∑

j=1

wI→H

ij xj



 , (1)

where bi are the bias terms, wI→H are the weights connecting the input
elements to the hidden neurons, and σ(z) is the sigmoid function, taken e.g.
as σ(z) = 1/(1+e−cz), where c is a constant. The output xO of the network
is obtained in a similar way.

However, as mentioned in the introduction, an FFNN has no short-term
memory. Consider e.g. a case with L = 3, as shown in fig. 1, where two
identical inputs x

1 = x
2 are presented. The FFNN will, in both cases, give

exactly the same output, regardless of the signals that preceded the L steps
used as inputs. Thus, there is a fundamental limit to the predictive capacity
of FFNN, regardless of the training method used. It should be noted that, in
macroeconomic and financial time series, identical inputs (for any given L)



do occur, since the variables are often measured with rather low accuracy.
For example, unemployment rates are commonly given with a single decimal.

Of course, the problem can be circumvented by increasing L. However,
as L is increased, the number of weights in the network grows rapidly,
and the risk of overfitting (i.e. fitting the noise in the data) grows with it.
Furthermore, the procedure of simply increasing L represents a way to avoid

a problem rather than solving it; the FFNN architecture, lacking short-term
memory, is simply not the optimal architecture for prediction problems, and
there is no reason to force the data to fit a certain pre-defined architecture.
Instead, networks should be provided with short-term memory, and also
be allowed to exhibit a flexible architecture, where the size and shape of
the network emerges as a result of the training process, rather than being
postulated in advance. Both aspects lead to RNNs, an example of which is
shown in the right panel of fig. 2.

In network containing feedback connections, the full impact of a change in
the input will take some time to reach the output. Thus, using discrete time,
updating the output of each neuron only when the input signal changes, will
not work. Instead, the RNNs must operate in continuous-time, with new
input signals appearing at certain discrete intervals. Thus, for RNNs, the
network equations can be taken as

τiẋi + xi = σ



bi +
n

∑

j=1

wijxj +
L

∑

j=1

wIN

ij yj



 , i = 1, . . . , n, (2)

where τi are time constants, wij are interneuron weights connecting the n
neurons to each other (note that self-couplings are possible), and wIN are
the weights connecting the L input elements to the n neurons. If τi → 0,
and if the weights are properly chosen, it is clear that any FFNN can be
represented as a special case of an RNN as described by eqn (2).

2.3 Evolutionary algorithms and RNN

There are many different kinds of EAs, e.g. genetic algorithms (GAs), genetic
programming (GP) etc. In a GA, a candidate solution to the problem at
hand is represented as a fixed-length string of digits known as a chromo-
some. The chromosome, when decoded, generates an individual (in this case
an RNN), which can be evaluated and assigned a fitness score (essentially
the inverse of the error) based on its performance. In the evolution of RNNs



for time series prediction, the fitness measure can be taken as 1/eRMS, where

eRMS =

√

√

√

√

1

N − L + 1

N
∑

j=L

(X̂(j) − X(j))2 (3)

is the RMS error over the training data set.
In a GA, a population consisting of M individuals is maintained. All

individuals are evaluated and assigned fitness scores, and new individuals
are then formed through the procedures of fitness-proportional selection,
crossover, and mutation (i.e. small random variations in the network). The
process, which is inspired by darwinian evolution, is repeated until a satis-
factory solution to the problem has been found. GAs will not be described
in detail in this paper. For detailed information concerning such algorithms,
see e.g. Holland [8].

The EA used in this paper differs somewhat from a standard GA. First,
it operates directly on the RNNs, rather than going through a decoding-
encoding step as described above for the GA. Second, crossover is not used,
for the reason mentioned in Sect. 1. Furthermore, three different mutation
operators are used: in addition to the ordinary parametric mutations used in
any GA (and which, in the case considered here, modify the weights wij and
wIN

ij , biases bi, and time constants τi of the RNN), connectivity mutations
and structural mutations are used as well. Connectivity mutations add or
remove weights between neurons in the network, or between the input ele-
ments and the neurons, whereas structural mutations add or remove entire
neurons. The parametric mutations are of two kinds: full-range mutations,
where the new values is chosen randomly in the full available range (e.g.
[wmin, wmax] in the case of network weights), and creep mutations, where
the new value is chosen from a narrow probability distribution centered on
the old value of the parameter in question.

2.4 Evolving recurrent neural networks

The method for obtaining RNNs for time series prediction operates as fol-
lows: First, an FFNN is generated using backpropagation. The number of
hidden neurons (nH) and the lockback (L) are chosen using trial-and-error.
This is feasible, since the backpropagation algorithm converges quite rapidly.
Once a network architecture has been decided upon, a long backpropaga-
tion run is performed, to find an FFNN with minimal validation error, as
discussed above.



Next, an initial population of RNNs is generated by slightly mutating the
FFNN obtained from backpropagation. An exact copy of the FFNN is also
included. The FFNN weights are translated to generate appropriate w and
wIN matrices. The time between consecutive inputs from the time series
is arbitrarily set to 1, and the initial time constants of the RNNs are set
to 0.1. With these values, the individual representing an exact copy of the
FFNN produces almost identical outputs as the FFNN (the output from
the mutated individuals will, of course, differ from that of the FFNN).

Then the EA is allowed to run its course, modifying the values of time
constants, biases, connection weights (wij and wIN

ij ), as well as adding and
removing both connections and neurons. The same training data set is used
both when training the FFNN with backpropagation and when evolving
RNNs using the EA, and, in both cases, the performance on the validation
data set is monitored (but not provided to the training algorithms).

2.5 Benchmark model: Naive strategy

In order to quantify the results from the neural networks a comparison is
made with a naive prediction strategy, defined by X̂ (j + 1) = X (j). This
strategy is used as comparison method in e.g. Dunis et al [1] and Giles et al

[2]. Clearly, in order to be useful, a more advanced predictor must, at the
very least, outperform this naive strategy.

3 Results

3.1 Improving predictor performance

The procedure described in Sect. 2.4 was applied to several different macroe-
conomic and financial data sets. In most cases, the evolved RNN outper-
formed the FFNN generated by backpropagation. Furthermore, the RNN
(but not the FFNN) generally also outperformed the naive benchmark strat-
egy. However, the improvement in performance was rather small (a few per
cent), as shown in Table 1. Due to space limitations, detailed results will
only be given for one specific case, namely a prediction of US unemployment.

3.1.1 US unemployment data
The data set used in this case (corresponding to the first row in Table 1)
consisted of monthly measurements of the US unemployment rate (season-
ally adjusted), from January 1948 to August 2003. The length of the time



Table 1: Results from several different time series. The second and third
columns show the length of the training and validation time series,
respectively. The fourth column shows the lookback length used
in the FFNN, and subsequent columns show the training and vali-
dation error (based on ANN output normalized to [0,1]), obtained
for the naive strategy, FFNN, and RNN. Series I = US Unemploy-
ment data (monthly average), 1948-2003. Series II = Exchange rate
USD-JPY (weekly average), 1986-2003.

Naive FFNN RNN

Series Ntr Nval L Tr. Val. Tr. Val. Tr. Val.

I 547 118 3 0.0258 0.0163 0.0302 0.0179 0.0286 0.0158

I 442 222 5 0.0275 0.0163 0.0233 0.0161 0.0228 0.0159

II 539 363 4 0.0183 0.0213 0.0191 0.0208 0.0182 0.0206

series was 668. The data were rescaled to the interval [0,1] by first subtract-
ing 2.0 from each data point, and then dividing by 9.0. In this case, L was
set to 3, and the best FFNN achieved an RMS training error of 0.0302 and
an RMS validation error of 0.0179. The EA ran for 1,300 generations using a
population size of 80 individuals. The best RNN (i.e. with lowest validation
error) was obtained in generation 1,272. For this network the RMS training
error was 0.0286, and the validation error was 0.0158. Scaling back to orig-
inal units, the RMS validation error from the FFNN was 0.161 percentage
points and the RMS validation error from the best RNN was 0.142 percent-
age points. This can be compared with the naive strategy where the RMS
validation error was 0.147 percentage points. The original FFNN and the
best RNN are shown in fig. 2. As can be seen from the figure, the EA has
added three neurons and a large number of weights. The original network
weights were, however, only slightly modified.

3.2 Evolving confidence measures

In the methods considered so far, the ANN predictor attempted to find the
best possible predictions over the entire training data set. However, it is
common that the performance varies over the data set and, indeed, there is
not a priori reason to believe that accurate predictions can be made at every
single time step; in a strongly non-linear system, there may be islands of pre-



Figure 2: The FFNN (left panel) and the final evolved RNN (right panel)
for the prediction of US unemployment (first row in Table 1).

dictability, inserted in a sea of unpredictable or chaotic behavior (Packard
[9]). Thus, a predictor (in this case an ANN) that could provide not only a
prediction but also a measure of its own confidence concerning the predic-
tion, would be very useful. In general, however, the data does not provide a
measure of its own predictability (even though estimates can be made based
on volatility), and therefore it is impossible to generate an accurate confi-
dence measure using supervised training methods. However, using an EA,
it is straightforward: all that is needed is an added neuron whose output
is simply taken as the confidence measure. Thus, a modified procedure for
evolving RNN was generated, in which all RNNs in the initial generation
are supplied with an additional, randomly connected neuron whose output
C is defined as the confidence measure. The fitness measure used in the EA
is taken as 1/eRMS,C where

eRMS,C =

√

√

√

√

1

N − L + 1

∑N

j=L(C(j)(X̂(j) − X(j)))2
∑N

j=L C(j)2
. (4)

The analysis for the US unemployment data was repeated, using the method
just described. In general, the EA obtained improvements in the error mea-
sure as defined by eqn (4). However, when the ordinary RMS errors were
computed, using eqn (3), the results were, in general, slightly worse than for
the EA runs without confidence measure. For example, for the US unem-
ployment data, the RMS error over the validation set, for those predic-



tions having confidence C > 0.90, was equal to 0.0169. For predictions with
C < 0.10, the RMS prediction error was equal to 0.0284.

4 Conclusion

In this paper, a method for generating RNNs starting from an FFNN
obtained through backpropagation, has been introduced and described. The
RNNs obtained with this method outperform the original FFNN as well as
a naive benchmark strategy, but only by a small amount. Introduction of
an additional neuron providing a confidence measure for the predictions
obtained from an RNN had a small negative effect, even though the evolved
RNN was able to identify the parts of the time series for which it could
make the best predictions. A possible reason for the negative result is the
vast increase in complexity when both a prediction and a confidence measure
are to be evolved. The issue is currently being further investigated.

References

[1] Dunis, C.L. & Williams, M., Modelling and trading the eur/usd
exchange rate: Do neural network models perform better? Derivatives

Use, Trading and Regulation, 8(3), pp. 211–239, 2002.
[2] Giles, C.L., Lawrence, S. & Tsoi, A.C., Noisy time series prediction

using a recurrent neural network and grammatical inference. Machine

Learning, 44(1/2), pp. 161–183, 2001.
[3] Moody, J.E., Economic forecasting: Challenges and neural network solu-

tions. Proceedings of the International Symposium on Artificial Neural

Networks, Hsinchu, Taiwan, 1995.
[4] Haykin, S., Neural Networks, A Comprehensive Foundation. Prentice-

Hall, Inc., 2nd edition, 1999.
[5] Werbos, P., Backpropagation through time: what it does and how to do

it. Proceedings of the IEEE, 78(10), pp. 1550–1560, 1990.
[6] Williams, R.J. & Zipser, D., A learning algorithm for continually running

fully recurrent neural networks. Neural Computation, 1, pp. 270–280,
1989.

[7] Yao, X., Evolving artificial neural networks. Proc of the IEEE, 87(9),
pp. 1423–1447, 1999.

[8] Holland, J., Adaptation In Natural and Artificial Systems. The Univer-
sity of Michigan Press, 1975.

[9] Packard, N.H., A genetic learning algorithm for the analysis of complex
data. Complex Systems, 4(5), pp. 543–572, 1990.


