
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

GENERATION AND ORGANIZATION OF

BEHAVIORS FOR AUTONOMOUS ROBOTS

JIMMY PETTERSSON

Department of Applied Mechanics
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2006

Generation and organization of behaviors for
autonomous robots

JIMMY PETTERSSON
ISBN 91-7291-833-0

c© JIMMY PETTERSSON, 2006

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 2515
ISSN 0346-718X

Department of Applied Mechanics
Chalmers University of Technology
SE–412 96 Göteborg
Sweden
Telephone: +46 (0)31–772 1000

Chalmers Reproservice
Göteborg, Sweden 2006

Till Anita och Nils-Åke

Generation and organization of behaviors for
autonomous robots

JIMMY PETTERSSON
Department of Applied Mechanics
Chalmers University of Technology

Abstract

In this thesis, the generation and organization of behaviors for autonomous robots
is studied within the framework of behavior-based robotics (BBR). Several differ-
ent behavioral architectures have been considered in applications involving both
bipedal and wheeled robots. In the case of bipedal robots, generalized finite-state
machines (GFSMs) were used for generating a smooth gait for a (simulated) five-
link bipedal model, constrained to move in the sagittal plane. In addition, robust
balancing was achieved, even in the presence of perturbations. Furthermore, in
simulations of a three-dimensional bipedal robot, gaits were generated using clus-
ters of central pattern generators (CPGs) connected via a feedback network. A
third architecture, namely a recurrent neural network (RNN), was used for gen-
erating several behaviors in a simulated, one-legged hopping robot. In all cases,
evolutionary algorithms (EAs) were used for optimizing the behaviors.

The important problem of behavioral organization has been studied using the
utility function (UF) method, in which behavior selection is obtained through evo-
lutionary optimization of utility functions that provide a common currency for the
comparison of behaviors. In general, the UF method requires the use of sim-
ulations. Thus, an important part of this thesis has been the development of a
general-purpose software library (UFLib) implementing the UF method. In order
to study the properties of the UF method, several behavioral organization prob-
lems, mostly involving wheeled robots, have been considered. Most importantly,
it was found that the UF method greatly simplifies the search for solutions to
a wide variety of behavioral organization problems and requires a minimum of
hand-coding. Furthermore, the results show that the use of multiple simulations
(for the evaluation of a robot) significantly improves the ability of the robot to
select appropriate behaviors. For the EA, it was found that the standard crossover
procedure, which swaps entire utility functions between individuals, performed
at least as well as several modified operators, and that the mutation rate should
be set so as to generate around three parameter modifications per individual. Fi-
nally, some early results are presented concerning the use of the UF method in
connection with a robot intended for transportation and delivery.

Keywords: autonomous robots, behavioral organization, action selection, utility
function method, evolutionary robotics.

i

List of publications

This thesis is based on the work contained in the following papers, referred to by
Roman numerals in the text:

I. Pettersson, J., Sandholt, H., and Wahde, M., A flexible evolutionary method
for the generation and implementation of behaviors for humanoid robots,
in: Proceedings of the IEEE-RAS International Conference on Humanoid
Robots, Humanoids 2001, Tokyo, Japan, November 2001, pp. 279–286.

II. Pettersson, J., EvoDyn: A simulation library for behavior-based robotics,
Technical Report, Chalmers University of Technology, September 2003.

III. Pettersson, J. and Wahde, M., Application of the utility function method
for behavioral organization in a locomotion task, IEEE Transactions on
Evolutionary Computation, Volume 9, Issue 5, Oct. 2005, pp. 506–521.

IV. Wolff, K., Pettersson, J., Heralić, A., and Wahde, M., Structural Evolu-
tion of Central Pattern Generators for Bipedal Walking in 3D Simulation,
to appear in: Proceedings of the 2006 IEEE International Conference on
Systems, Man, and Cybernetics (SMC 2006), Taipei, Taiwan, 2006.

V. Pettersson, J. and Wahde, M., UFLibrary: A Simulation Library Imple-
menting the Utility Function Method for Behavioral Organization in Au-
tonomous Robots, submitted to: International Journal on Artificial Intelli-
gence Tools, 2005.

VI. Wahde, M., Pettersson, J., Sandholt, H., and Wolff, K., Behavioral Selection
using the Utility Function Method: A Case Study Involving a Simple Guard
Robot, in: Proceedings of the 3rd International Symposium on Autonomous
Minirobots for Research and Edutainment (AMiRE 2005), Fukui, Japan,
2005, pp. 261–266.

iii

iv List of publications

VII. Pettersson, J., Sandberg, D., Wolff, K., and Wahde, M., Behavioral selec-
tion in domestic assistance robots: A comparison of different methods for
optimization of utility functions, to appear in: Proceedings of the 2006 IEEE
International Conference on Systems, Man, and Cybernetics (SMC 2006),
Taipei, Taiwan, 2006.

VIII. Pettersson, J. and Wahde, M., Improving generalization in a behavioral se-
lection problem using multiple simulations, in: Proceedings of the Joint 3rd

International Conference on Soft Computing and Intelligent Systems and
the 7th International Symposium on advanced Intelligent Systems (SCIS &
ISIS 2006), Tokyo, Japan, 2006, pp. 989–994.

IX. Wahde, M. and Pettersson, J., A General-purpose Transportation Robot: An
Outline of Work in Progress, in: Proceedings of the 15th IEEE International
Symposium on Robot and Human Interactive Communication (RO-MAN
06), Hatfield, United Kingdom, 2006, pp. 722–726.

X. Pettersson, J. and Wahde, M., Behavior selection for localization and nav-
igation in a transportation robot, using evolvable internal state variables,
manuscript to be submitted to: Autonomous Robots.

In addition to the papers listed above, the author has also been involved in the
work presented in references [57], [59], [69], [70], and [71].

Acknowledgments

I would like to thank Chalmers Center for Mechatronics and System Engineering
(CHASE) and the Carl Trygger Foundation for financial support for my research
project.

A special thanks goes to my thesis advisor Mattias Wahde for his never-ending
enthusiasm and immense competence. Without his excellent guidance and super-
vision during these years, this thesis would never have been. Thank you.

I would also like to thank all colleagues (present and former) at the Depart-
ment of Applied Mechanics, who have contributed to make Chalmers such an en-
joyable working place. I am also grateful to my co-workers at Waseda University
in Tokyo.

Finally, a very special thank you to Marie for your patience and love, and for
being by my side throughout this journey.

Jimmy Pettersson
Göteborg, 2006

v

Technical terms used in the thesis

The technical terms used in this thesis are listed below. For each term, the page
number for its first occurrence is also given.

A

activation networks 28
arbitration methods 28
artificial intelligence 27
artificial neural networks 6
autonomous robots 1
auxiliary behaviors 32

B

behavior dithering 35
behavior-based robotics 1
behavioral hierarchy 36
behavioral organization1
behavioral repertoire 1
benefit . 32
binary encoding 17

C

central pattern generators 6
chromosomes 16
command fusion methods 28
crossover . 16

D

definition files 40
degrees of freedom 12

E

embodied evolution 22
evaluation . 49
evolution strategies 15
evolutionary algorithms 2
explicit encoding 18
external variables 33

F

feedforward networks 10
fuzzy command fusion 28

G

genes . 16
genetic algorithms 15
genetic programming 15
genome . 16
genotype. .16
grid map . 50

I

if-then-else-rules 6
incremental evolution 29
individual . 15
infrared sensor 40
intelligent behavior 32
internal abstract variables33

vii

viii Technical terms used in the thesis

internal physical variables 33
intraspecies crossover 19

L

laser range finder 40

M

macromutations 20
multiple simulations 49
mutation . 16

O

overall fitness 49

P

pathfinding . 50
phenotype . 16
population . 15
potential field 28
preferences . 32

R

rational behavior 32
reactivity . 27
real-number encoding 17

S

sagittal plane . 9
selection . 16
single-neuron crossover 20
state variables 33
subsumption method 28

T

task behaviors 32
training set . 49

U

unstructured environments 2
utility . 31
utility function 31
utility function method 1

V

validation set 49

W

waypoints .52

Table of contents

1 Introduction and motivation 1

1.1 Contributions . 4

2 Behavior-based robotics 5

2.1 Architectures for behaviors . 6

2.1.1 If-then-else-rules . 7

2.1.2 Recurrent neural networks (RNNs) 10

2.1.3 Central pattern generators (CPGs) 11

3 Evolutionary robotics 15

3.1 Evolutionary algorithms . 15

3.2 Encoding schemes . 17

3.2.1 Chromosomal encoding 17

3.2.2 Explicit encoding . 18

3.3 Approaches to ER . 19

3.3.1 Evolution in simulation 19

3.3.2 Evolution using hardware 22

4 Behavior generation 25

4.1 Hand-coded behaviors for wheeled robots 26

4.2 Evolved behaviors for bipedal robots 27

5 Behavioral organization 29

ix

x Table of contents

6 The utility function method 33

6.1 Brief description of the method 33

6.1.1 The concept of utility . 33

6.1.2 Behaviors . 34

6.1.3 State variables . 35

6.1.4 Utility functions . 36

6.1.5 Selection of behaviors 37

6.1.6 Behavioral hierarchies 38

7 The utility function library 41

7.1 Sensor modeling . 42

7.1.1 Infrared sensor . 43

7.1.2 Laser range finder . 45

7.2 Motor modeling . 48

7.3 Recent additions . 50

7.3.1 Multiple simulations . 50

7.3.2 Pathfinding . 51

7.4 Evolutionary algorithm . 54

7.5 Usage example . 56

8 Case studies 59

8.1 Hopping robot . 59

8.2 Transportation robot . 60

9 Conclusions and further work 63

9.1 Conclusions . 63

9.1.1 Generation of behaviors 63

9.1.2 Organization of behaviors 64

9.2 Further work . 65

Bibliography 67

APPENDED PAPERS

Chapter 1
Introduction and motivation

The theme of this thesis is the generation and organization (selection) of behaviors
for autonomous robots, and the main objectives are (1) to find suitable represen-
tations for robotic behaviors in different contexts (see Papers I, III, IV, and V), (2)
to improve and expand the utility function method (UF method) for behavioral
organization (see Papers III, V, VI, VII, and VIII), and (3) to extend the behavior-
based approach (described in Chapter 2) to real-world applications (considered in
Paper IX and Paper X).

Applications involving both bipedal robots and wheeled robots are consid-
ered. In the case of bipedal robots, the problem of generating motor behaviors for
walking and balancing is studied (Papers I, III, and IV) whereas, for the case of
wheeled robots, both behavior generation and behavioral organization are con-
sidered (Papers VI–X). In Paper IV, the problem of behavioral organization is
also considered for the case of a one-legged hopping robot.

For the organization of behaviors, the recently developed utility function (UF)
method [66] is investigated by means of computer simulations, which have been
focused on the study of the basic properties of the method. An important part of
the work presented here, described in detail in Chapter 7 and in Papers V–VIII, is
the development of a general-purpose simulation library (UFLIB), implementing
the UF method.

Thus, the work in thesis has been carried out within the framework of behavior-

based robotics (BBR) [3], in which robots are commonly provided with a reper-
toire of behaviors and a behavior selection mechanism for selecting the most ap-
propriate behavior at all times. In BBR, the behavioral repertoire normally con-
sists of a set of basic behaviors that, when combined by the behavioral organizer,
gives rise to a more complex, overall behavior of the robot.

Motor behaviors handle the control of the actuators of a robot and represent a

1

2 Chapter 1. Introduction and motivation

special case included in the more general concept of behaviors in BBR. Examples
of such general behaviors include: find energy source, avoid obstacles, and follow
wall.

The emphasis of this thesis is on the use of biologically inspired computation
methods, and, in particular, the use of evolutionary algorithms (EAs) [8, 27]
in connection with (1) behavior generation based on several different architec-
tures (see Chapters 2 and 3), and (2) the generation of behavior selection systems
(see Chapters 5 and 6). EAs is the umbrella term for a class of powerful search
methods based on the principles of biological evolution [8]. Such methods have
been developed over the last few decades and are applicable to a large variety of
optimization problems and, in particular, problems involving large and complex
search spaces such as the behavioral organization problems studied here. Further-
more, the choice of biologically inspired computation methods is motivated by
the biological roots of the behavior-based paradigm and, in the particular case of
EAs, the remarkable innovation and adaptation resulting from natural evolution
[12, 13].

Most of the work reported in this thesis has been carried out in simulations, a
near-necessity when using evolutionary methods, since the alternative procedure
of evaluating a robotic brain1 in hardware is both much more time-consuming and
requires continuous monitoring. However, some tests are underway where results
from simulations are being transferred to a real robot. In addition, the author is
involved in a project aimed at constructing a general-purpose transportation robot
(see Papers IX and X), in which the UF method will be used for generating the
behavior selection system.

Recent development of hardware and the increased availability of computa-
tional power have contributed to the rapid development of autonomous robots,
i.e. freely moving robots. In contrast to manipulators (industrial robots), which
are normally operating in structured environments, autonomous robots are de-
signed to operate in unstructured environments. Hence, researchers in the field
of autonomous robotics face the problem of developing robots capable of func-
tioning in environments full of uncertainties. In such unpredictable environments
it is difficult to define, a priori, a control strategy that is sufficiently general for
the robot to perform its task(s) reliably. Traditional adaptive control [58] does, of
course, allow parameters in the control system to change, but the alterations gener-
ated by such modifications do not amount to a complete switch from, for instance,
a walking behavior to a retrieve object behavior. Hence, even though the output
from classical controllers varies in response to deviations from the stipulated ref-
erence trajectories, fundamental changes in the behavior of such a controller do

1Henceforth, the term robotic brain will be used to denote the system that controls a robot.

3

not occur (although methods such as gain scheduling do allow a certain degree of
flexibility). For this to happen, several distinct behaviors are needed and, equally
important, a method for selecting the appropriate behavior at any instant.

The methods used should thus be such as to allow the robot to make its own
decisions in the best possible way, using as input the sensory information gath-
ered as it moves through the environment. In the case of bipedal robots, most
work to date [18, 19, 71] has been focused on providing the robots with a reli-
able gait using classical control theory. The use of methods from classical control
theory, such as PID controllers, is well motivated in cases where reference tra-
jectories are readily available, but in the context of unpredictable environments,
more adaptive methods, capable of adapting to changes in the environment, are
required. One such architecture was used in Paper IV to generate bipedal gaits,
where a full 3D model of a bipedal robot displayed a stable walking pattern based
on interconnected central pattern generators (see Section 2.1.3).

The use of reference trajectories is still important for the generation of low-
level behaviors such as local motor control [1]. For instance, keeping a bipedal
robot in a certain posture can be achieved by means of reference points. However,
when the bipedal robot suffers a strong perturbation in such a way that it loses its
balance, it is advantageous to have the possibility quickly to switch to a different
(rescue) behavior, in order for the robot to maintain its posture. Hence, methods
that do not rely on pre-defined reference trajectories, such as biologically inspired
methods, become a suitable choice (see also [11, 42]). It should also be mentioned
that, even though classical control is commonly used in connection with robotic
arms (manipulators), biologically inspired methods can be used in such cases as
well, as shown in [46] where obstacle avoidance, without the use of reference
trajectories, was evolved for a robotic arm.

Wheeled robots, which are considered in Papers VI–X, rarely require active
balancing since they are stable by their design. Nevertheless, wheeled robots
face difficult problems of behavior selection, just as any robot does regardless
of its morphology. For example, consider a robot whose task it is to transport
objects from its current location to a given target location (see also [14, 62, 64]
and Papers IX–X). As the robot travels towards the goal, the behavior selection
system has to take into account a number of different factors in order to activate
the most appropriate behavior at all times. For instance, if the path of the robot
contains many obstacles, should the robot wait or take an alternative path towards
the goal? Should the battery be re-charged before traveling further? How far
is it to the nearest charging station? How far away is the goal? Is the current
estimate of the position accurate or does the odometry require calibration? Thus,
the robot is faced with a behavior selection problem that inevitably involves trade-
offs. A large part of this thesis is devoted to the solution of such problems, using

4 Chapter 1. Introduction and motivation

a behavior-based approach and evolutionary optimization of utility functions (see
Chapter 6).

1.1 Contributions

The main contributions in this thesis is the improvement and expansion of the
UF method for behavior selection in autonomous robots. Specific improvements
include the introduction of behavioral hierarchies and customized evolutionary
operators as well as, more recently, the addition of evolvable internal abstract
(hormone) variables. The UF method is, to the author’s knowledge, the only pub-
lished general-purpose method for behavior selection in autonomous robots that
delegates the generation of the behavior selection system to an automated process
(an evolutionary algorithm, in the case of the UF method), thus minimizing the
amount of manual parameter-tuning. Another important contribution is the de-
velopment of the UFLIB simulation library, which provides a complete and user-
friendly implementation of the UF method. With this library, a user can rapidly
generate an executable file suitable for the problem at hand, particularly in cases
where off-the-shelf behaviors can be used.

In addition, contributions have been made to the sub-field of gait generation
for legged robots. Gaits have been developed and optimized (e.g. with respect to
energy usage) using different representations, such as finite-state machines and
central patterns generators (as well as other types of recurrent neural networks).
A simulation library (EVODYN) for evolutionary optimization of tree-structured
multi-body systems has also been developed.

The author of this thesis has been the sole contributor to Paper II, and the
main contributor to Papers I, III, VII, and VIII. In Papers V, VI, IX, and X the
authors have made approximately equal contributions. In Paper IV, the author’s
contribution was more limited.

Chapter 2
Behavior-based robotics

The field of behavior-based robotics (BBR) is mainly concerned with autonomous
robots, which are supposed to function in unstructured environments, where ro-
bots often find themselves in situations they have not previously encountered
[3, 7]. In BBR, there is a strong coupling between perception and reaction, where
sensors provide the main source of information. Unlike classical artificial intelli-
gence (AI), explicit internal world models, in which planning processes operate,
are not used, since they lead to very slow decision-making [45]. It should be noted
that the research field is still very young, around 20 years [7], and is constantly
developing. Up until now, behavior-based robots have been quite simple, and the
current level of intelligence of such robots can be considered to be at the level of
insects [45].

BBR makes use of a bottom-up approach for the generation of robotic brains,
in which complex overall behavior emerges from the combination of several, sim-
pler behaviors1. Examples of such simple behaviors are; locate target, avoid ob-
stacles, go forward, find energy source, and stop. Such simple behaviors could
for instance, if organized in a suitable manner, provide a robot with the ability to
navigate safely in a complex environment. As a specific example, in Paper VI,
such a set of behaviors was used in an application involving a simple guard robot.

One of the main challenges in BBR, also treated in this thesis, concerns the
organization of behaviors, that is, how the selection between different behaviors
should be made at any given instant. Given information from relatively simple
sensors, choosing the most appropriate behavior is often extremely difficult. Many
methods rely on hand-coded settings [5, 37, 55]. While useful in simple cases,
methods relying on hand-coded structures often lead to solutions that are not ro-
bust in more complex cases involving several behaviors [36]. In such cases, ethol-

1Note that behaviors are typeset in italics.

5

6 Chapter 2. Behavior-based robotics

ogy provides an excellent source of inspiration [66], since even the simplest of
animals are able to make intelligent choices (i.e. to carry out behavior selection),
at least within their natural environments (see e.g. [10]). For a robot, an apparently
simple task such as traveling from point A to point B in e.g. an office delivery ap-
plication, may involve a multitude of different behaviors. For example, assuming
that the robot has a map of the environment, either generated by the robot itself
or defined by a user, a path can be generated so that it leads the robot from the
current position (A) to its goal at B. A method for generating paths is described in
Section 7.3.2 and in Paper X. Using the generated path, the robot first needs to ac-
tivate its navigation behavior, in which the generated path towards B is followed.
If obstacles are detected, the robot should activate its obstacle avoidance behavior
in order to avoid collisions. After clearing any obstacles, the navigation towards B
should be resumed. Assuming that the robot lacks a device for global positioning,
it must update, continuously, the estimate of its current position, e.g. by means
of odometry. As the robot travels towards B, drift in the odometry will cause the
error between the estimated position and the robot’s true position to increase.

In order to minimize the accumulated error in the odometry, a localization
behavior must be activated, in which the robot uses its sensors, e.g. a camera or a
laser scanning device, in combination with the map to identify its current position
and calibrate the odometry. If the distance between A and B is relatively large,
the localization behavior must be activated many times to maintain accuracy; how
many is for the behavior selection mechanism to decide.

Problems like these, among others, are currently being investigated in a project
involving a transportation robot, described further in Paper IX and Paper X. The
general topic of behavioral organization is considered in Chapter 5 below. By
contrast, in this chapter, the emphasis will be on the different architectures used
for individual behaviors. Behaviors can be implemented in many different ways,
and in the remainder of this chapter a few different behavioral architectures will
be described. A discussion of different approaches to the generation of behaviors
is given in Chapter 4.

2.1 Architectures for behaviors

Motor behaviors, i.e. behaviors for moving a robot or parts thereof, are the basic
building blocks for generating the reactive behaviors typically used in behavior-
based robots. As mentioned above and in Chapter 1, autonomous robots intended
for unstructured environments require the use of adaptive techniques. Examples of
architectures useful in the implementation of such systems are if-then-else-rules

(see Paper I), artificial neural networks (ANNs) (see Paper III and [76]), and

2.1. Architectures for behaviors 7

Algorithm 2.1 Locate beacon behavior
1: if s > 0 then

2: BeaconFound← TRUE
3: else

4: BeaconFound← FALSE
5: end if

6: if BeaconFound then

7: if s < ε then . Stop when close to the beacon
8: τL ← 0
9: τR ← 0

10: else . Approach the beacon
11: τL ← T
12: τR ← T
13: end if

14: else . Turn
15: τL ← −T
16: τR ← T
17: end if

central pattern generators (CPGs) (see Paper IV), the latter being a special case
of an ANN. These architectures share the advantage of being highly applicable for
use in conjunction with biologically inspired computation methods, such as EAs,
which are extensively used throughout this thesis. These three architectures will
now be described in some detail.

2.1.1 If-then-else-rules

One of the quickest ways to generate simple behaviors is to use if-then-else con-
structs, where the experimenter implements the behavior directly in source code.
By combining several rules, in a nested or sequential manner, it is usually fairly
straightforward to implement simple behaviors. If a behavior tends to become
complex, one should try to divide the behavior into several, less complex sub-
behaviors, all in the spirit of behavior-based robotics. As an example, in Paper VI,
the behavior energy maintenance was divided into the two behaviors corner seek-
ing2 and battery charging. An equivalent of the corner seeking behavior is shown
in Algorithm 2.1, in which a differentially steered robot is supposed to locate an
infrared (IR) beacon in the environment. A typical path, partly generated by this
behavior, is shown in Fig. 2 of Paper VI. If active, the behavior shown in Algo-

2Charging stations were located in the corners of the arena.

8 Chapter 2. Behavior-based robotics

State 1

State 2

State i

State N

A B M

Figure 2.1: A generalized finite state machine with N states. For each state, there is a
number of conditional transitions (the conditions are denoted A, B, . . . , M for the first
state). The arrow indicates a conditional transition (from state 1 to state i) that occurs
when condition A in state 1 is satisfied. Since the conditions are checked in sequence
(from left to right), condition A has higher priority than condition B.

rithm 2.1 will first query the beacon detector reading (s). This detector is a sensor
placed on the robot’s exterior, and its reading is proportional to the distance to the
beacon (if detected, given the rather narrow (four degrees) field-of-view). If the
sensor cannot detect any beacon (s = 0), the robot will start to turn by setting the
motor commands (τL and τR) to values equal in magnitude but having opposite
signs. In case a beacon is detected (s > 0), the robot will approach the beacon in
an asymptotically straight line by setting the motor commands to equal, positive
values. If the detector is positioned sufficiently close to the beacon (s < ε), the
robot stops. Here, ε is a parameter to be tuned by the experimenter. if-then-else
constructs were used in the implementation of all behaviors in Papers V–VIII,
and X.

Generalized finite state machines (GFSMs) Generalized finite state machines
[72], which are a special case of if-then-else-rules, consist of a finite number of
states, as shown in Fig. 2.1. In GFSMs, each state is associated with a specific
variable setting, whereas in ordinary finite state machines (FSMs) it is the state
transitions that are associated with the actions taken [68]. Conditional transitions
occur between the available states. If a condition is satisfied, the GFSM immedi-
ately jumps to the corresponding target state. If no condition is satisfied, no jump
occurs and the GFSM remains in the same state. The conditions are checked se-

2.1. Architectures for behaviors 9

Turn

Approach
beacon

Stop

s > 0

s < ε

s > ε

s = 0

s = 0

Figure 2.2: A generalized finite state machine (GFSM) implementing the behavior locate
beacon for a differentially steered robot, also defined in Algorithm 2.1. The GFSM has
three states, each associated with a motor command (Turn, Approach beacon, Stop) and a
number of conditional transitions. Jumps between states are indicated by arrows. See the
main text for the definition of s and ε.

quentially, going from left to right (see Fig. 2.1). Thus, the conditions associated
with a particular state have different priorities. For example, in Fig. 2.1, condition
A has higher priority than condition B which, in turn, has higher priority than
condition M.

In Paper I, GFSMs were used as the architecture for bipedal motor behav-
iors. In that paper, an evolutionary algorithm (see Section 3.1) was used for the
optimization of both the parameters and the structure of the GFSM. For the sim-
ulations in Paper I, a five-link bipedal robot, constrained to move in the sagittal

plane, was used. As initial condition to the evolutionary algorithm, a rough indi-
cation of the desired behavior was specified (cf. initial reference values). The EA
then performed further optimization of the behaviors. The method was applied
to two test cases, namely (1) bipedal walking on a horizontal surface while using
minimal amounts of energy and (2) robust balancing in the presence of impulsive
perturbations.

Because of the modular nature of GFSMs, the architecture is very useful in the
context of behavior-based robotics. It has also been shown that GFSMs allow for
the combination of simple behaviors to form a more complex, composite behavior
[72]. As a further example, a GFSM representation of the locate beacon behavior
shown in Algorithm 2.1 is presented in Fig. 2.2.

10 Chapter 2. Behavior-based robotics

Figure 2.3: An example of a recurrent neural network with eight input elements (shown
as boxes) and two output neurons (filled circles). Solid lines indicate positive (excitatory)
weights, whereas dashed lines indicate negative (inhibitory) weights (see also Fig. 7 in
Paper III).

2.1.2 Recurrent neural networks (RNNs)

An RNN is an artificial neural network [25] consisting of a number of neurons
(nodes) with arbitrary connections (including self-coupling of individual neu-
rons). An example of such a network is shown in Fig. 2.3. RNNs can operate
either in discrete time, as is common in feedforward networks (i.e. ANNs with-
out feedback connections), or in continuous time. In the latter case, using a simple
neuron model, the dynamical behavior of the ith node in the network is governed
by the equation

τiẏi + yi = σ

(

bi +
∑

j

wijyj +
∑

j

wI
ijIj

)

, i = 1, . . . , n, (2.1)

where n is the number of neurons in the network, τi are time constants, yj is the
output (activity) of node j, wij is the (synaptic) weight connecting node j to node
i, wI

ij is the weight connecting input node j to node i, Ij is the j th external input
to node i, and bi is the bias term, which determines the output of the neuron in the
absence of inputs. σ(·) is a sigmoidal function whose main purpose is to restrict
the activity of the neurons to a given range. A common choice for the sigmoidal
function is σ(z) = tanh(cz), where c is a constant, in which case the neuron
output is restricted to the range [−1, 1].

2.1. Architectures for behaviors 11

Albeit with strong simplifications, RNNs are based on biological neural net-
works, in which recurrent couplings are almost always present [30]. In [57] a
recurrent neural network for balancing a robotic leg was generated using a sim-
ple EA. In Paper III, a more complex EA allowing structural modifications was
applied to the same problem, using a more sophisticated dynamical simulation of
the balancing leg (see Paper II). ANNs (including RNNs) possess a number of
important properties such as graceful degradation in the case of neuron loss, and
the ability to generalize to situations not previously encountered, as discussed in
Paper III and [39].

2.1.3 Central pattern generators (CPGs)

In experiments involving animals [23], e.g. cats, oscillatory motor patterns have
been found in cases where sensory feedback had been removed (by decoupling
of the central nervous system). The neural networks found to be responsible for
generating these rhythmic phenomena have been termed central pattern generators
(CPGs). Each pattern generator is a cluster of interconnected neurons that operate
in an autonomous manner, i.e. a CPG is capable of producing oscillatory output
without any rhythmic input.

For obvious reasons, in the case of humans, there are fewer experimental re-
sults concerning the neural control of walking. However, measurements from
motor neurons taken during normal walking suggest that CPGs play a central role
also in humans [28, 47, 77] even though the higher complexity of bipedal walk-
ing has resulted in a more complex interaction between the motor cortex and the
spinal cord than in quadrupeds.

Inspired by the above findings in neuroscience, models of CPGs have been
proposed for use in artificial systems such as e.g. robots. A further motivation
for the use of such models is their ability to operate without reference trajecto-
ries. Three main models have been proposed in the literature: (1) the closed-loop
model, (2) the pacemaker model, and (3) the half-center model [38]. Here, only
the half-center model will be described. For a description of the closed-loop model
and the pacemaker model, see [60]. The half-center model, shown in Fig. 2.4, was
used in Paper IV, in which a bipedal gait was generated in a 3D simulation of a
bipedal robot having 14 degrees of freedom (DOFs). Trajectories for a few of the
CPG-driven joints in the bipedal robot are shown in Fig. 2.5.

As described in Paper IV, the mathematical model of the half-center CPG,

12 Chapter 2. Behavior-based robotics

1

βv1

u0

u0

w12y2

2

βv2

w21y1

y1

y2

y1 − y2

Figure 2.4: A half-center central pattern generator. Dashed lines indicate inhibitory con-
nections whereas solid lines indicate excitatory connections.

shown in Fig. 2.4, can be summarized by the following set of equations:

τuu̇i + ui = u0 + βvi +
n
∑

j=1

wijyj, (2.2)

τvv̇i + vi = yi, (2.3)

yi = max(0, ui), (2.4)

where τu and τv are time constants, u0 is an external, non-oscillating input, wij is
the weight of the connection going from neuron j to neuron i, yi is the output of
neuron i, and n is the number of neurons. ui and vi are the state and self-inhibition
of neuron i, respectively. β is a parameter used for modulating vi. By changing the
value of the external (non-oscillating) input u0, the amplitude of the output from
the CPG can be varied. The frequency of the oscillatory output can be changed by
adjusting the time constants τu and τv.

CPGs, such as the one shown in Fig. 2.4, are commonly used in connection
with a feedback network. In Paper IV the feedback network, linking the CPGs to
form a robotic brain generating a gait, was optimized by means of an EA.

2.1. Architectures for behaviors 13

Figure 2.5: Bipedal gait generated by evolutionary optimization of central pattern gener-
ators in Paper IV. The small spheres indicate the generated trajectories of two of the 14
available joints (left panel) and the tip of the upper body (right panel).

Chapter 3
Evolutionary robotics

Evolutionary robotics (ER) is a subfield of robotics in which evolutionary algo-
rithms (EAs) are used in the construction1 of robots [67, 48]. Here EAs are con-
sidered as being the umbrella term for the entire family of evolutionary methods.
A general introduction to EAs will be given in Section 3.1 and in Section 3.2 dif-
ferent ways to represent individuals (i.e. the candidate solutions found by the EA)
will be described.

Since EAs often require many evaluations before a satisfactory solution is
found, ER normally relies on simulations, a topic that will be considered in Sec-
tion 3.3.1 below. However, even when simulations are used, the ultimate aim is, of
course, to implement the results in real robots. An alternative to using simulations
is to run the evolutionary procedure directly in hardware. Such approaches are
briefly considered in Section 3.3.2.

It should be noted that EAs can be used in the optimization of individual be-
haviors as well as in the optimization of behavior selection mechanisms. The latter
is the topic of Chapters 6 and 7, where behavior selection is obtained by means of
evolutionary optimization of utility functions.

3.1 Evolutionary algorithms

EAs is the common term used for a class of search algorithms inspired by biolog-
ical evolution. Examples of such algorithms are: genetic algorithms (GAs) [27],
genetic programming (GP) [34], and evolution strategies (ES) [53].

EAs, the flow of which is shown in Algorithm 3.1, operate on a population,
i.e. a group of individuals. A member of the population is referred to as an indi-

1The construction may involve the robot’s brain, body, or both.

15

16 Chapter 3. Evolutionary robotics

Algorithm 3.1 A typical evolutionary algorithm.
1: INITIALIZE population with random candidate solutions
2: EVALUATE candidates
3: repeat

4: repeat

5: SELECT parents based on fitness
6: RECOMBINE pairs of parents through crossover
7: MUTATE new candidates
8: until NEW POPULATION formed
9: REPLACE parents

10: EVALUATE new candidates
11: until TERMINATION CRITERIA fulfilled

vidual (or candidate solution). The information needed to generate an individual
is stored in its genome, which consists of one or several chromosomes that, in
turn, contain a set of genes that encode information for the construction of an in-
dividual. The entire genome, with all its settings, is referred to as the genotype. In
certain cases, as discussed in Section 3.2.2, the decoding step need not be applied,
however. Through a process of decoding, the corresponding phenotype, i.e. the
individual with all its traits, is constructed.

EAs are especially suited for problems involving large search spaces with
many local optima (see [27], [44], and [8] as well as references therein for ba-
sic information regarding EAs); through the action of their various operators (see
below), EAs carry out a non-local search, unlike gradient-based methods. In EAs,
it is also possible to mix both continuous and discrete variables as long as a fitness
(objective) function can be formulated. That is, it is not required that a gradient
should be available in order for the EA to function properly. Another benefit is the
possibility to use EAs in cases where it is difficult to derive an analytical model of
the system, or when such a model simply does not exist [75]. EAs search through
the space of possible solutions by applying genetic operators: selection, where
individuals are chosen (for reproduction) stochastically in proportion to their fit-
ness, crossover, responsible for exchanging genetic information between selected
individuals, and mutation, which is a stochastic operator responsible for introduc-
ing new material into the population. Through the use of these operators, the EA
modifies the solutions and improves their performance according to a user-defined
fitness function.

It should be noted that, normally, it is not possible to identify whether the
best solution found by an EA represents a local optimum or the global optimum.
However, in robotics problems, it is often possible to judge, simply by inspecting

3.2. Encoding schemes 17

1Chromosome A

Chromosome B 0.223 0.189 0.953 0.532

0 011

Figure 3.1: Example of chromosomes using binary encoding (A) and real-number encod-
ing (B).

the robot in action, whether its evolved brain performs adequately.

3.2 Encoding schemes

There exists many different ways of encoding an individual, such as strings of
digits (usually referred to as chromosomes in the case of GAs), arrays, lists, and
trees. Chromosomal encoding is considered in Section 3.2.1. Another possibility,
described in Section 3.2.2, is to implement an EA in such a way that the genetic
operators (crossover and mutation) act directly on the target structure, i.e. without
using the intermediate steps of encoding and decoding.

3.2.1 Chromosomal encoding

In chromosomal encoding, individuals are represented by strings of digits. The
number of genes in the chromosome depends on the number of parameters needed
in the problem at hand. Each individual will represent a point in the space spanned
by these parameters.

Although many different encodings of chromosomes are possible, the most
commonly used are binary encoding and real-number encoding, as exemplified
in Fig. 3.1. These chromosomes generate, via a decoding process, an individ-
ual that represents a possible solution to the problem considered. The decoding
procedure is decided upon by the experimenter and is problem-dependent. As an
example, chromosome A in Fig. 3.1 may be decoded to a floating point value as

xfloat = 1× 2−5 + 0× 2−4 + 1× 2−3 + 1× 2−2 + 0× 2−1 = 0.40625, (3.1)

or to an integer value as

xinteger = 1× 24 + 0× 23 + 1× 22 + 1× 21 + 0× 20 = 22, (3.2)

depending on how the user chooses to implement the decoding procedure.

18 Chapter 3. Evolutionary robotics

Figure 3.2: Single-point crossover using fixed-size chromosomes. The dashed line indi-
cates the randomly chosen crossover point.

As an example of chromosomal encoding, consider the chromosomes used in
UFLIB, the software library implementing the utility function method (see Chap-
ters 6 and 7), in which behavior selection is achieved through evolutionary opti-
mization of utility functions. Each utility function is generated using a polynomial
ansatz of a given degree. For example, a second degree polynomial, having two
dependent variables (s and p), is given by

U(s, p) = a00 + a10s+ a01p+ a11sp+ a20s
2 + a02p

2, (3.3)

where aij are the coefficients to be determined by the EA. Functions like the one
above can be encoded in a chromosome having six real-valued genes (in a pre-
defined range), one for each coefficient aij . Chromosomal encoding of this kind
was used in Papers III, V–VIII, and X for the evolution of the behavior selection
mechanism.

One of the benefits with chromosomal encoding is that the genetic operators
for crossover and mutation are easy to implement (assuming fixed-size chromo-
somes). In case the chromosomes vary in length, the crossover operator must be
modified in order to account for that fact, by assuring that the crossover procedure
generates valid results. As an example, single-point crossover using fixed-size
chromosomes is illustrated in Fig. 3.2.

3.2.2 Explicit encoding

In explicit encoding there are no chromosomes. Instead, the EA operates directly
on the structures used for representing the individuals, i.e. the evolutionary op-
erators modify the phenotype directly. Hence, in explicit encoding, there is no
genotype and the intermediate decoding step is not needed. Using an analogy
from object-oriented programming, in the explicit encoding approach each indi-
vidual is an instance of a class that implements methods for both crossover and
mutation (which are problem-dependent).

Such encodings were used in Paper I and Paper III, where, in the first case, the
EA was applied directly to a GFSM, and in the latter case to an RNN. Regardless
of the architecture used, the genetic operators must of course be defined such that

3.3. Approaches to ER 19

they are able to operate on that architecture, i.e. such that they always generate
valid structures. In most applications of EAs, the genetic operators act on archi-
tectures of fixed size, and the optimization thus consists of parameter tuning. For
example, in [57], an EA was applied to RNNs of fixed size. However, fixed-sized
architectures have an obvious limitation: If the size is chosen in a bad way, it
cannot be modified during the optimization procedure which then only samples a
small part of the space of possible structures. An inappropriate choice of network
architecture, for example one using too few neurons or feedback connections, can
make it even theoretically impossible to solve the problem at hand. EAs can,
however, be modified to optimize not only the parameters, but also the structure
of the network. For instance, when using artificial neural networks, it may be
difficult to specify the number of neurons in advance. Thus, it is beneficial to let
the EA optimize both the weights and the number of neurons in the network. In
such problems, the structure of the systems being optimized is allowed to vary in
complexity during the optimization procedure.

For some architectures the crossover operator in an EA (see Section 3.1) is par-
ticularly hard to apply in a useful manner. This is especially true in architectures
that have a distributed nature of computation, such as e.g. RNNs [76]. In addition,
when the EA operates directly on the structures that are being optimized, as in
Papers I and III, it is difficult to get the benefits of a crossover operator associated
with chromosomal encoding.

Evolution of RNNs was one of the topics of Paper III. Here, crossover was
implemented in two different ways: intraspecies crossover, where only net-
works with the same size were allowed to exchange material, and single-neuron

crossover, where a single neuron was extracted from each selected network and
added to the other network after removal of inter-neuron connections (see Fig. 3.3).
However, the effect of these operators often amount to macromutations, i.e. large
random changes which generally are detrimental (see Paper III). Intraspecies
crossover suffers from the same problems; even though it operates on networks
containing the same number of neurons, crossing parts of networks in which
the incoming weights to the neurons may be totally different, generally causes
a degradation in performance [74].

3.3 Approaches to ER

3.3.1 Evolution in simulation

Since evolutionary methods normally require many, often lengthy, evaluations be-
fore a satisfactory solution is found, simulations are often the most realistic al-

20 Chapter 3. Evolutionary robotics

Figure 3.3: Example of single-neuron crossover between RNNs (see Paper III). The
top part of the figure shows the original RNNs and the middle part displays the selected
neurons with the inter-neuron connections removed. In the bottom part, the neurons are
exchanged and inserted into the original RNNs, forming two new networks. Bold lines
represent the added material.

ternative (as opposed to performing the evolution in real robots). For example,
the investigation performed in Paper VII required runs in which 104 individuals
were evaluated. Each of these runs took approximately 24 hours to complete on a
standard PC equipped with a 3 GHz processor.

Performing realistic simulations is indeed a difficult task. No matter how much
care is taken to make accurate models of the real world, there will still be a cer-
tain degree of discrepancy [29]. Individual components (e.g. sensors) used in a
real robot may display considerable differences in performance. Furthermore, an
idealized kinematic model can never represent a real robot exactly since, for ex-
ample, the wheels of the robot will never be perfectly circular. While it is futile,
in simulations, to attempt an exact representation of reality, a better approxima-
tion can be obtained by introducing noise in all relevant parts (e.g. sensors and
actuators) of the simulations [29]. However, it should be noted that noise was
not applied in many of the papers, e.g. most of the papers dealing with the UF
method (Papers III, V–VIII). The aim of those papers was to study the basic prop-
erties of the UF method, a goal that was easier to reach using simulations that
were deterministic (with the exception of the EA, which, of course, used stochas-

3.3. Approaches to ER 21

tic operators). The emphasis in those papers was placed on the comparison of, for
example, the speed of evolution using different setups for the EA (see e.g. Table I
in Paper VII). However, UFLIB (see Chapter 7) supports the inclusion of noise at
all relevant levels and, in Paper X, which is aimed at generating a robot capable
of solving a realistic transportation and delivery task, noise has been applied in all
simulations.

The general flow of the robot simulations performed in the above-mentioned
papers is illustrated in Fig. 3.4. This figure also serves as a general schematic for
most simulations involving autonomous robots. As a first step, an initialization
procedure is needed, in which the states of both the robot and the environment
(arena) are set to some predefined initial state. For instance, an initial state could
concern the initial position or the initial heading of the robot. For the environ-
ment, all moving obstacles must be placed in their respective starting positions.
One should keep in mind that, if the performance of different robots is to be com-
pared, which is the case when using an EA, it is important that each robot should
be evaluated under the same conditions, i.e. that initial states remain unchanged
between simulations. This is ensured in step 1 in Fig. 3.4. Once step 1 has been
performed, steps 2–7 are iterated until a certain termination criterion is met (see
the examples below). The size of the time step used for advancing the simulation
must be carefully chosen; it needs to be sufficiently small to capture any modeled
dynamic processes as well as to ensure stable numerical integration of the robot’s
equations of motion. In step 2, the simulation loop starts by updating the environ-
ment. Then, in step 3, the robot’s sensors are updated, using the newly updated
environment. Step 4, as implemented in UFLIB, consists of an update of the be-
havior selection system, in which the utility (see Chapter 6) associated with each
behavior receives a new value. Based on these utility values, a behavior is selected
for activation. In case the behavior is a motor behavior, the associated motor com-
mands are then set accordingly in step 5. The motor commands are then passed to
a motor model that produces torques (or forces) which, in turn, are used in step 6
to integrate the robot’s equations of motion. Step 7 involves a check of the user-
defined termination criteria (or criterion in case there is only one). Simulations
are normally terminated if the maximum simulation time is reached, if the robot
collides with another object, or if the battery energy level reaches zero. However,
a user of UFLIB may add other termination criteria, or remove any of the existing
ones by overriding the default implementation. In case no termination criterion is
fulfilled, steps 2–7 are repeated.

22 Chapter 3. Evolutionary robotics

1. Initialize

3. Update sensors

4. Process information

5. Set motor commands

2. Update environment

6. Update robot position

7. Check termination criteria

Figure 3.4: Schematic illustration of the flow in a typical simulation of an autonomous
robot. Following initialization, steps 2–7 are carried out in each time step. Figure adapted
from [68].

3.3.2 Evolution using hardware

Evolution using hardware, i.e. in real robots, can be carried out in several different
ways. One common approach is to let the EA run on a separate computer, which
uploads the robotic brain to a single real robot for evaluation [16]. The perfor-
mance of the robot is then fed back to the EA for further processing. The proce-
dure just described is an attractive alternative to the hand-tuning of parameters that
is commonly needed when implementing results, obtained through simulations, in
real robots. However, evolution using hardware is typically very time-consuming.
For example, in the navigation experiments2 investigated in [16], the evaluation
(performed in hardware) took around 30 seconds per individual, compared to a
small fraction of a second had the investigation been carried out in simulation.
Furthermore, evolution using hardware generally requires continuous monitoring
of the robots and, possibly, manual assignment of fitness values.

Another approach is called embodied evolution [15, 73], where the entire EA
is run in real robots, i.e. each individual in the population is represented by a real
robot. Exchange of genetic material is done by means of interfaces placed on

2The experiments involved straight-line navigation while avoiding obstacles as well as local-
ization of a battery charger.

3.3. Approaches to ER 23

each robot, for example infrared communication ports. In this way, results can be
achieved that are robust to the inevitable differences between supposedly identical
hardware components.

An interesting hybrid approach is to first run an EA in simulation for, say,
a few hundred generations, and then continue the run in a real robot for a few
generations. Such an approach was used in [43] in connection with a simple
navigation task. It was found that the fitness values dropped at the transition from
simulations to evolution using hardware, but then increased quite rapidly.

In any case, despite their limitations, simulations of autonomous robots are
important as an initial step towards the implementation in real robots.

Chapter 4
Behavior generation

There are several ways to generate behaviors for autonomous robots, e.g. hand-
coding, evolutionary algorithms [48], simulated annealing [33, 35], particle swarm
optimization [31, 52] etc. In this thesis, two approaches have been used, namely
(1) hand-coding (Papers VI–VIII, and Paper X) and (2) EA-based optimization
(Papers I, III, and IV).

For the particular case of motor behaviors, the implementation is strongly de-
pendent on the morphology of the robot in which they are applied: Wheeled robots
normally do not require active balancing, whereas statically unstable systems such
as bipedal robots do. Thus, motor behaviors for wheeled robots are generally sim-
pler and can therefore often be generated by hand (as described in Section 4.1),
whereas motor behaviors for bipedal robots commonly require a more complex
optimization procedure. Evolutionary optimization of GFSMs, RNNs, and CPGs
(see Section 2.1) for the development of bipedal motor behaviors is considered in
Section 4.2.

However, the use of evolutionary methods for the optimization of behaviors
is in no way limited to bipedal robots; it is the architecture chosen to represent a
behavior that guides the choice of optimization method. If, for instance, a seek
light behavior in a wheeled robot is represented by an ANN, optimization by hand
is unsuitable. Instead, an EA can be used for that purpose [16]. Alternatively, the
seek light behavior might be simple enough to be implemented by hand using, for
instance, if-then-else-rules as described in Section 2.1.1.

25

26 Chapter 4. Behavior generation

Algorithm 4.1 Obstacle avoidance behavior.
1: if (s1 > εR) or (s2 > εR) then

2: τL ← −T
3: τR ← T
4: else if (s4 > εL) or (s5 > εL) then

5: τL ← T
6: τR ← −T
7: else if (s2 > εC) or (s3 > εC) or (s4 > εC) then

8: τL ← −T
9: τR ← −T

10: else if s̄ > εS then

11: τL ← T
12: τR ← −T
13: else

14: τL ← 0
15: τR ← 0
16: end if

4.1 Hand-coded behaviors for wheeled robots

Behaviors for wheeled robots1, within the framework of UFLIB (see Chapter 7),
are normally hand-coded using the if-then-else-rules described in Section 2.1.1.
This is possible due to the fact that those behaviors normally have a straightfor-
ward logic in their operation and that they are simple enough to lend themselves
to manual implementation in a differentially steered robot. For example, the logic
for a simple realization, using IR sensors, of the commonly used behavior obstacle
avoidance (B) (see Papers V–VIII) can be described as shown in Algorithm 4.1:
When B is activated by the behavior selection mechanism, the motor commands
are first set to zero, causing the robot to stop. If any of the two leftmost IR sensors
(s4 and s5), shown in Fig. 4.1, have a non-zero reading larger than a threshold
value ({s4, s5} > εL), the motor commands (τL and τR) are set in such a way
that the robot rotates, in the clockwise direction and without moving its center
of mass, until the detection disappears. An equivalent procedure is performed in
the case of a detection by the two rightmost sensors, i.e. if {s1, s2} > εR. If, in-
stead, any of the three central sensors have a reading larger than a certain threshold
({s2, s3, s4} > εC), the motor commands are set so that the robot travels back-

1In this thesis, the wheeled robots considered are all differentially steered, i.e. equipped with
two actuated wheels and a support, either in the form of a non-actuated wheel or a low-friction
(e.g. teflon) sphere.

4.2. Evolved behaviors for bipedal robots 27

Algorithm 4.2 Straight-line navigation behavior.
1: τL ← T
2: τR ← T

s1

s2

s3

s4

s5

Figure 4.1: A differentially steered robot with five symmetrically placed infrared sensors.

wards, causing it to move away from the detected obstacle. In case a majority
of the sensors have non-zero readings, i.e. the average of the sensor readings is
larger than a certain threshold (s̄ = 1/5

∑5

i=0
si > εS), the robot rotates without

moving its center of mass until the readings disappear (s̄ < s̄ε).
Another simple example is the case of the straight-line navigation behavior

(see Papers V–VIII), in which the motor commands are set to equal values, caus-
ing the robot to move forward in an asymptotically straight line. Note that, in
the cases considered in Papers V–VIII, the robot did not need to use any sensor
readings in this behavior, shown in Algorithm 4.2, since the selection of behav-
iors (e.g. the activation of the obstacle avoidance behavior described above) was
handled by the behavior selection mechanism (see Chapter 6).

4.2 Evolved behaviors for bipedal robots

Three different representations for motor behaviors in bipedal robots have been
considered in the papers included in this thesis, namely: (1) GFSMs, (2) RNNs,
and (3) CPGs. These three representations have been applied to the problems of
bipedal walking (Papers I and IV) and balancing in the presence of perturbations

28 Chapter 4. Behavior generation

(Paper III and [57]). In all cases, the architectures used explicit encoding, as de-
scribed in Section 3.2.2, and were optimized by means of an EA (see Section 3.1)
allowing both parameters and structures to change.

GFSMs, described in Section 2.1.1, were used in Paper I to produce an energy-
optimized bipedal gait. In addition, a behavior for handling a sequence of impul-
sive perturbations was generated. In both cases the modular structure of the GFSM
proved to be very useful and the best GFSM did indeed mimic the cyclic nature of
human gait patterns, even though this was not explicitly enforced in any way. The
EA was, however, initialized with a set of reference points that roughly specified
a suitable trajectory. While not absolutely necessary, this was done in order to
speed up the evolutionary process. In these energy optimization runs, the bipedal
robot was given a fixed amount of energy and the distance walked was taken as the
measure of fitness. Hence, energy efficient bipedal gait was generated implicitly.
At the end of the simulations, the walking length had improved by 134%, using a
GFSM consisting of only eight states (see Paper I).

Another approach was taken in Paper III, this time using the simulation library
EVODYN developed by the author (see Paper II) for the implementation of both
the rigid body dynamics engine and the EA. As in [57], an RNN was chosen as
the architecture for the motor behaviors to be optimized and a similar mechani-
cal structure, consisting of a foot and a leg, was used. Both the foot and the leg
were modeled as rigid bodies with distributed mass. The leg was actuated through
two revolute joints and the entire system was free to move in space. Ground con-
tact was modeled by two spring and damper models; one in the vertical direction
and one in the horizontal direction. Vertical forces from those models served as
representations of the pressure distribution under the foot (see Fig. 3 in Paper III).

In Paper IV, a bipedal gait was generated using central pattern generators
(CPGs) as described in Section 2.1.3. CPGs, linked together via a feedback net-
work were optimized using a GA, and were shown to generate a stable bipedal
walking pattern.

Chapter 5
Behavioral organization

Behavioral organization, also known as action selection, behavioral coordination,
or behavior selection, concerns the problem of how to select, at all times, an ap-
propriate behavior for activation. Since the applicability of a given behavior often
varies in a manner which is difficult to predict, the development of generally ap-
plicable systems for behavior selection is a daunting task. In BBR applications,
robots are usually situated in dynamic environments and must be able to take the
associated uncertainties into account. As mentioned in Chapter 2, in BBR, action
selection occurs without the use of explicit world models of the kind normally
employed in classical artificial intelligence (AI) [56]. The high-level, cognitive
processes carried out in classical AI are often very slow [45]; in classical AI, a
sense-model-plan-act sequence is executed [3], in which a model of the environ-
ment is first generated, and the robot then attempts to reason and plan within this
model, trying various alternatives in order to find the appropriate action, which
is then executed in the real world. Such an approach is evidently not very well
suited to the case of robots operating in rapidly changing environments.

However, while robots in BBR often have a strong element of reactivity (i.e a
direct coupling between perception and reaction) the use of, say, short-term mem-
ory and other non-reactive concepts is, of course, not excluded. For example, in
the UF method (see Chapter 6), the internal abstract variables can provide the ro-
bots with a rudimentary short-term memory. The important distinction, compared
to the case of classical AI, is that explicit modeling of the environment plays a
much less important role in BBR. However, particularly for robots that are as-
signed complex tasks (such as the one considered in Paper X), a hybrid approach
is often used in practice. Thus, for example, while the behavior-based robot con-
sidered in Paper X does make use of a behavior selection system and a set of basic
behaviors with a high degree of reactivity, the robot is also equipped with a map

29

30 Chapter 5. Behavioral organization

Behavioral repertoire

Current state

Behavioral
organizer

Active behavior

Figure 5.1: Schematic illustration, taken from Paper V, of a behavioral organizer for
arbitration methods. The ellipses represent behaviors. Given the current state of the robot
(defined by sensor readings and internal variables), a single behavior is selected from the
repertoire of behaviors. The selected behavior is then given control of the robot until a
different behavior is activated.

of the environment. It is important to note, however, that this map is used only
for generating a navigation path upon activation of the navigation behavior. The
robot does not, for example, traverse a set of virtual paths, between its current po-
sition and a goal position, in order to find the most suitable one; such an approach
would not be very useful in cases where moving obstacles are present. Instead,
in a BBR-like fashion (see [3], p. 191) the robot may, at any time, switch to a
different behavior (e.g. obstacle avoidance) if the sensory information suggests
that such a switch is needed, for example to avoid a collision.

Selecting the most appropriate behavior at any instant in time is one of the
most important and most challenging problems in BBR. Many methods for be-
havioral organization have been suggested in the literature. A review of such
methods and their taxonomy can be found in [49], where methods for behavioral
organization are divided into arbitration methods in which a single behavior is
selected for activation at any given time, and command fusion methods in which
the action performed represents the weighted output of several behaviors. Arbi-
tration methods include the subsumption method [7], in which a layered type of
control is used, and activation networks where selection is performed according
to activation levels based on exchanges of a quantity called activation energy be-
tween different parts of a network [37]. Examples of command fusion methods
are the potential field method [32, 59], in which goals and obstacles are repre-
sented by artificial potential fields and action selection is based on the gradient
of the combined fields, and fuzzy command fusion [50], in which fuzzy infer-
encing methods are used for producing a weighted output. A central part of this
thesis concerns the use of the recently introduced utility function (UF) method
[66] which is studied in Paper III, Papers VI–VIII, and Paper X, and is further

31

described in Chapter 6. An important aim of this method is to minimize, from a
user’s point of view, the amount of hand-tuning of parameters, a common feature
in most current methods for behavior selection. In the UF method, simulations are
conducted in which an evolutionary algorithm is used for the optimization of the
behavioral organizer, whose role is illustrated in Fig. 5.1. As mentioned above,
the purpose of the behavioral organizer is to select the most relevant behavior, in
the case of arbitration methods, or to generate a weighted action, in the case of
command fusion methods, based on the current state of the robot and its environ-
ment. Thus, the function of the behavioral organizer is commonly based on both
available sensor data and the internal state of the robot.

As the aim in behavioral organization is to form complex robotic brains through
the combination of several behaviors, i.e. to generate a complex overall behavior
of the robot, there are also other approaches that do not involve a behavior se-
lection mechanism. Within the framework of complex behaviors, several studies
have been made involving the generation of complex behavior without the explicit
use of a behavioral organizer. For instance, in [22], a procedure called incremen-

tal evolution was used, in which complex behaviors are evolved by making the
robot’s task progressively more difficult. Another approach is to divide a complex
behavior into simpler sub-behaviors and evolve those separately. Once the behav-
iors have been generated, they can be fused, by means of an evolutionary method,
into a composite behavior. This procedure was used in [72] to evolve a cleaning
robot that was able also to avoid obstacles. Although complex overall behaviors
can be achieved without the explicit use of behavioral organizers, methods such
as those just mentioned, do not allow for the same degree of modularity found
in e.g. arbitration methods, in which individual behaviors can be added to the
behavioral repertoire [66] without regard to the architecture in which they were
generated. In the next chapter, the UF method will be introduced and described in
some detail.

Chapter 6
The utility function method

In this chapter, the utility function (UF) method will introduced and described.
For a more detailed description, see either [66] or [68].

6.1 Brief description of the method

The utility function (UF) method is a biologically inspired arbitration method (see
Chapter 5) for behavior selection in autonomous robots. One of the main purposes
with the UF method is to provide a generally applicable method for behavioral or-
ganization in autonomous robots while, at the same time, minimizing the amount
of hand-tuning of the parameters associated with the behavior selection mech-
anism, a common problem in most current methods for behavior selection [5].
Hand-tuning is avoided in the UF method by means of an EA that carries out evo-
lutionary optimization of the selection mechanism in computer simulations (see
Section 7.4). In the UF method, the selection of behaviors (described in Sec-
tion 6.1.5) is based on the concept of utility, which is the topic of Section 6.1.1.
Each behavior is associated with a utility function from which a scalar utility
value can be obtained based on the current state of the robot, which, in turn,
is specified by sensor readings and the values of internal variables (described in
Section 6.1.3). Utility functions are further described in Section 6.1.4.

6.1.1 The concept of utility

In the UF method, utility is a scalar variable used for quantitative comparison of
different behaviors, i.e. it provides the common currency in the behavior selection
mechanism. The concept of utility has been studied in connection with ratio-

33

34 Chapter 6. The utility function method

nal decision-making in both economics [4, 9, 65] and in ethology1 [41, 40]. In
ethology, utility is commonly referred to as benefit, or negative cost, and rational

behavior in animals can be modeled as the result of the minimization of cost [40].
In economics, and in the UF method, rational behavior is associated with the max-
imization of utility. In fact, it has been shown by von Neumann and Morgenstern
[65] that, under certain assumptions regarding the preferences of an individual
(e.g. an animal or a robot), there exists a mapping from the set of possible out-
comes {c1, c2, . . . , cn} (resulting e.g. from the action taken in a given situation) to
a scalar utility value u(ci), i = 1, . . . , n, such that u(cj) > u(ck) if and only if
the outcome cj is preferred to the outcome ck. A robot (or an animal) that consis-
tently attempts to maximize utility, by selecting the appropriate behavior in any
given situation, is said to exhibit rational behavior. It should be noted that rational
behavior is not necessarily associated with intelligent behavior; even though a
rational robot maximizes utility, its behavior will only be intelligent if its utility
functions have been chosen in a suitable way. Thus, intelligent behavior requires
properly shaped utility functions, which, in the UF method, are obtained through
evolutionary optimization. The utility functions depend on a set of variables (see
Section 6.1.3) that summarize the internal state of the robot as well as its current
perception of the external world.

It should also be noted that rational behavior does not require reasoning [41,
63]. As an example, consider the chemotaxis of E. Coli bacteria that, despite
their small size (making the detection of a spatial gradient impossible), are able
to locate and stay in areas of high concentration of an attractant (e.g. food) using
instead the temporal gradient of attractant concentration. It turns out (see e.g. [61]
and [63]) that their chemotaxis can be accurately modeled as a simple maximiza-
tion of utility, based on two very simple behaviors: Straight-line movement and
random tumbling. Thus, despite an utter lack of reasoning capability, the E. Coli
are able to find food very efficiently2.

6.1.2 Behaviors

In the UF method, behaviors are divided into task behaviors and auxiliary be-

haviors. Even though all behaviors are assigned utility functions, only task be-
haviors, i.e. the behaviors that are directly related to the intended tasks of the
robot, affect the fitness of the robot. The auxiliary behaviors generate no fitness

1The study of animal behavior in their natural environment.
2However, as noted in [61], it should also be added that this normally very useful navigation

method turns out instead to be highly detrimental to the E. Coli if another type of bacterium (M.
Xanthus) is present: Despite being much slower, the M. Xanthus are able to catch the E. Coli by
releasing an attractant and then waiting, motionless, for their prey.

6.1. Brief description of the method 35

increase, but are nevertheless needed for the operation of the robot. For example,
consider the case of a guard robot, whose task it is to patrol an industrial plant. In
addition to task behaviors associated with the guarding of the plant, such a robot
would need to be equipped with the auxiliary behavior of charging its batteries.
While the robot is charging its batteries it cannot perform its assigned task, and
thus the fitness increase is zero. However, if the robot fails to activate the charging
behavior from time to time, it will forfeit all further fitness increases by coming to
a halt for lack of energy. Thus, the utility of the charging behavior is non-zero, and
increases as the energy level in the batteries decreases (assuming that the utility
functions have been optimized and are able to provide appropriate utility values).
Put differently, the robot’s motivation for charging the batteries is increased. In
simple applications, a single task behavior is usually sufficient.

6.1.3 State variables

The state of a robot is defined by all its sensing capabilities and the values of its
internal variables. These variables are accessible to the behaviors and provide
the only source of information. In the behavioral repertoire, each behavior is
associated with a utility function that has a specific set of dependent variables.
In the UF method, these variables are called state variables (denoted z). There
are three different kinds of state variables defined in the UF method, namely (1)
external variables (s), related to external sensors such as proximity sensors or
bumper switches, (2) internal physical variables (p), related to a robot’s internal
sensors such as the measurement of the battery level, and (3) internal abstract

variables (x), which roughly correspond to signaling substances (e.g. hormones)
in biological systems. The general form of the N utility functions is thus given by

Ui = Ui(zi) = Ui(si,pi,xi), i = 1, 2, . . . , N, (6.1)

where the subscript i denotes a set of variables associated with the ith behavior.
The set of variables is defined by the user and may contain any variable avail-

able in the system. A robot can, of course, be equipped with any number of sensors
(internal or external), and the signal obtained from a given sensor can be used for
defining one or several state variables, depending on the complexity of the sensor.
The user may also add internal abstract variables, the variation of which must then
also be specified (or evolved), see e.g. [66] and Paper X. The exact composition
of the set of state variables used in the utility functions is problem-dependent. For
example, consider a case in which a robot is equipped with two external sensors
(s1, s2), one internal physical variable (p1), and one internal abstract variable (x1).
Furthermore, if the behavioral repertoire consists of two behaviors B1 and B2, the
two associated utility functions (U1 and U2) may depend on any combination of

36 Chapter 6. The utility function method

the total set of state variables {s1, s2, p1, x1}. The utility functions associated with
B1 and B2 may, for example, be specified as

U1 = U1(s1, s2, p1) (6.2)

and
U2 = U2(s2, x1). (6.3)

6.1.4 Utility functions

The general functional form of the utility functions, defined in Eq. (6.1), may be
of any type. However, throughout this thesis and in [66], complete polynomi-
als3, i.e. polynomials that include all terms up to a certain degree, have been the
preferred choice in the investigations. Since complete polynomials are used, the
only parameter needed for the user to specify is the polynomial degree. Given the
degree of a complete polynomial, the number of terms in each utility function is
given by

Nt =

(

n+ d

d

)

=

(

n+ d

n

)

, (6.4)

where n is the number state variables and d is the specified polynomial degree.
This equation can be derived by introducing the trick of writing the product of
variables in a given polynomial term zp1

1 z
p2

2 · · · z
pn

n as zp1

1 z
p2

2 · · · z
pn

n × 1pn+1 , using
the notation zi for an arbitrary state variable (see Eq. (6.1))4. Letting

pn+1 = d−
n
∑

i=1

pi, (6.5)

the problem is reduced to the combinatorial problem of placing (without replace-
ment) d indistinguishable marbles inm = n+1 containers, neglecting the order in
which they are placed in those containers. The number of ways (Nc) the marbles
can be placed in the containers equals

Nc =

(

m+ d− 1

d

)

. (6.6)

Replacing m by n + 1 in the equation above results in Eq. (6.4). Consider, as an
example, a utility function in the form of a complete polynomial with three state
variables (n = 3) and d = 2. The function will thus have the following form

U(s, p, x) = a000 + a100s+ a010p+ a001x+ a200s
2 + a110sp

+a101sx+ a020p
2 + a011px+ a002x

2,
(6.7)

3See also Paper VII for the definition of a complete polynomial.
4The constant term in the polynomial is represented by the combination p1 = . . . = pn = 0.

6.1. Brief description of the method 37

Time

U
ti

li
ty

Figure 6.1: Illustration of behavior dithering, in which a robot oscillates between the
behaviors B1 and B2, associated with the utility functions U1 (solid line) and U2 (dashed
line). The horizontal bar at the top of the figure indicates the period of activation for the
two behaviors (B1 = white, B2 = gray).

where aijk are constants to be determined by the EA. The number of terms equals
10, as expected from Eq. (6.4). Note that all terms are unique, as indicated by the
subscript combination ijk in aijk, and that i+ j + k ≤ d.

All utility functions, and thus the behavior selection system, are optimized in
simulations by means of an EA (see Section 7.4), where all coefficients (exempli-
fied by aijk in Eq. (6.7)) are initialized to random values in a certain range.

6.1.5 Selection of behaviors

Once the utility functions have been defined, selecting a behavior for activation
is simple. At all times, the behavior associated with the highest utility value is
selected for activation. Hence, the behavior Biactive is selected according to

iactive = arg max(Ui) . (6.8)

A common phenomenon encountered in arbitration methods is behavior dither-

ing (behavior blending), i.e. a form of indecision. This phenomenon, illustrated
in Fig. 6.1, occurs when a behavior is active during a very short time (up to a
few time steps). Behavior dithering may cause unexpected overall behavior of a
robot and is normally an unwanted feature. As a simple example, consider a robot
equipped with the three behaviors move forward (B1), move backward (B2), and
stand still (B3). Since B3 need not make use of the robot’s motors (at least if the

38 Chapter 6. The utility function method

Robotic brain

B1

B2

B3

B2.1

B2.2

Level 1

Level 2

Figure 6.2: An illustration of a behavioral hierarchy consisting of five behaviors.

robot is statically stable) it is, of course, the preferred behavior for e.g. battery
charging. However, a condition of standstill can also be achieved through rapid
alterations betweenB1 andB2. However, in this case, the robot will certainly need
to use its motors in a very inefficient way. In the UF method, behavior dithering
can be avoided through the use of internal abstract variables (see Paper III for an
example). Another way to reduce the risk of behavior dithering is to set the fitness
function of the EA in such a way that fitness increases are associated only with
the continuous execution of the task behavior, as was done e.g. in Paper VIII.

6.1.6 Behavioral hierarchies

Whenever possible, behaviors should be kept as simple as possible. Thus, if a be-
havior tends to become very complex, it should be decomposed into two or more
behaviors, moving the complexity of the problem to the behavior selection system
instead. Thus, one aspect of this process of subdivision is that it simplifies the
implementation of behaviors. This is particularly important if the behaviors are
implemented by hand, using e.g. the if-then-else-rules described in Section 2.1.1.
A typical example is the energy maintenance behavior considered in Paper V and
Paper VI. In those papers, this behavior was divided into two sub-behaviors; one
responsible for finding the charging station and one that carried out the actual
charging.

The structure resulting from behavioral decomposition defines the behavioral

hierarchy, an example of which is illustrated in Fig. 6.2. In the UF method, the
utility values of behaviors are compared on a level-by-level (breadth-first) basis,
see Paper V. In the example illustrated in the figure, the hierarchy consists of
five behaviors, on two different levels. Behaviors B1–B3 are compared first. If,

6.1. Brief description of the method 39

based on the utility values U1–U3, it happens that B2 is selected for activation,
the second level is traversed, where B2.1 and B2.2 are compared. In general, the
hierarchy is traversed until a terminal (leaf) node is encountered.

It should also be mentioned that a further positive aspect of behavior decom-
position is that it allows the use of behaviors in several different parts of the hier-
archy.

Chapter 7
The utility function library

The UF method is implemented in a software library (hereafter referred to as
UFLIB), currently consisting of around 50 source units with a total of around
12,000 lines of code. UFLIB is constantly being improved, as is the method
itself. The main features of UFLIB are described in Paper V, and will only be
mentioned briefly here. However, recently added functionality, such as the use of
multiple simulations (see Paper VIII) and the implementation of the pathfinding
algorithm, with an associated grid-based map (see Paper X), will be described in
some detail. In addition, the implementation of two commonly used sensor types,
namely infrared sensors and laser range finders, will be described.

Developed in object-oriented Pascal, UFLIB compiles both in Delphi [6] and
with the FreePascal compiler [17]. However, 3D graphical visualization, gener-
ated using the GLScene graphics library [21], is currently not supported in Free-
Pascal, and must thus be removed if that compiler is used. However, in this thesis,
all simulations concerning the UF method have been carried out using UFLIB,
compiled in the Delphi environment.

UFLIB is distributed in the form of a library rather than a stand-alone exe-
cutable since, in the author’s experience, it is very difficult, or even impossible,
to try to generate a single simulation program, applicable to all types of prob-
lems. Instead, the approach taken when developing UFLIB has been to provide
a basic library implementing the behavior selection mechanism, the evolution-
ary algorithm, the 3D visualization etc., while still allowing the user full freedom
concerning e.g. the definition of the behavioral repertoire1.

While the implementation of new behaviors requires that the user should write
Pascal code (see also Section 3 in Paper V), most other features of UFLIB can be

1Some standard behaviors for wheeled robots, such as straight-line navigation, obstacle avoid-
ance, and locate IR beacon, are provided with the library.

41

42 Chapter 7. The utility function library

controlled in an easier way: In order to simplify the use of the library, particularly
for users with limited programming experience, it has been written such that most
features can be manipulated through simple text files, hereafter called definition

files. In this chapter, a few examples will be given in the form of such files. Con-
sequently, the syntax used in these files deserves an introduction. Since UFLIB is
implemented using an object-oriented approach, the definition files follow a sim-
ilar structure, in which each object is defined by its class name and its properties.
The structure is illustrated in Listing 7.1, where each object starts with the key-
word object and ends with the keyword end, and where properties of different
types (e.g. floating point, boolean, string, vector, and matrix) are assigned their
values. The names of these properties are defined by the user. In Listing 7.1,
generic names have been used for the properties. Examples of object definitions
are shown in Listing 7.2 and Listing 7.3.

Listing 7.1: General illustration of an object definition.
� �

1 object <Name>: <ClassName>

2 FloatProperty = 0.1

3 BooleanProperty = True

4 StringProperty = ’A string’

5 VectorProperty = 1.0 2.0 3.0

6 MatrixProperty =

7 1.0 0.0

8 0.0 2.0

9 end
� �

7.1 Sensor modeling

In the current implementation of UFLIB, several sensor types are implemented,
namely infrared sensors, laser range finders, battery sensors, wheel encoders, and
beacon detectors. The battery sensor enables the monitoring of the energy level
in a battery. Wheel encoders are used for counting pulses that are generated when
a wheel axis rotates (in the case of a wheeled robot), thus allowing the robot
to estimate its position through the use of odometry. Beacon detectors make it
possible for the robot to detect a specific target (an infrared beacon), and have
mainly been used for the localization of charging stations (see Paper V, Paper VI,
and Paper VIII). All sensor types implemented in UFLIB support Gaussian noise
modeling. In the following subsections the detailed implementation of two impor-
tant sensor types, namely the infrared sensor and the laser range finder, will be
described.

7.1. Sensor modeling 43

θ

ψ
ζ

x

y

X

Y

Figure 7.1: A differentially steered robot equipped with two infrared sensors (red filled
circles). ψ is the direction of the sensor, relative to the robot’s heading θ. The sensor’s
opening angle is denoted ζ. Lines emanating from the sensor indicate the rays used in
the calculation of the sensor reading. Here, five rays are shown of which three intersect
the obstacle (light gray rectangle). The global (inertial) coordinate system is denoted by
capital letters (XY) whereas small letters (xy) denote the robot’s coordinate system.

7.1.1 Infrared sensor

An infrared (IR) sensor may be modeled in a variety of ways. The implementation
in UFLIB uses a ray tracing technique, illustrated in Fig. 7.1, in which a sensor’s
reading is obtained as a sum of contributions from a number of rays. Each ray is
used for calculating the distance to the nearest object by searching for intersections
between the ray and objects in the environment (arena). This process takes place
in a two-dimensional horizontal slice of the arena, taken at the height at which the
sensor is positioned. Since a slice of the arena generates a number of lines, the
process of finding intersections amounts to a search for intersections between line
pairs in the horizontal plane, where one line represents a ray emanating from the
sensor and the other represents (a part of) an object in the arena. An example of a
sliced arena can be seen in the right panel in Fig. 7.2. If an intersection between
a ray and an object in the arena is found, the distance to the intersection point
is calculated. This procedure is repeated for every ray in the sensor model. The
complete sensor reading is then formed as a sum of contributions from theNr rays
as

s =
1

Nr

Nr
∑

i=1

ρi, (7.1)

44 Chapter 7. The utility function library

Figure 7.2: Example of a sliced arena, similar to the one used in Paper VI. The original
arena is shown in the left panel and the right panel shows the arena sliced at a certain
height. A robot is also shown in the figure. It appears as a red filled disk in the right panel.

where ρi is the contribution from the ith ray, calculated according to the empirical
equation (see also [29])

ρi =

min

((

α

d2
i

+ β

)

cosκi, 1

)

, if di ≤ R

0, otherwise

. (7.2)

where di is the distance to the nearest object along the ith ray, R is the range2 of
the sensor, α and β are constants whose values are set in an empirical manner, and

κi = −
ζ

2
+ (i− 1)δ ∈ [−π/2, π/2] (7.3)

is the angle of ray i, relative to the direction of the sensor (ψ). The rays are
enumerated in ascending order, starting from 1 and increasing in the direction of
ψ, i.e. the angle of the first ray (relative to the robot’s coordinate system) is equal
to ψ−ζ/2. The parameter ζ represents the opening angle of the sensor, illustrated
by the sector covered by the 5 rays emanating from the sensor in Fig. 7.1, and δ is
the angle between adjacent rays, calculated as

δ =
ζ

Nr − 1
. (7.4)

The angle of the ith ray, with respect to the inertial coordinate system (shown as
XY in Fig. 7.1), is defined as

γi = θ + ψ + κi, (7.5)

2A typical range of an IR sensor is up to a few decimeters.

7.1. Sensor modeling 45

where θ is the robot’s heading and ψ is the relative angle of the sensor. It should
be noted that the reading of a real IR sensor is generally quite diffuse. Thus, the
reading s should not be considered as an exact measure of (inverted) distance, but
rather as a qualitative measure of the presence or absence of an object in front of
the sensor. Noise can be added to the sensor reading as

s← sN(1, σ), (7.6)

where N(1, σ) is a normal-distributed value with mean 1 and standard deviation
σ. As a final step, in order to ensure that the sensor model generates a properly
bounded value, the sensor reading is adjusted according to

s← max(min(s, 1), 0) . (7.7)

All parameters mentioned above can easily be accessed via the robot’s definition
file. As an example, the definition of an IR sensor is shown in Listing 7.2.

Listing 7.2: Definition of an infrared sensor.� �

1 object IRSensor: TIRSensor

2 RelativePosition = 0.1000 0.1732 0.3000

3 RelativeDirection = 0.0000 0.0000 1.0472

4 OpeningAngle = 0.5000

5 Range = 0.3000

6 NumberOfRays = 5

7 Alpha = 0.0300

8 Beta = 0.1000

9 NoiseLevel = 0.0100

10 end
� �

7.1.2 Laser range finder

A laser range finder (LRF) is a device that measures distances to objects in the
arena by means of laser light and time-of-flight calculations. LRFs are much
more expensive than IR sensors, but commonly provide very accurate distance
measurements, as opposed to the diffuse readings obtained from IR sensors. LRFs
are also less sensitive to changes in e.g. lighting conditions than IR sensors. Using
a rotating lens and mirror system, an LRF is able to scan a wide sector in a short
period of time. LRFs are capable of accurate measurement of distances up to
several meters, or (for some types) even kilometers [54].

The LRF model implemented in UFLIB has been based on a 2D laser range
finder (URG-X002S) manufactured by Hokuyo [26]. This LRF shown in Fig. 7.3,
has a range of 4.0 m, an angular resolution of 360◦/1024, and a 270◦ wide scan-
ning sector. Before the LRF was implemented in UFLIB, the author conducted

46 Chapter 7. The utility function library

Figure 7.3: A laser range finder (URG-X002S) manufactured by Hokuyo. Photo by the
author.

Table 7.1: Data sampled from the laser range finder shown in Fig. 7.3. The setup of the
experiment is illustrated in Fig. 7.4. Summarized in this table are the actual distances
(x), the average of 10 distance measurements (x̄), the standard deviation (σ), and the
systematic distance error (x̄− x).

x [m] x̄ [m] σ [mm] x̄− x [m]

0.25 0.29 1.26 0.04
0.50 0.53 0.92 0.03
0.75 0.79 1.27 0.04
1.00 1.06 1.08 0.06

experiments on an actual Hokuyo LRF. Some results from those experiments are
summarized in Table 7.1 and the experimental setup is shown in Fig. 7.4. The
implementation of the LRF in UFLIB is similar to that of the IR sensor, described
in Section 7.1.1. The main difference between the IR sensor and the LRF is that,
in the model of the LRF, rays are not weighed together to form a single value.
As shown in the middle panel of Fig. 7.5, in the LRF, a number of uniformly
distributed rays are generated in the horizontal plane at the height of the LRF.
Normalized distances to intersections between the rays and the lines representing
the objects in the arena are taken as the readings of the LRF. Thus, an LRF will
have as many readings as the number of rays specified in its definition file, shown
in Listing 7.3. Each reading will have a value in the range [0, 1] or, in case a par-
ticular ray does not produce a reading, a value of −1. In addition, and as seen in
Listing 7.3, it is possible to specify the sector scanned by the LRF by means of a

7.1. Sensor modeling 47

x

LRF

1000 2000 3000

-1000

1000

Figure 7.4: Experimental setup (left panel) used in the measurements of the laser range
finder (LRF) shown in Fig. 7.3. In this experiment, the ray emanating from the center
of the LRF and reaching the obstacle (gray rectangle) at a right angle was sampled and
the associated reading was recorded for four different values of x. For each value of x,
10 measurements were made in order to form an average and to calculate an estimated
standard deviation. The results from these measurements are summarized in Table 7.1.
Dashed lines indicate rays not considered in this particular experiment. The right panel
shows the actual reading of the LRF in one of the measurements (x = 0.25 m), i.e the
distance to the nearest object in all covered directions, obtained by the LRF. The numbers
on the axes in the right panel are given in millimeters.

maximum and minimum angle relative to the robot’s heading.
In the LRF implemented in UFLIB, noise is added to the LRF readings, using

the same procedure as for the IR sensors, i.e. the distance obtained for each ray is
slightly modified as

ri ← riN(1, σ), i = 1, 2, . . . , Nr, (7.8)

where Nr is the number of rays and ri is the ith ray reading. Readings including
noise are shown in the right panel in Fig. 7.5, in which dots indicate the points of
intersection.

Listing 7.3: Definition of a laser range finder.� �

1 object LaserRangeFinder: TLaserRangeFinder

2 NumberOfRayAngles = 128

3 RelativePosition = 0.1500 0.0000 1.0000

4 RelativeDirection = 0.0000 0.0000 0.0000

5 MinimumRelativeAngle = -1.0472

6 MaximumRelativeAngle = 1.0472

7 SweepDirection = 1

8 Range = 4.0000

9 NoiseLevel = 0.0010

10 end
� �

48 Chapter 7. The utility function library

Figure 7.5: An illustration of simulated laser range finder (LRF) readings obtained in a
typical arena. For clarity, only 128 rays are shown and the sector is limited to the range
[−60◦, 60◦]. The left panel shows the arena (with the robot) from above. In the middle
panel, the 128 rays emanating from the LRF are shown as lines. The right panel depicts
the points sampled by the simulated LRF. The absence of lines in certain directions in the
middle panel is due to the limited range of the LRF.

7.2 Motor modeling

One of the most common motors used in robot applications is the direct current
(DC) motor, and this is also the actuator type implemented in the current version
of UFLIB. The equivalent circuit, used for modeling the DC motor, is shown in
Fig. 7.6, where V is the applied terminal voltage, R is the electrical resistance
of the motor windings, L is the electrical inductance, and VEMF is the back EMF
counteracting V . VEMF is proportional to the rotational velocity of the motor, i.e.

VEMF = Keω, (7.9)

where Ke is the electrical constant and ω is the angular velocity of the motor’s
shaft. The electrical model takes the form

V = L
di

dt
+Ri+ VEMF, (7.10)

where i is the armature current. In robot applications, the DC motor is commonly
used for actuating mechanical parts. Such parts normally have a much larger
time constant than the electrical part, and the inductance term can therefore be
neglected. By neglecting the inductance term and using the fact that the armature
current is proportional to the torque generated by the motor (τg = Kt i), Eq. (7.10)
in combination with Eq. (7.9) yields

V = R
τg
Kt

+Ke ω, (7.11)

7.2. Motor modeling 49

V

VEMF

R

L

Figure 7.6: Electrical circuit representing a DC motor.

where Kt is the motor’s torque constant. By rearranging Eq. (7.11), the generated
torque can be expressed as

τg =
Kt

R
(V −Ke ω). (7.12)

As is common in devices that involve moving mechanical parts, losses due to
friction must be accounted for. Thus, the final torque is modified according to

τ = τg −Kc sgn(ω)−Kv ω, (7.13)

where Kc sgn(ω) is the loss due to Coulomb friction and Kv ω is the loss due
to viscous friction. The constants Kc and Kv are normally set in an empirical
manner.

Due to their low torques and high angular velocities, DC motors are usually
accompanied by a gear box. In UFLIB, the gear box is implemented as a loss-
free transformation of the motor output. Thus, assuming loss-free transmission
(τω = constant), the output from the gear box is calculated according to

τout = Gτ, (7.14)

ωout =
1

G
ω, (7.15)

where G is the gear box ratio. Losses in the gear box are added as

τout ← τoutGe, (7.16)

where Ge ∈ [0, 1] is the gear box efficiency. As a final step, noise is added to the
output torque according to

τout ← τoutN(1, σ), (7.17)

whereN(1, σ) is a normal-distributed value with mean 1 and standard deviation σ.
All parameters associated with a DC motor can be accessed through the motor’s
definition file, an example of which is given in Listing 7.4.

50 Chapter 7. The utility function library

Listing 7.4: Definition of a DC motor.
� �

1 object Motor: TDCMotor

2 MaximumVoltage = 12.0000

3 TorqueConstant = 0.0333

4 BackEMFConstant = 0.0333

5 ArmatureResistance = 0.6200

6 CoulombFriction = 0.0080

7 ViscousFriction = 0.0200

8 GearRatio = 40.0000

9 GearEfficiency = 1.0000

10 MaxTorque = 0.3000

11 end
� �

7.3 Recent additions

As mentioned in the beginning of the chapter, UFLIB is still under development,
with novel features being added continuously. In this section, two such features
will be described in some detail, namely the use of multiple simulations and a
pathfinding procedure.

7.3.1 Multiple simulations

An important issue in evolutionary robotics (ER) is adaptation to special con-
ditions (overfitting), a problem that plagues any ER investigation in which the
performance evaluation of robots is based on results obtained in simulations start-
ing from a given, single initial condition. In order to mitigate such problems, the
concept of multiple simulations has recently been added to UFLIB.

In this case, and as described in Paper VIII, the evaluation of a robot consists
of a set of simulations, where each simulation belongs either to a training set

or a validation set. During a run of the EA, only the simulations in the training
set determine the overall fitness of an individual (i.e. a robot). The validation
simulations are conducted only under certain circumstances, for example when an
individual with higher overall fitness (as obtained from the training simulations)
than the previous best individual is found.

When multiple simulations are used, a robot is subjected to many different
situations during training, making it less likely that it would gain high overall
fitness by adapting to special conditions typical of one specific simulation. Each
simulation in the training set produces a separate fitness value. In order to generate
an overall fitness value, the performance measures must be combined into a single,

7.3. Recent additions 51

scalar value. In UFLIB, the following three combined fitness measures are used:

Favg =
1

NT

NT
∑

i=1

fi, (7.18)

Fmin = min (f1, f2, . . . , fNT
) , (7.19)

Feps = Fmin + εFavg, (7.20)

where fi is the fitness achieved in the ith training simulation, ε is a small positive
constant, and NT is the number of training simulations. For a comparison of the
different measures, see Paper VIII and Chapter 9.

Changing the fitness measure amounts to editing the value assigned to the
property FitnessMeasureType (see Listing 7.5) in the file that defines the eval-
uation. In the current implementation of UFLIB, the type of fitness measure
may take the values ’fmtAverage’, ’fmtMinimum’, or ’fmtMinEpsAvg’ (see
Eqs. (7.18), (7.19), and (7.20), respectively). In addition, the user may also define
a custom fitness measure (’fmtCustom’).

The property UseInFitnessMeasure decides whether a simulation is in-
cluded in the training set (’True’) or in the validation set (’False’). An ex-
ample of the definition of an evaluation is shown in Listing 7.5. For brevity, this
example only defines a single simulation for each set. However, there is no upper
bound on the number of simulations in each set. The minimum requirement is that
the training set should contain at least one simulation.

7.3.2 Pathfinding

In many navigation tasks in which a map is available, finding a path between two
locations is a useful feature, if it can be achieved fast and in a reliable manner.
A recently added part of UFLIB is the automatic generation of a 2D grid map,
based on the 3D environment. The size of the grid cells is based on the size of
the robot, as illustrated in Fig. 7.7. When the grid map is generated, it is ensured
that at least four grid cells fit into the 2D projection of the robot’s axis-aligned
bounding box3. In this way, sufficient resolution is ensured while maintaining
the speed of the pathfinding algorithm. The algorithm currently implemented in

3An axis-aligned bounding box, indicated by the rectangle around the robot in Fig. 7.7, is the
smallest volume that encapsulates the robot and whose sides are aligned with the axes of the global
coordinate system.

52 Chapter 7. The utility function library

Listing 7.5: Definition of an evaluation consisting of two simulations; one used for train-
ing and the other for validation. See the main text for a detailed description.

� �

1 object Evaluation: TEvaluation

2

3 FitnessMeasureType = ’fmtMinimum’

4

5 object TrainingSimulation: TUFRobotSimulation

6 InitialPosition = 0.20 0.20 0.00

7 InitialDirection = 0.00 0.00 0.60

8 UseInFitnessMeasure = True

9 SimulationTime = 100.00

10 TimeStep = 0.01

11 end

12

13 object ValidationSimulation: TUFRobotSimulation

14 InitialPosition = 0.10 0.10 0.00

15 InitialDirection = 0.00 0.00 -0.10

16 UseInFitnessMeasure = False

17 SimulationTime = 100.00

18 TimeStep = 0.01

19 end

20

21 end
� �

UFLIB uses an A∗ search algorithm for finding the shortest path (or, in general,
the path associated with the lowest cost (see Eq. (7.21) below) between a starting
point and a target location (see the example code in Listing 7.6).

The A∗ algorithm [24] is one of the most common general search algorithms,
and also one of the fastest. A∗ uses two lists, an open list and a closed list. The
open list is used for maintaining a set of nodes that have not yet been examined
(updated) and the closed list contains a set of nodes that have already been exam-
ined. Initially, the closed list is empty and the open list contains the node at which
the search starts. A node nmaintains information about the cost of going from the
initial nodeA to n and an estimate of the cost for moving from n to the goal node
B. Using standard notation, the combined cost of a node is calculated as

f(n) = g(n) + h(n), (7.21)

where g(n) is the cost of moving from A to n and h(n) is the estimated cost
of moving from n to B. h(n) is commonly referred to as the heuristic of the
algorithm. Common heuristics involve the Euclidean distance, which is used in
UFLIB, and the Manhattan distance. The Euclidean distance between two points

7.3. Recent additions 53

Figure 7.7: Illustration of a grid-based map used by the A∗ pathfinding algorithm. Col-
ored cells indicate either occupied areas (dark gray) or cells treated as occupied in order to
provide sufficient clearance for the robot to avoid collisions with the static objects during
navigation. Only white cells are considered as potential waypoints in the A∗ algorithm.
The size of the cells is automatically calculated based on the robot’s axis-aligned bound-
ing box (indicated by the rectangle surrounding the robot) in such a way that this box will
contain at least 16 cells. Margins, marked in light blue color, are automatically added, in
two steps, in order to generate sufficient clearance.

in the plane P1(x1, y1) and P2(x2, y2) is defined as
√

(x1 − x2)2 + (y1 − y2)2,
whereas the Manhattan distance is defined as |x1 − x2|+ |y1 − y2|.

It can be shown that the shortest path will be found (assuming that a path
exists), provided that h(n) does not overestimate the distance [56]. If h(n) is
overestimated, the search might become faster but there is no guarantee that the
algorithm will find the shortest path. Once the algorithm has finished, the final,
and hopefully shortest, path is generated by a process of backtracking, in which
the trail of the lowest cost (f(n)) is followed from B to A. For a more detailed
description of the A∗ algorithm, see [24, 56].

In Fig. 7.8, the generation of a grid map is illustrated by means of the arena
used in Paper VIII. In the right panel of the figure, the path from A to B, as
generated by the A∗ algorithm, is shown in dark gray color. The result from the
pathfinding algorithm is a sequence of waypoints, each located in the center of a
grid cell, as indicated in Fig. 7.9. A path-following robot travels from A to B by
navigating through each waypoint in the generated sequence. Thus, provided that
the problem of localization can be solved (see Paper X), the robot will be able to
travel the entire distance based on the generated sequence of waypoints. In order
to avoid generating a path that may cause the robot to collide with static obstacles
in the environment, a clearance margin of two grid cells is added before the path

54 Chapter 7. The utility function library

Listing 7.6: Example code for generating a gridmap.
� �

1 procedure Test;

2 var

3 Arena: TArena;

4 Robot: TRobot;

5 GridMap: TGridMap;

6 XWaypoints, YWaypoints: TVector;

7 begin

8 // Create instances of an arena, a robot, and a gridmap.

9 Arena := TArena.CreateFromFile(’MyArena.txt’);

10 Robot := TRobot.Create;

11 Robot.LoadFromFile(’MyRobot.txt’);

12 GridMap := TGridMap.Create;

13

14 // Generate the gridmap.

15 GridMap.Generate(Arena, Robot.Body);

16

17 // Generate a path from (0,0) to (1,2).

18 GridMap.FindPath(0.0, 0.0, 1.0, 2.0)

19

20 // Retrieve the waypoints.

21 XWaypoints := TVector.Create;

22 YWaypoints := TVector.Create;

23 GridMap.GetPathAsWayPoints(XWaypoints, YWaypoints);

24

25 ...

26

27 end;
� �

is generated. This provides a sufficient amount of clearance (again assuming ac-
curate navigation) between the robot and the obstacles. The margin is indicated
by light gray color in the right panel in Fig. 7.8 (see also Fig. 7.7). Only white
cells are considered as potential waypoints by the pathfinding algorithm.

7.4 Evolutionary algorithm

The EA used in UFLIB for the optimization of utility functions operates on a
population of individuals (robots), and follows the general procedure outlined in
Algorithm 3.1 (see also Listing 7.7). An example of a chromosome encoding
the N utility functions of an individual is shown in Fig. 7.10. As is indicated
in the figure, the genes are quite complex and encode an entire utility function
polynomial each. Each individual is evaluated by running the NT simulations

7.4. Evolutionary algorithm 55

B

A

Figure 7.8: Discretization of an arena (left panel) into a grid map (right panel) that can
be utilized by the A∗ pathfinding algorithm. Black cells indicate static obstacles and gray
cells indicate the added margins. In this snapshot, the robot, in its true size, is shown
halfway along the path going from A to B.

B

A

Figure 7.9: Illustration of the placement of waypoints in a grid-based map. In the right
panel, a magnification is shown in which the waypoints are illustrated by white circles.
Note that each waypoint is placed in the center of the grid cell.

56 Chapter 7. The utility function library

U1 U2 UN

U1(s, p) = a00 + a10s+ a01p+ a11sp+ a20s
2 + a02p

2

Figure 7.10: Example of a chromsome in which N utility functions are encoded. In
UFLIB, each gene encodes an entire utility function. Thus, there is a total of N genes.
Here, a decoded version of the first gene is illustrated as a second degree polynomial
having two state variables (s, p).

constituting the training set, as defined by the corresponding definition file. The
EA uses generational replacement, i.e. a new population is formed that replaces
the previous one in each iteration (generation) of the EA. During the formation
of the new population, the EA performs a sequence of selection, crossover, and
mutation. The default crossover operator, illustrated in the top panel of Fig. 2
in Paper VII, simply swaps a randomly chosen sequence of genes between two
selected chromosomes. Thus, it effectively swaps entire utility functions. The
mutation operator modifies the coefficients, shown as aij in Fig. 7.10, in a random
manner. The crossover and mutation operators are applied with a certain probabil-
ity, set by the user. It should be noted that it is possible for the user to implement
modified versions of the crossover and mutation operators. However, the standard
operators are usually sufficient.

7.5 Usage example

In this section, the basic steps that a user of UFLIB must perform in order to build
an application for evolutionary optimization of a behavior selection mechanism
are given. A more detailed description of the various parts that should be specified
is given in Paper V. Complementary material in the form of a reference manual
and a tutorial, including template files, are available for download at [70]. In
addition, a demonstration program is available for download at [69].

Although one of the main aims of this software library is to minimize the
amount of work that a user must carry out to develop software for scientific investi-
gations involving autonomous robots, many parts of a study remain specific to the
problem at hand. In any investigation involving behavior selection in autonomous
robots, the first step involves the implementation of the constituent behaviors in-
cluded in the behavioral repertoire. Behaviors may be implemented using any

7.5. Usage example 57

Listing 7.7: Main loop for the evaluation of a generation (cf. Algorithm 3.1). The method
FinalizeFitness (belonging to the object Evaluation) generates a fitness mea-
sure for the evaluated individual according to one of the equations (7.18), (7.19), and
(7.20).

� �

1 repeat

2 for i := 1 to EA.Population.Size do

3 begin

4 Robot := EA.Population[i];

5 Robot.DecodeGenome;

6 for j := 1 to Evaluation.NumberOfSimulations do

7 begin

8 RS := TRobotSimulation(Evaluation[j]);

9 RS.SetAgent(Robot);

10 RS.SetArena(Arena);

11 RS.Run;

12 end;

13 Evaluation.FinalizeFitness;

14 Robot.Fitness := Evaluation.Fitness;

15 end;

16 EA.MakeNewGeneration;

17 until (TerminationCriteriaFulfilled);
� �

architecture, for instance those described in Section 2.1. However, since UFLIB

provides a general framework for behavior selection, the choice of behavioral ar-
chitectures is not limited to the ones treated in this thesis — any implementation
of a behavior may be used, as long as it complies with the interface defined by
UFLIB. The actual implementation requires that the user should define each be-
havior in the form of Pascal source code (unless only the behaviors provided with
UFLIB are used). Using templates, the writing of source code can be reduced to
the specification of a few procedures.

As a second step, and as required in all optimization procedures involving
evolutionary methods, a suitable fitness measure must be defined. As mentioned
in Section 6.1.2, this measure is normally associated with the execution of a single
behavior (the task behavior). Although a single task behavior is sufficient in most
situations, multiple task behaviors may be defined as well.

The third step involves the definition files for the simulated robot, the EA and
its parameters, and the evaluation setup. In UFLIB, a robot consists of two parts,
namely a body and a brain, both being specified in the robot’s definition file. The
body consists of specifications of the physical parameters of the robot (such as
e.g. its height, weight, and shape, as well as its motors and sensors), whereas
the brain consists of a specification of the behaviors included in the behavioral

58 Chapter 7. The utility function library

repertoire and the set of state variables (see Section 6.1.3) associated with each
behavior. In addition, the behavioral hierarchy must be defined by the user (see
Section 6.1.6 for an example).

In the definition file associated with the EA, parameters such as population
size, crossover probability, and mutation probability should be specified. The user
also has the option to specify a custom crossover operator. The definition file
for the evaluation setup (see Section 7.3.1) defines the simulations constituting
the training set and the validation set. For each simulation, parameters related to
the maximum allowed simulation time, initial position and heading, and the time
step used by the numerical solver, must be defined. In addition, the choice of the
composite fitness measure, defined by Eqs. (7.18)–(7.20), should be made.

The final step involves the arena definition file that defines the environment in
which the robot is to be evaluated. This file consists of a list of objects such as
walls and other obstacles. A more complete description of the available objects
can be found in [70].

Once the steps just listed have been completed, the actual application, possi-
bly with a graphical user interface, can be created rapidly (using e.g. a template
associated with UFLIB) and compiled, and the evolutionary optimization of the
behavior selection mechanism can commence (see also Paper V).

Chapter 8
Case studies

In this thesis, a few different cases of behavior generation have been studied,
namely in Paper I, Paper III, and Paper IV. In Paper I and Paper IV, bipedal
gaits were generated for a simulated two-legged robot. In Paper III, both the gen-
eration and organization of behaviors were investigated using simulations of a
one-legged hopping robot. The problem of behavioral organization has been in-
vestigated in several different cases, involving a simple guard robot (Paper VI), an
exploration robot (Papers V, VII, and VIII), and, more recently, a transportation
robot (Papers IX and X). In this chapter, two cases will be described in some
detail, namely those studied in Paper III and in Paper X. The first case has been
selected for inclusion in this chapter since it illustrates a limitation of behavior
selection, namely that, regardless of the quality of the behavior selection mech-
anism, the overall performance of the robot will be limited by the quality of the
individual behaviors constituting the behavioral repertoire. The second case mer-
its special consideration since it will be the first application of the UF method in
a complex, real-world task.

8.1 Hopping robot

In Paper III, the problem of behavioral organization was investigated using the
UF method (see Chapter 6). The behaviors, namely move forward, move back-
ward, stop, and charge batteries, were represented as RNNs and were used for
controlling a one-legged hopping robot (see Fig. 2 in Paper III). The robot was
thus simpler than a bipedal robot, but still exhibited highly non-trivial dynamics.
While a one-legged robot is unlikely to be used in real-world applications, it was
sufficient for this study, the aim of which was to study the generation and selection
of behaviors. The investigation was performed using a two-stage process: First the

59

60 Chapter 8. Case studies

constituent behaviors were evolved, then the behavioral organizer was evolved, in
both cases by means of an EA. During the optimization of the behavioral orga-
nizer, the constituent behaviors remained fixed. The behavioral organizer (op-
timized by the EA) performed satisfactorily, activating the various behaviors at
appropriate times. However, the RNNs representing the behaviors did not always
perform in a satisfactory manner when activated in situations that were different
from the ones used when they were generated. For instance, the move forward be-
havior was evolved with the robot starting from a standstill upright position. After
the optimization, the robot was able to travel forward, in a slightly curved path,
for the entire length of the simulation. However, when used during the optimiza-
tion of the behavioral organizer, the behavior was less reliable. As the behavioral
organizer may activate a behavior at any time, the probability that the initial state
of the robot will differ from that used during training is large. In fact, it is highly
unlikely that a moving one-legged robot will find itself in the exact same dynami-
cal state (i.e. with the same heading and speed) more than once at the very instants
when the behavior is activated.

Even though the behavior selection mechanism was somewhat constrained by
the weak performance of the constituent behaviors, the UF method still managed
to solve the problem of behavior selection in a satisfactory manner. The success of
the method was verified in a simplified setup, in which the robot was represented
by a simple solid body, sliding (rather than hopping) along the surface.

8.2 Transportation robot

Internal transportation of goods in e.g. hospitals and factories is an important
but tedious task, which, in many cases, could very well be carried out using au-
tonomous robots [14, 62, 64]. In Paper X, the aim is to develop a general-purpose
robot to be used for internal transportation tasks. An outline of this project is given
in Paper IX. The transportation robot is a wheeled robot, intended for operation
in dynamic environments. In some of the currently available robotic transporta-
tion systems [2], the environment must be adapted to the robot (e.g. through the
installation of laser navigation devices such as reflective targets). By contrast, for
the transportation robot developed in the project described in Papers IX and X, no
modification of the arena should be needed.

In order to move reliably from a pickup position to a delivery site, the robot
must use a number of sensor modalities in order to achieve an accurate estimate
of its relative position in the environment. In addition, the robot must be equipped
with a communication interface through which a user can give commands. For
localization purposes, the robot is to be equipped with a map of the environment,

8.2. Transportation robot 61

Figure 8.1: A prototype (scale 1:3) of the transportation robot. The right panel shows the
battery pack mounted underneath the robot.

either given to it through the communication interface or generated through explo-
ration of the environment. Also, in order to locate delivery sites and to calibrate
the odometry, the robot should be equipped with a number of behaviors that per-
form actions such as laser scan matching based on the readings of a laser range
finder mounted on the robot (see Papers IX and X), as well as landmark detection
using a combination of all available sensor information in order to make the local-
ization as accurate as possible. Due to the unpredictable nature of the environment
in which the robot will operate, other behaviors such as obstacle avoidance and
alternative path generation are also needed.

Autonomous robots capable of performing tasks such as the one indicated
above will probably become more common in the future. Indeed, already today,
some robots have been developed for this purpose (e.g. [20, 51]). However, the
general problem of reliable behavior selection in such complex robots is interest-
ing in its own right and should be investigated further. One of the main goals
in this transportation robot project is thoroughly to test and evaluate the robust-
ness of the UF method and also its ability to generalize. Since the UF method
allows for an expansion of the behavioral repertoire, the operational space of the
robot can be extended, and the UF method can thus be evaluated in scenarios
of ever-increasing complexity. Currently (August 2006), the simulations (based
on UFLIB) of a slightly simplified version of the transportation robot are being
carried out.

62 Chapter 8. Case studies

The robot depicted in the left panel of Fig. 8.1 is a simple first prototype, de-
veloped during the summer of 2006, for the transportation robot. This prototype
has been built for real-world verification of the simulations, and, in particular,
to test some of the behaviors required by the transportation robot, namely navi-
gation, obstacle avoidance, and (slightly simplified) localization. The prototype
will also be used for evaluating different hardware configurations, including (but
not limited to) the choice of microcontroller and the system for localization.

The prototype depicted in Fig. 8.1, with a cross section of size 0.20× 0.20 m,
and a height of 0.42 m, is a 1:3 scale model of the actual transportation robot for
which construction will begin in the spring of 2007. The robot is differentially
steered, using two servo motors modified for continuous rotation. It is equipped
with a Parallax BS2px24 microcontroller, capable of executing around 19, 000
BASIC instructions per second. The microcontroller is connected to a Parallax
servo controller which, in turn, sends commands to the two servo motors. Two
separate 6V power supplies are used: A set of four standard AA batteries give
power to the microcontroller and the servo controller, whereas five large (D size),
rechargeable batteries, mounted under the chassis as shown in the right panel of
Fig. 8.1, provide power to the servos. The latter batteries are capable of delivering
a full 8, 000 mAh of energy, allowing the robot to operate for several hours without
recharging.

The sensory array (not yet mounted) will consist of IR proximity detectors,
bumper switches, accelerometers, and a compass. In the full-scale prototype of
the robot, the servo motors will probably be replaced by stepper motors capable
of producing higher torque than the servo motors used in the first prototype. The
full-scale version will also include the laser range finder from Hokuyo [26], as
well as several other hardware components, such as a text-to-speech synthesizer,
for robot-user communication.

Chapter 9
Conclusions and further work

In this chapter, a summary of the main conclusions are given, in very condensed
form. In addition, a few directions for further work are provided.

9.1 Conclusions

As indicated by its title, the two main topics considered in this thesis have been (1)
the generation of behaviors and (2) the organization of behaviors. The lists below
briefly summarize the conclusions from the investigations presented in Papers I–
X.

9.1.1 Generation of behaviors

• Energy efficient bipedal gaits can be achieved through evolutionary opti-
mization of GFSMs in the case of a 2D five-link bipedal robot (Paper I).

• Smooth, human-like gait (cyclic in nature) can be achieved by guiding the
evolutionary algorithm towards energy-minimal solutions (Paper I).

• Clusters of CPGs, connected through a feedback network, can be used for
generating a bipedal gait in a simulated 3D bipedal robot by means of evo-
lutionary optimization of a feedback network (Paper IV).

• Evolutionary optimization of RNNs can generate fairly good motor behav-
iors. However, their ability to generalize to changes in the initial conditions
is limited (Paper III).

63

64 Chapter 9. Conclusions and further work

9.1.2 Organization of behaviors

The main conclusion from the many investigations involving the UF method is
that the method, as implemented in the software library UFLIB, does indeed al-
low the user to set up and carry out the necessary simulations for a wide variety
of (single-robot) behavioral organization problems, using a minimum of hand-
coding (i.e. manual fine-tuning of parameters).

Further it may be concluded that:

• While the UF method is capable of solving the behavior selection problem,
the performance of the resulting systems may be affected by the quality of
the constituent behaviors (Paper III).

• If a polynomial ansatz is used for the utility functions in the UF method, a
polynomial degree of three (or higher) should be chosen over a smaller de-
gree, at least in cases involving fewer than six behaviors (Paper VI). How-
ever, as the search space rapidly increases with the polynomial degree, high
polynomial degrees will result in longer optimization times.

• The mutation rate for the EA optimizing the utility functions should be set to
a value that, on average, generates around three parameter modifications of
an individual. If a lower mutation rate is used, the search for good solutions
will generally be slower (Paper VI).

• Utility function polynomials including all terms up to a certain degree pro-
duce results that are equal to (or better than) polynomials with an arbitrary
number of terms (Paper VII).

• The standard UF crossover operator, which swaps entire utility function
polynomials between individuals, performs at least as well as operators ca-
pable of swapping individual polynomial terms (Paper VII).

• The use of multiple simulations (for the evaluation of a robot) generates
significantly improved results, provided that the individual simulations are
sufficiently long so that, in any given simulation, the robot is faced with the
problem of making several difficult decisions concerning behavior activa-
tion (Paper VIII).

• The choice of a composite fitness measure (minimum, average, or a combi-
nation thereof) in the case of evaluations consisting of multiple simulations,
does not have any significant effect on the ability of a robot to generalize to
previously unseen situations (Paper VIII).

9.2. Further work 65

• The approach of providing a simulation library, from which new executable
files, tailored to the problem at hand, easily can be generated, has proven
to be very useful. Indeed, in most of the investigations concerning the UF
method, the generation of the executable program was one of the least time-
consuming procedures.

• The use of template-based, object-oriented text files for the specification of
robots, arenas etc. greatly simplifies the procedure of setting up simulations
of autonomous robots.

9.2 Further work

As most investigations performed in this thesis have been carried out in simula-
tions, the next step should involve implementation in real robots. This is the aim
of the transportation robot project described in Section 8.2 and outlined in Pa-
per IX, where the UF method, and its implementation in UFLIB, will be further
investigated and developed. An issue of particular importance will be to test the
robustness of the UF method in progressively more complex real-world situations.
Furthermore, in this project, at least one full-scale prototype will be constructed to
allow, for example, tests of suitable sensor modalities for localization. The long-
term vision is to generate a transportation robot that is able to carry out its tasks
reliably in an arbitrary indoor environment.

In order to simplify further the use of the UF method, an issue that will become
ever more important as the size of the behavioral repertoire increases far beyond
a few behaviors, efforts will be made to automate tasks such as the specification
of the behavioral hierarchy and the generation of definition files for simulations
based on UFLIB.

Another interesting topic for further work would be to apply the UF method
in connection with software agents used as a support in decision-making in, for
example, risk management, insurance, finance etc. In this context, the concept of
multiple simulations used in the UF method is also likely to become quite impor-
tant, since the evolution of such agents will require exposure to many different
situations.

Bibliography

[1] ACOSTA-MÁRQUEZ, C. A. and BRADLEY, D., “The analysis, design and
implementation of a model of an exoskeleton to support mobility”, in Pro-
ceedings of the 2005 IEEE 9th International Conference on Rehabilitation
Robotics (ICORR 2005), pp. 99–102, 2005.

[2] AGV PRODUCTS. http://www.agvp.com.

[3] ARKIN, R. C., Behavior-based robotics. Cambridge, MA: The MIT Press,
1998.

[4] BERNOULLI, D., “Specimen theoriae novae de mensura sortis”, Commen-
tarii Academiae Scientiarum Imperialis Petropolitanae, vol. 5, pp. 175–192,
1738.

[5] BLUMBERG, B. M., “Action-selection in Hamsterdam: Lessons from ethol-
ogy”, in From Animals to Animats 3: Proceedings of the 3rd International
Conference on Simulation of Adaptive Behaviour (SAB94), MIT Press, 1994.

[6] BORLAND, “Delphi”, http://www.borland.com/delphi.

[7] BROOKS, R., “A robust layered control system for a mobile robot”, IEEE
Journal of Robotics and Automation, vol. RA-2, no. 1, pp. 14–23, 1986.

[8] BÄCK, T., FOGEL, D. B., and MICHALEWICZ, Z., Handbook of evolution-
ary computation. Bristol, UK: Institute of Physics, 1997.

[9] CHERNOFF, H. and MOSES, L., Elementary decision theory. New York,
NY, USA: Dover Publications, Inc., 1986.

[10] COLLETT, T. and COLLETT, M., “Memory use in insect visual navigation”,
Nature Reviews Neuroscience, vol. 3, pp. 542–552, July 2002.

67

68 Bibliography

[11] COLLINS, S., RUINA, A., TEDRAKE, R., and WISSE, M., “Efficient
bipedal robots based on passive dynamic walkers”, Science Magazine,
vol. 307, pp. 1082–1085, February 2005.

[12] DAWKINS, R., The Blind Watchmaker: Why the Evidence of Evolution Re-
veals a Universe Without Design. W. W. Norton, 1996.

[13] DAWKINS, R., Climbing Mount Improbable. W. W. Norton, 1997.

[14] DURRANT-WHYTE, H. F., “An autonomous guided vehicle for cargo han-
dling applications”, International Journal of Robotics Research, vol. 15,
no. 5, pp. 407–440, 1996.

[15] FICICI, S., WATSON, R., and POLLACK, J., “Embodied evolution: A re-
sponse to challenges in evolutionary robotics”, in Proceedings of the 8th

European Workshop on Learning Robots (WYATT, J. L. and DEMIRIS, J.,
eds.), pp. 14–22, 1999.

[16] FLOREANO, D. and MONDADA, F., “Evolution of Homing Navigation in a
Real Mobile Robot”, IEEE Transactions on Systems, Man, and Cybernetics
- Part B: Cybernetics, vol. 26, no. 3, pp. 396–407, 1996.

[17] FREEPASCAL. http://www.freepascal.org.

[18] FUJIMOTO, Y. and KAWAMURA, A., “Simulation of an autonomous biped
walking robot including environmental force interaction”, IEEE Robotics
and Automation Magazine, vol. 5, no. 2, pp. 33–42, 1998.

[19] FURUSHO, J. and MASUBUCHI, M., “Control of a dynamical biped loco-
motion system for steady walking”, Journal of Dynamic Systems, Measure-
ments, and Control, vol. 108, pp. 111–118, 1986.

[20] GECKO SYSTEMS. http://www.geckosystems.com.

[21] GLSCENE. http://glscene.org.

[22] GOMEZ, F. and MIIKKULAINEN, R., “Incremental evolution of complex
general behavior”, Adaptive Behavior, vol. 5, pp. 317–342, 1997.

[23] GRILLNER, S., “Neural networks for vertebrate locomotion”, Scientific
American, pp. 48–53, January 1996.

Bibliography 69

[24] HART, P. E., NILSSON, N. J., and RAPHAEL, B., “A formal basis for the
heuristic determination of minimum cost paths in graphs”, IEEE Transac-
tions on Systems Science and Cybernetics, vol. SSC-4, pp. 100–107, July
1968.

[25] HAYKIN, S., Neural Networks: A comprehensive foundation. Upper Saddle
River, New Jersey: Prentice Hall, 2nd ed., 1999.

[26] HOKUYO. http://www.hokuyo-aut.jp.

[27] HOLLAND, J., Adaptation in natural and artificial systems. Cambridge,
MA: MIT Press, 1992.

[28] IVANENKO, Y. P., POPPELE, R. E., and LACQUANITI, F., “Motor control
programs and walking”, The Neuroscientist, vol. 12, no. 4, pp. 339–348,
2006.

[29] JAKOBI, N., HUSBANDS, P., and HARVEY, I., “Noise and the reality gap:
The use of simulation in evolutionary robotics”, in ECAL (MORÁN, F.,
MORENO, A., GUERVÓS, J. J. M., and CHACÓN, P., eds.), vol. 929 of
Lecture Notes in Computer Science, pp. 704–720, Springer, 1995.

[30] KANDEL, E. R., SCHWARTZ, J. H., and JESSELL, T. M., Priniciples of
Neural Science. McGraw-Hill/Appleton & Lange, 4th ed., January 2000.

[31] KENNEDY, J. and EBERHART, R. C., “Particle swarm optimization”, in Pro-
ceedings of the IEEE International Conference on Neural Networks, vol. 4,
pp. 1942–1948, 1995.

[32] KHATIB, O., “Real-time obstacle avoidance for manipulators and mobile
robots”, in Proceedings of the IEEE International Conference on Robotics
and Automation, pp. 500–505, 1985.

[33] KIRKPATRICK, S., GELATT, C. D., and VECCHI, M. P., “Optimization by
simulated annealing”, Science, vol. 220, no. 4598, pp. 671–680, 1983.

[34] KOZA, J. R., Gentetic Programming: On the programming of Computers by
Natural Selection. Cambridge, MA: MIT Press, 1992.

[35] LUCIDARME, P. and LIÉGEOIS, A., “Learning reactive neurocontrollers
using simulated annealing for mobile robots”, in Proceedings of the 2003
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2003), pp. 674–679, 2003.

70 Bibliography

[36] MAES, P., “Modeling adaptive autonomous agents”, Artificial Life, vol. 1,
no. 1-2, pp. 135–162, 1994.

[37] MAES, P., “How to do the right thing”, Connection Science Journal, vol. 1,
no. 3, pp. 291–323, 1989.

[38] MATSUOKA, K., “Mechanisms of frequency and pattern control in the
neural rhythm generators”, Biological Cybernetics, vol. 56, pp. 345–353,
July 1987.

[39] MCCLELLAND, J. L., RUMELHART, D. E., and HINTON, G. E., “The ap-
peal of parallel distributed processing”, in Parallel Distributed Processing:
Volume 1: Foundations (RUMELHART, D. E., MCCLELLAND, J. L., and
OTHERS, eds.), pp. 3–44, Cambridge: MIT Press, 1987.

[40] MCFARLAND, D., Animal behavior: Psychobiology, Ethology and Evolu-
tion. Longman, 3rd ed., 1999.

[41] MCFARLAND, D. and BÖSSER, T., Intelligent behavior in animals and ro-
bots. The MIT Press, 1993.

[42] MCGEER, T., “Passive dynamic walking”, International Journal of Robotics
Research, vol. 9, no. 2, pp. 68–82, 1990.

[43] MIGLINO, O., LUND, H. H., and NOLFI, S., “Evolving mobile robots in
simulated and real environments”, Artificial Life, vol. 2, no. 4, pp. 417–434,
1995.

[44] MITCHELL, M., An introduction to genetic algorithms. The MIT Press,
1996.

[45] MORAVEC, H., Robot: Mere machine to transcendent mind. Oxford Uni-
versity Press, 1999.

[46] MORIARTY, D. E. and MIIKKULAINEN, R., “Evolving obstacle avoidance
in a robot arm”, in From Animals to Animats 4: Proceedings of the 4th Inter-
national Conference on Simulation of Adaptive Behavior (SAB’96), pp. 468–
475, MIT Press, 1996.

[47] NIELSEN, J., “How we walk: Central control of muscle activity during hu-
man walking”, The Neuroscientist, vol. 9, no. 3, pp. 195–204, 2003.

[48] NOLFI, S. and FLOREANO, D., Evolutionary robotics. The MIT Press,
2000.

Bibliography 71

[49] PIRJANIAN, P., “Behavior-coordination mechanisms – state-of-the-art”,
Technical report IRIS-99-375, Institute for Robotics and Intelligent Systems,
University of Southern California, October 1999.

[50] PIRJANIAN, P. and MATARIC, M., “A decision-theoretic approach to fuzzy
behavior coordination”, in Proceedings of the IEEE International Sympo-
sium on Computational Intelligence in Robotics and Automation, (Monterey,
CA), November 1999.

[51] POLLACK, M. E. and OTHERS, “Pearl: A mobile robotic assistant for the
elderly”, in AAAI Workshop on Automation as Caregiver, August 2002.

[52] PUGH, J., ZHANG, Y., and MARTINOLI, A., “Particle swarm optimiza-
tion for unsupervised robotic learning”, in Swarm Intelligence Symposium,
pp. 92–99, 2005.

[53] RECHENBERG, I., Evolutionsstrategien. Holtzmann-Froboog, 1994.

[54] RIEGL. http://www.riegl.com.

[55] ROSENBLATT, J., “DAMN: A distributed architecture for mobile naviga-
tion”, Journal of Experimental and Theoretical Artificial Intelligence, vol. 9,
no. 2-3, pp. 339–360, 1997.

[56] RUSSELL, S. J. and NORVIG, P., Artificial Intelligence: A Modern Ap-
proach. Prentice Hall, 2nd ed., 2002.

[57] SANDHOLT, H., PETTERSSON, J., and WAHDE, M., “Development of a
bipedal robot with genetic algorithm based motion control”, in Proceedings
of the 8th UK Mechatronics Forum International Conference (Mechatronics
2002), pp. 489–498, 2002.

[58] SASTRY, S. and BODSON, M., Adaptive control: Stability, convergence, and
robustness. Prentice-Hall, 1989.

[59] SAVAGE, J., MARQUEZ, E., PETTERSSON, J., TRYGG, N., PETERSSON,
A., and WAHDE, M., “Optimization of waypoint-guided potential field navi-
gation using evolutionary algorithms”, in Proceedings of the 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2004),
pp. 3463–3468, 2004.

[60] SHEPHERD, G. M., Neurobiology. Oxford University Press, 3rd ed., May
1994.

72 Bibliography

[61] SHI, W. and ZUSMAN, D. R., “Fatal attraction”, Nature, vol. 366, pp. 414–
415, 1993.

[62] SIMMONS, R., GOODWIN, R., HAIGH, K. Z., KOENIG, S., and
O’SULLIVAN, J., “A layered architecture for office delivery robots”, in
Proceedings of the first international conference on Autonomous agents,
pp. 245–252, 1997.

[63] STADDON, J. E. R., Adaptive dynamics: The theoretical analysis of behav-
ior. Cambridge, Massachusetts: The MIT Press, 2001.

[64] TUG (University of Maryland, http://www.umm.edu/news/

releases/robot.html).

[65] VON NEUMANN, J. and MORGENSTERN, O., Theory of Games and Eco-
nomic Behavior. Princeton, N. J.: Princeton University Press, 3rd ed., 1953.

[66] WAHDE, M., “A method for behavioural organization for autonomous robots
based on evolutionary optimization of utility functions”, Journal of Systems
and Control Engineering, vol. 217, pp. 249–258, September 2003.

[67] WAHDE, M., “Evolutionary robotics: The use of artificial evolu-
tion in robotics”, Tutorial presented at AMiRE2005, 2005. Available
from: http://www.me.chalmers.se/~mwahde/AdaptiveSystems/

Tutorials.html.

[68] WAHDE, M., An introduction to adaptive algorithms and intelligent ma-
chines. Göteborg: Chalmers Reproservice, 5th ed., 2006.

[69] WAHDE, M. and PETTERSSON, J., “UFLibrary demo”, Available
at: http://www.me.chalmers.se/~mwahde/robotics/UFMethod/

UFLibrary/Demo.html.

[70] WAHDE, M. and PETTERSSON, J., “UFLibrary tutorial”, Available
at: http://www.me.chalmers.se/~mwahde/robotics/UFMethod/

UFLibrary.

[71] WAHDE, M. and PETTERSSON, J., “A brief review of bipedal robotics re-
search”, in Proceedings of the 8th UK Mechatronics Forum International
Conference (Mechatronics 2002), pp. 480–488, June 2002.

[72] WAHDE, M. and SANDHOLT, H., “Evolution of complex behaviors on au-
tonomous robots”, in Proceedings of the 7th UK Mechatronics Forum Inter-
national Conference, (Oxford), Pergamon Press, 2000.

Bibliography 73

[73] WATSON, R. A., FICICI, S. G., and POLLACK, J. B., “Embodied evolu-
tion: Embodying an evolutionary algorithm in a population of robots”, in
Proceedings of the Congress on Evolutionary Computation, vol. 1, pp. 335–
342, IEEE Press, 1999.

[74] WATSON, R. A., HORNBY, G. S., and POLLACK, J. B., “Modeling
building-block interdependency”, in Parallel Problem Solving from Nature
– PPSN V, (Berlin), pp. 97–106, 1998.

[75] WOLFF, K. and NORDIN, P., “Evolution of efficient gait with humanoids
using visual feedback”, in Proceedings of the IEEE-RAS International Con-
ference on Humanoid Robots, (Tokyo, Japan), pp. 99–106, November 2001.

[76] YAO, X., “Evolving artificial neural networks”, Proceedings of the IEEE,
vol. 87, pp. 1423–1447, September 1999.

[77] ZEHR, E. P. and DUYSENS, J., “Regulation of arm and leg movement dur-
ing human locomotion”, The Neuroscientist, vol. 10, no. 4, pp. 347–361,
2004.

Paper I

A flexible evolutionary method for the generation

and implementation of behaviors for humanoid

robots

in

Proceedings of the IEEE-RAS International Conference on Humanoid Robots
(Humanoids 2001), Tokyo, Japan, November 2001, pp. 279–286.

A flexible evolutionary method for the generation and
implementation of behaviors for humanoid robots

Jimmy Pettersson, Hans Sandholt, Mattias Wahde

Division of Mechatronics, Chalmers University of Technology,
412 96 Göteborg, Sweden�

jimmy.pettersson, hans.sandholt, mattias.wahde � @me.chalmers.se

Abstract

A flexible method for generating behaviors for
bipedal robots is presented and applied to the case
of motor behaviors. The method is biologically in-
spired and is based on evolutionary algorithms in
connection with generalized finite state machines
(FSMs). The evolutionary process acts directly on
the FSMs and optimizes both their parameters and
their structure.

In this method, only a rough indication of the de-
sired behavior needs to be specified as an initial con-
dition to the evolutionary algorithm, which then per-
forms further optimization of the behavior.

We apply the method to two test cases, namely
energy optimization and robust balancing. It is
found that the method performs very well in both
cases, and that its ability to modify the structure of
the FSMs is very useful. In the case of energy opti-
mization, the walking length for a given amount of
energy is improved by 134 %.

Keywords: bipedal robots, evolutionary robotics,
behavior–based robotics

1. Introduction

During the early decades of the 21st century, it is
expected that humanoid robots will come to play an
increasingly important role, both in industries and
as household robots. However, in order for this
to happen, the robots will need to become much
more complex than today, and the development of
such robots presents a formidable challenge to re-
searchers and engineers. As the complexity of hu-
manoid robots increases, there will be a strong need
for a flexible and versatile representation for motor
behaviors (and other behaviors) [9]. In addition to
a flexible representation, an efficient optimization
method for generating robust and energy-optimal
motor behaviors will also be needed.

The development of a representation and the

choice of an optimization method are difficult prob-
lems. However, the fact that the systems that are
being generated – humanoid robots – are modelled
on biological systems – humans – indicates that it
would be wise to consider optimization methods
inspired by biological considerations, such as e.g.
evolutionary algorithms.

The application of evolutionary computation to
robotics has given rise to the very active research
field of evolutionary robotics [12]. The use of evo-
lutionary methods to the case of bipedal robots has
mainly been restricted to parameteric optimization
within a pre-specified structure (see e.g. [1], [3],
[4], and [6]). Notable exceptions are provided by
Arakawa and Fukuda [1], who allowed a certain
flexibility in the representation of the control sys-
tem and Paul and Bongard [13], who allowed the
morphology of the bipedal robot to vary.

The aim of this paper is to introduce a flexible
and general method for the construction of robotic
behaviors. We will describe the representation of
the behaviors, and also show how evolutionary op-
timization can be applied successfully to this repre-
sentation, optimizing not only the parameters of the
system but also its structure. While the focus of the
paper is on the description of the method as such, we
will also present some early results obtained with
this method.

2. The robot

For our simulations, we have used a five-link robot,
constrained to move in the sagittal plane. The robot
has five degrees of freedom: torques can be applied
at both knee joints and at both hip joints. In addi-
tion, a fifth actuator controls the posture of the upper
body. The lengths of the leg links have been based
on the corresponding values for a 1.5 m tall human.

The structure of our robot, which is shown in Fig.
1 is similar to that earlier used by e.g. Cheng and Lin
[3] and Mitobe et al. [10]. While this robot model
is perhaps somewhat simplistic, it is still sufficient

Proceedings of the IEEE-RAS International Conference on Humanoid Robots
Copyright c

�
2001

PSfrag replacements

���
��� ���

���

���

	

Figure 1: Configuration of the bipedal walking
robot.

for the purposes of demonstrating the feasibility of
our method for representing behaviors for bipedal
robots. We have used a lagrangian formulation for
the equations of motion (see e.g. [11], Ch.4), which
take the form������������������������������������� ��!#" $�%'&(�

(1)

where
�

is the generalized inertia matrix,
�

con-
tains centrifugal and Coriolis terms,

�
contains

gravity terms,
!

is the constraint matrix and
$

the
corresponding Lagrange multipliers, and

&
contains

the generalized forces. The derivation of the vari-
ous matrices and vectors is straightforward, and thus
will not be given here. The generalized coordinate
vector

�
is given by�)%+* ,.-/�101010��2,435� 	 �
�6 " � (2)

where the angular variables
,7-/�101010��2,43

determine
the orientation of the limbs (see Fig.1), and 	 �
 are
the coordinates for one foot (i.e. the tip of a leg) of
the robot.

The vector of generalized forces
&

is related to
the torques T applied at the five joints through the
transformation

&8%'9;:
, where

9<%
=>>>>>>>>
?

1 0 0 0 0 0 0
-1 1 0 0 0 0 0
0 0 1 -1 0 0 0
0 0 0 1 0 0 0
0 -1 1 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

@1AAAAAAAA
B

(3)

The constraint matrix
!

varies in size and structure
depending on the number of feet (0, 1, or 2) that are
in contact with the ground [7].

Lagrange’s equation for impulsive motion is used
to model ground impacts and perturbations and is
stated as C�DC ��FEEEE G�HJI

C�DC ��FEEEE GLK
%NMO �

(4)

where PRQ and PTS denote the instants immediately
after and immediately before the impulse, respec-
tively,

MO
is the vector of generalized impulses, and

T is the kinetic energy of the system. Using the fact
that the generalized inertia matrix (M) is symmet-
ric, the generalized momenta can be expressed as:
C�DVU/C ��W%X�Y��

, which, when inserted into Eq. (4),
gives the generalized postimpact velocities as�� Q %'� S - MO �J�� S 0

(5)

3. The method

The implementation of motor behaviors (and other
behaviors) in robots consists of two parts which will
now be introduced: an architecture for storing the
behaviors of the robot, and a method for obtaining
the behaviors that are to be implemented.

3.1 The representation

While this paper will deal exclusively with bipedal
motor behaviors, the ultimate goal of this work is to
arrive at a method which is sufficiently general to be
able to accomodate not only bipedal gaits but also
other aspects of the behavior of a robot1, such as
the ability to avoid obstacles, grip objects etc. Thus,
an architecture which can only hold fully specified
reference trajectories for bipedal gaits will not be
sufficient.

Instead, we have chosen to use an architecture
based on (generalized) finite state machines (FSMs).
FSMs have the advantage of allowing combina-
tion of several behaviors into a complete behavioral
repertoire [14], and they have often been used in
connection with behavior-based robotics [2]. Fur-
thermore, a system based on FSMs is generally
transparent and easy to interpret.

A standard FSM consists, as the name implies, of
a finite number of states and conditional transitions
between those states. Furthermore, the allowed set
of actions is usually chosen from a finite alphabet.
The FSMs introduced in this paper are slightly dif-
ferent. First, each state in an FSM is here associated
with a set of variables specific to that state, whereas
in a standard FSM, the variables are associated with
the transitions between states. In addition, we use

1For this reason, we will use the term robotic brain for the
computer program that determines the actions of the robot, rather
than the term control system. The latter term would indicate a
more limited representation employing classical control theory.

Proceedings of the IEEE-RAS International Conference on Humanoid Robots
Copyright c

�
2001

F

F

T

T

PSfrag replacements

	�� - � 	��� � 	���	��� � 	�� 3
	����- � 	����� � 	�����	����� � 	����3

���
	 � -

���
	 ���-

Figure 2: A simple two-state FSM, with five state
variables and one transition condition per state. The
arrows indicate the direction of signal flow. If
the condition under consideration is true, the cor-
responding arrow marked with a T is followed. If
instead the condition is false, the arrow marked with
an F is followed.

continuous variables rather than a discrete alphabet.
Each state has a number of conditional transitions,
each with a specified target state.

A simple, generic, example of a two-state FSM
is shown in Fig. 2. In this FSM both states contain
the values of five variables (which may, for example,
represent the reference angles for a given posture for
the five–link bipedal robot). From the first state, the
FSM can jump to the second state if the condition���	 � - is fulfilled. Note that the variables

�
(of

which only one was introduced in Fig. 2) defining
the transition conditions need not be the same as the
variables 	��� specified in the states � . In this case, the
condition variable

�
may, for instance, measure the

deviation between the actual posture of the robot,
and the posture specified in the active state. If the
deviation is sufficiently small, the robot may pro-
ceed to the second state etc.

If no condition is fulfilled, the FSM remains in
the same state, as indicated in Fig. 2 by the links
emanating on the right hand side of the transition
conditions. Note that, in subsequent figures, these
links are not explicitly shown.

The number of transition conditions, as well as
the number of variables defining the conditions, may
vary from state to state. In cases where there is more
than one transition condition associated with a state,
the conditions are checked in order from left to right,
so that the leftmost condition has the highest prior-
ity, since it is always checked.

3.2 The evolutionary algorithm

Evolutionary algorithms constitute, in our opinion, a
natural choice for the generation of motor behaviors
and other behaviors for autonomous robots in gen-

eral, and bipedal robots in particular. After all, it is
known that evolution is capable of generating highly
complex structures in nature, and that evolutionary
algorithms, which are based on natural evolution,
often prove to be highly efficient in problems involv-
ing large and complicated search spaces. Clearly,
the construction of robotic motor behaviors, which
is the subject of this paper, is indeed a problem in-
volving a very large search space.

The most commonly used type of evolutionary al-
gorithm is the genetic algorithm (GA) [8]. Most of
the work to date on evolutionary algorithms in con-
nection with bipedal robots has been based on GAs
([1], [3], [4], and [6]). However, standard genetic al-
gorithms may not the best choice from the point of
view of the construction of robotic brains. A stan-
dard GA is useful when carrying out parametric op-
timization, where the parameters of the system un-
der study easily can be coded into a string of digits.

However, we wish to go beyond parametric opti-
mization, and optimize not only the parameters but
also the structure of the robotic brain. Thus, a more
flexible scheme is required. The use of evolution-
ary algorithms in connection with FSMs, known as
evolutionary programming, was pioneered by Fo-
gel (see e.g. [5]). In evolutionary programming,
the evolutionary process acts directly on the FSMs,
by optimizing both the parameters of the FSMs and
their structure, e.g. the number of states and transi-
tion conditions.

Our method is an adaptation of evolutionary pro-
gramming to the case of generalized FSMs as de-
scribed above, and it includes both crossover and
mutation operators, by contrast with the original
form of evolutionary programming which only used
mutation operators.

Briefly, the process operates as follows: A fitness
measure is specified before the simulation. An ex-
ample of a fitness measure suitable for bipedal loco-
motion is given by the distance covered by the robot
as it uses up a pre-specified amount of energy. In the
beginning of a simulation, a population of random
FSMs is generated. Normally, the initial population
consists of rather simple FSMs. Then, all individu-
als in the population are evaluated, and each individ-
ual obtains a fitness value based on its performance.

The following sequence is then repeated until a
satisfactory solution has been found: two individ-
uals are selected from the population using tourna-
ment selection. Then, two offspring are formed by
the procedures of crossover and mutation outlined
below. The two new individuals are then inserted
into the population, replacing the two worst individ-
uals. Finally the two new individuals are evaluated,
and the procedure is repeated again.

Proceedings of the IEEE-RAS International Conference on Humanoid Robots
Copyright c

�
2001

I II

III IV

V

Figure 3: Structural mutations: I) Insert state: inserts a state with one transition condition, whose variables
are defined as the average of the variables in the two adjacent states, II) Delete state: simply removes a state,
III) Add prioritized state: adds, to an already present state, a transition (with top priority) to a new state. The
variables of the new state are taken as slight mutations of the variables in the state to which the new transition was
added, IV) Add transition condition: adds a transition condition (with lowest priority) to a state, and, V) Delete
transition condition: deletes the transition condition with lowest priority for a given state. Note that, for clarity,
the transitions are not explicitly shown (except one transition in case III) in this figure.

3.2.1 Crossover

Combination of material from different individu-
als is an important part of evolutionary algorithms.
Crossover is easy to implement in a standard GA,
but somewhat more difficult in our case, in which
the structures to be crossed are more complicated
than the strings used in GAs. We have chosen to in-
troduce a crossover procedure which simply swaps
two selected states between two FSMs. The pro-
cedure begins by the selection of one state in each
of the FSMs that are to be crossed. Next, the
states with their transition conditions are swapped
between the FSMs, forming two new FSMs. As a
final step, it is checked that the targets for the con-
ditional jumps are consistent, i.e. that no condi-
tion generates a jump to a non-existent state (which
may occur if the FSMs contain different numbers of
states). If an inconsistent jump is detected, the target
is arbitrarily set to state 1. This does not imply a sig-
nificant restriction, since subsequent mutations can
change the transition target to any of the available
states.

3.2.2 Mutations

Two kinds of mutations are used: parametric muta-
tions, which modify the value of any parameter in
the FSM by a small, random amount, and structural
mutations which modify the structure of the FSMs.
The structural mutations, which are needed in order
to arrive at the desired flexibility, are illustrated in
Fig. 3.

3.3 The simulation program

The generalized FSM representation and the evo-
lutionary algorithm described above have been im-
plemented in a computer program written in Delphi
Object-oriented Pascal. The program is fully object-
oriented, so that the data structures, e.g. the FSMs,
are flexible and can be of arbitrary size and com-
plexity. Thus, the program permits an open-ended
evolutionary process that can lead to very complex
structures.

At the outset of a simulation, the user provides a
set of parameters, such as link lengths and masses
(for the robot), the fitness measure, initial structural
parameters for the FSMs (e.g. the number of states)
as well as ranges for the parameters (variables and
transition conditions) defining the states. Parame-
ters related to the simulation of a single individual,
such as e.g. the length of the time steps for the nu-
merical integration of the equations of motion, must
also be specified. Furthermore, it is possible to pro-
vide limits on the joint torques and their first deriva-
tive with respect to time.

The user may also choose between two different
types of initial FSMs, linear FSMs, in which each
state � has a single transition condition whose tar-
get is state �

���
, except for the last state, for which

the target of the transition condition is state 1, and
general FSMs, with a completely arbitrary structure.
The linear FSMs are useful for generating cyclic be-
haviors, such as a step sequence, whereas the more
flexible general FSMs are needed e.g. to cope with
perturbations during a step or other non-cyclic mo-
tor behaviors. Note that the specification of an FSM

Proceedings of the IEEE-RAS International Conference on Humanoid Robots
Copyright c

�
2001

5000 15000 25000 35000
Evaluated individuals

2

2.5

3

3.5

4

4.5
M
a
x
i
m
u
m

F
i
t
n
e
s
s

Figure 4: Fitness of the best individual as a function
of the number of individuals for test case 1 (energy
optimization).

type only relates to the initial population. The evo-
lutionary process has full freedom to add and delete
states, as outlined above, should the need arise.

In keeping with the aim of developing a suffi-
ciently flexible representation that can hold differ-
ent kinds of behaviors, great care has been taken
to make the data structures for the FSMs as gen-
eral as possible. Thus, an FSM can consist of states
of many different types (i.e.with different variables
defining the states), and with various transition con-
ditions of, in principle, any form.

However, here we are concerned with motor be-
haviors, and we have therefore used a specific kind
of FSM, the components of which will now briefly
be described.

FSM states In any state of the FSMs used here,
the requested torque at joint � is given by

�������� %	��
� ��, �
I
, ����� �������� �, � ������ (6)

where
�
� ,

, ����� ,
� �� , and

� �� are constants. Thus,
for the representation of motor behaviors, each FSM
state holds a set of 20 variables (4 for each link).
Since we, for realism, normally impose limits on
the torque derivatives, the actual torque delivered at
a joint is not always equal to the requested torque.
In most situations, however, the actual torque ap-
proaches the requested torque within a few time
steps.

Transition conditions For each state � , there are� � transition conditions which, in this case, take the
form

� � � � � * ��� 6 	�� �������! #"%$�&'�(��)#�+*-,�./�0�1� (7)

where
*
Op 6 denotes one of the operators

�
and

�
,	��

is a constant, specific to transition condition 1 ,
and the target is any state in the FSM (cf. Fig. 2).

Early FSM Best FSM
Energy used (J) 500 500
Length walked (m) 1.77 4.15
Total time (s) 2.56 4.11
Average speed (m/s) 0.69 1.01

Table 1: A comparison between the first individual
that managed to walk (left) and the best individual,
in test case 1.

1

2

3

4

56

7

8

Figure 5: Structure of the best FSM obtained in test
case 1 (energy optimization).

The variables
� � can be choosen freely. In this ap-

plication, we have chosen to use six condition vari-
ables, namely

� � %', �
I
, ����� � � % �5�101010��+2 � (8)

and

�43�% 5667 �2
38
� 9 - ��, � I

, ����� � � 0
(9)

4. Results

In order to test the efficiency of both the represen-
tation and the evolutionary algorithm, a number of
runs of the simulation program have been made.
Two specific applications have been used as test
cases, namely the generation of smooth and energy-
efficient bipedal gaits, and the construction of robust
balancing in the presence of perturbations.

4.1 Test case 1: Energy optimization

For any autonomous robot that carries its own en-
ergy source (e.g.batteries), it is clearly of paramount
importance to move with as little use of energy as
possible. In nature, evolution has optimized hu-
man walking (and, in general, animal locomotion),
to make it very energy efficient. While we do apply

Proceedings of the IEEE-RAS International Conference on Humanoid Robots
Copyright c

�
2001

1 2 3 4

−0.6

−0.4

−0.2

0
PSfrag replacements

, � � P �
A

ng
le

(r
ad

ia
ns

)

Time (s)Height (m) 1 2 3 4

−0.6

−0.4

−0.2

0PSfrag replacements

, � � P �

A
ng

le
(r

ad
ia

ns
)

Time (s)Height (m)

1 2 3 4

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

PSfrag replacements

,435� P �

A
ng

le
(r

ad
ia

ns
)

Time (s)Height (m) 1 2 3 4
0

0.02

0.04

0.06

0.08

PSfrag replacements

 � P �

Angle (radians)

Time (s)

H
ei

gh
t(

m
)

Figure 6: Energy optimization. Each plot shows the variation with time of one generalized coordinate for the
first FSM that was able to make the robot walk (dashed) and the best FSM in the run (solid). Only some of the 7
generalized coordinates are shown in this figure.

artificial evolution to optimize the gait of our sim-
ulated robot, it should be pointed out that our opti-
mization problem differs from the optimization car-
ried out by natural evolution. In our case, the con-
figuration of the robot, i.e. its bipedal nature and its
structure with five links of given length and mass,
are given whereas in natural optimization both the
structure of the animal and its method of locomo-
tion are optimized. However we do, as described
above, allow a considerable freedom concerning the
structure of the brain of the robot.

For the energy optimization runs, the fitness mea-
sure was chosen as the length walked by the robot
until it had used an energy of 500 J. By using this fit-
ness measure, energy optimization is obtained with-
out explicitly having to include the energy usage in
the fitness measure in an ad hoc fashion. In order to
prevent the robot from walking very slowly, a time
limit of 6 simulated seconds was introduced as well.

The population size was set to 400, and the struc-
tural and parametric mutation rates were set to 0.02
and 0.03, respectively. The crossover probability
was equal to 0.10. The time step length was 0.005
seconds. Furthermore, limits were set on the max-
imum torque delivered at the joints (200 Nm), as
well as the maximum rate of change of the torques
(3000 Nm/s).

One of the main purposes with our method is

to allow for the possibility of specifying, in a very
loose sense, a sequence of motions, which will then
be further optimized by evolution. In the develop-
ment of energy-optimized gaits, we therefore spec-
ified only 8 reference states, 4 for the step with the
left foot, and 4 for the right step.

The reference angles were set so as to generate a
very rough representation of the two steps. The pro-
portional and derivative constants were given ran-
dom values centered on -250 Nm for the propor-
tional constants and -15 Nms for the derivative con-
stants. The

� �� parameters were given random val-
ues in the range

*
I
����� ��� 6 Nm. The initial popula-

tion consisted of linear FSMs (see Sect. 3.3).
In the beginning of the run, it was clear that the

initial specification of the motion was much to rough
to generate smooth walking: the few robots that
managed to walk at all, stumbled forward in a very
inefficient manner. Many robots used up their 500 J
without getting anywhere. However, the optimiza-
tion algorithm very quickly began to improve the
gait, and the length walked by the robot increased
considerably, from 1.77 m early in the run, to 4.15
m at the end, as shown in Fig. 4 and Table 1.

The total number of states of the best FSM at the
end of the run was also equal to 8. However, this was
in no way enforced. Indeed, during the run, several
of the best FSMs that appeared used more than 8

Proceedings of the IEEE-RAS International Conference on Humanoid Robots
Copyright c

�
2001

states. The 8 states of the final FSM were totally
different from the states specified in the beginning
of the run.

Furthermore, the evolutionary optimization
method was able to improve the structure of the
FSM. Clearly, a cyclic sequence of states is con-
venient when walking at full speed. However, the
robot starts from rest, and thus the very first part of
the motion differs from the rest. This was indeed
exploited: the structure of the best FSM at the end
of the run contained one state that was used only to
get the robot started, and 7 states that were used in
a cyclic fashion for the continued motion, as shown
in Fig. 5.

Finally, we note that the bipedal gait generated by
the best FSM in the run was very smooth (see Fig.
6) and symmetric compared to the FSMs obtained
early in the run, despite the fact that symmetry was
not explicitly required.

4.2 Test case 2: Robustness

A bipedal robot moving in an unstructured environ-
ment, such as e.g. a busy street or a hospital, will in-
variably find itself in situations where it cannot rely
on prespecified reference trajectories. For example,
the robot may encounter an unexpected moving ob-
stacle, or it may lose its balance due to an external
perturbation or simply a bump in the ground. Thus,
for such robots to be useful, they must be able to
cope with unexpected situations. As a simple ex-
ample, and as a test of our method, we have con-
sidered the following case: Assume that a bipedal
robot is about to begin climbing some stairs, and
as it lifts the front leg, it is perturbed. A sequence
of three point perturbations, modeled as impulsive
forces, are applied. The generalized velocities after
each perturbation are computed using Eq. (5). The
first perturbation is applied on the thigh of the sup-
porting leg, the second on the upper body, and the
third on the lower part of the lifted leg, as shown in
the right panel of Fig. 7.

At the start of each simulation, the robot was
placed with both feet on the ground, and the FSM
of the robot contained a single state which made it
lift the front leg. The fitness measure was defined
simply as the inverse of the integrated total devia-
tion between a desired position, with one leg lifted
as shown in Fig. 7, and the actual position of the
robot. The total deviation was computed as the root
mean square of the deviation of each generalized co-
ordinate. The fitness computation began after 0.6
s, giving the robot some time to reach the desired
position from its starting position. Each simulation
lasted for the equivalent of 3.6 s, and the three per-
turbations were applied after 0.8 s (perturbation � ,
see Fig. 7), 1.4 s (

�
), and 2.0 s (�), respectively. The

PSfrag replacements

b
a
c

PSfrag replacements

b

a

c

Figure 7: Starting posture (left) and desired posture
for the robot in test case 2. The arrows indicate the
magnitudes, directions, and points of application of
the perturbations.

2
1

1

Figure 8: Initial (left) and final structure of the
FSMs from test case 2. The added state helps the
robot cope with the perturbations.

simulated robots were given a maximum of 500 J of
energy to lift the leg and to handle the perturbations.
The parameters of the evolutionary algorithm were
the same as in test case 1 (see Sect. 4.1).

While the initial FSMs generally had severe dif-
ficulties in keeping the robot upright, FSMs capa-
ble of doing so appeared fairly quickly as a result of
the optimization. More interestingly, the final FSM
obtained from this run had undergone a structural
mutation in which an additional state was added to
cope with the perturbation. A schematic view of the
structure of the initial FSMs and the best FSM ob-
tained is shown in Fig. 8.

5. Discussion and Conclusion

In this paper, we have introduced a method for the
generation of motor behaviors in bipedal robots.
With our procedure, it is sufficient to provide the op-
timization algorithm with a rough indication of the
desired motor behavior (rather than a complete tra-
jectory specification), and then allow the algorithm
to optimize it.

Ideally, it should be possible to generate a bipedal
gait, or some other motor behavior, without specify-
ing even a rough set of reference values. However,
if no specification is made at all, it is not evident
that a human-like gait will result. For instance, the
evolutionary process may select a bird-like gait in-
stead. Thus, some guidance should be given to the
optimization algorithm, for instance in the form of a
few reference positions as in our method.

Proceedings of the IEEE-RAS International Conference on Humanoid Robots
Copyright c

�
2001

It is obvious that for bipedal robots to be useful,
they must be able to cope with unstructured and un-
predictable environments. Our procedure may be
useful in the construction of such robots, chiefly be-
cause of the structural flexibility of the correspond-
ing robotic brains and the fact that the optimization
method proceeds with a minimum of bias.

We believe that the ability to optimize the struc-
ture of the robotic brain, in addition to its param-
eters, is of great importance, and allows a kind of
open-ended evolutionary process, which can pro-
duce structures that are much more complex than
those initially specified. A possible indication sup-
porting this hypothesis is the fact that the fitness
values continued to increase during the full extent
of the runs, rather than reaching a plateau quickly,
as is often the case in evolutionary algorithms. A
stronger indication is derived from the fact that the
possibility to modify the structure of the FSMs was
exploited in both of the test cases considered here.
Thus, even though it probably would be possible, at
least for simple gaits, to specify a useful FSM by
other means (or even by hand), it has been our pol-
icy to give the evolutionary optimization method as
much freedom as possible.

The two test cases also showed that consider-
able improvements could be obtained in a reason-
able amount of time. In the case of energy opti-
mization, a 134% improvement in walking length
was obtained in a run that lasted approximately 28
hours on an 800 MHz pentium III computer.

The results presented here are, to a great extent,
preliminary, and further experiments are underway
to test the procedure in more challenging situations.
The aim is to develop a full behavioral repertoire for
bipedal locomotion using the procedure described
in this paper, and to combine these behaviors us-
ing e.g. the method for evolutionary combination of
separate behaviors described by Wahde and Sand-
holt [14]. Furthermore, we plan to implement the re-
sulting robotic behaviors in the bipedal robot which
is currently under development in our group.

References

[1] T. Arakawa and T. Fukuda, Natural Motion
Trajectory Generation of Biped Locomotion
Robot using Genetic Algorithm through En-
ergy Optimization. In: Proc. of the 1996 IEEE
International Conference on Systems, Man
and Cybernetics, pp. 1495-1500, 1996

[2] R.C. Arkin, Behavior-based robotics, MIT
Press, Cambridge, MA, 1998

[3] M.-Y. Cheng and C.-S. Lin, Genetic Algorithm
for Control Design of Biped Locomotion. In:

Proc. of the 1995 IEEE International Confer-
ence on Systems, Man and Cybernetics, pp.
1315-1320, 1995

[4] S.-H. Choi, Y.-H. Choi, and J.-G. Kim, Op-
timal Walking Trajectory Generation for a
Biped Robot Using Genetic Algorithm. In:
Proc. of the 1999 IEEE/RSJ International
Conference on Intelligent Robots and Systems,
pp. 1456-1461, 1999

[5] L. Fogel, Intelligence through simulated evo-
lution, Wiley, NY, 1999

[6] T. Fukuda, Y. Komata, and T. Arakawa, Sta-
bilization Control of Biped Locomotion Robot
based Learning with GAs having Self-adaptive
Mutation and Recurrent Neural Networks. In:
Proc. of the 1997 IEEE International Confer-
ence on Robotics and Automation, pp. 217-
222, 1997

[7] J. Furusho et al., Realization of Bounce Gait in
a Quadruped Robot with Articular-Joint-Type
Legs. In: In: Proc. of the 1995 IEEE Inter-
national Conference on Robotics and Automa-
tion, pp. 697-702, 1995

[8] J.H. Holland, Adaptation in Natural and Arti-
ficial Systems, 1st ed. University of Michigan
Press, Ann Arbor; 2nd ed. MIT Press, Cam-
bridge, MA, 1992

[9] F. Kanehiro et al., Developmental Methodol-
ogy for Building Whole Body Humanoid Sys-
tem. In: Proc. of the 1999 IEEE/RSJ Inter-
national Conference on Intelligent Robots and
Systems, pp. 1210-1215, 1999

[10] K. Mitobe et al., Non-linear feedback control
of a biped walking robot. In: Proc. of the 1995
IEEE International Conference on Robotics
and Automation, pp. 2865-2870, 1995

[11] R.M. Murray, Z. Li, and S.S. Sastry, A Mathe-
matical Introduction to Robotic Manipulation,
CRC Press, 1994

[12] S. Nolfi and D. Floreano, Evolutionary
Robotics, MIT Press, Cambridge, MA, 2000

[13] C. Paul and J.C. Bongard, The Road Less
Travelled: Morphology in the Optimization
of Biped Robot Locomotion. In: Proc. of the
IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS2001), in press

[14] M. Wahde and H. Sandholt, Evolution of
complex behaviors on autonomous robots.
In: Proc. of Mechatronics 2000, the 7 �

�

UK Mechatronics Forum International Con-
ference, Elsevier, 2000

Proceedings of the IEEE-RAS International Conference on Humanoid Robots
Copyright c

�
2001

Paper II

EvoDyn: A simulation library for behavior-based

robotics

Technical report, Chalmers University of Technology, September 2003.

EVODYN: A SIMULATION LIBRARY

FOR BEHAVIOR-BASED ROBOTICS

Jimmy Pettersson
Div. of Mechatronics

Dept. of Machine and Vehicle Systems

Chalmers University of Technology

412 96 Göteborg, Sweden

E-mail: jimmy.pettersson@me.chalmers.se

September 2003

Contents

1 Introduction 3

2 Behavior-based robotics 5

2.1 Robotic behaviors . 6

2.2 Behavioral generation . 6

2.3 Behavioral organization . 6

3 The simulator 8

3.1 The dynamics engine . 8

3.1.1 Articulated body dynamics: The algorithm 8

3.1.2 Link description . 10

3.1.3 Modeling . 13

3.1.4 Integration method . 14

3.1.5 Contact model . 15

3.1.6 Software interfaces . 18

3.1.7 Usage . 25

3.2 Behaviors and evolutionary algorithm 28

3.2.1 Behavioral architecture 28

3.2.2 Evolutionary algorithm 30

1

2 Contents

3.2.3 Agent . 31

3.2.4 Usage . 32

Appendices 33

Appendix A Notation 33

Appendix B Transformations 35

B.1 General transformations . 38

B.2 Link transformations . 39

Appendix C Delphi and object-oriented programming 42

3

1 Introduction

This paper describes a simulation library for evolutionary generation and opti-

mization of behaviors for rigid-body-chain-type robots, such as e.g. bipedal ro-

bots. The core of the simulation library includes a rigid-body dynamics engine,

based on Featherstone’s algorithm as described in [11]. Developed in Delphi

(object-oriented Pascal), it supports tree-structured rigid body systems described

in terms of MDH parameters [4]. In addition, the library contains units for im-

plementing robotic behaviors, as well as an evolutionary algorithm (EA) for opti-

mization of such behaviors.

There exists many free simulators for rigid-body systems; examples are: (1)

ODE, a dynamics engine for real-time simulation of articulated rigid body struc-

tures based on a Lagrange multiplier method for deriving the equations of motion;

(2) BREVE, a simulation environment for decentralized systems and artificial life;

(3) AERO, a library based on a penalty method (springs and dampers) and best

suited for use in computer graphics; (4) DynaMechs, a library using the Feath-

erstone algorithm for solving the equations of motion and suitable for the sim-

ulation of tree-structured systems; (5) DANCE, a software package for dynamic

animation and control, based on (but not bounded to) the commercial package

SD/FAST; (6) ABDULA, a C++ software library for physical animation of ar-

ticulated solids. In addition to these free software packages, there are numerous

commercially available packages such as MathEngine, Vortex, Dymola, Adams,

Havok, and many more.

Most of the simulation packages mentioned above are focused on the solid-

body dynamics. This is also an important part of the package presented here

and, in particular, the minimization of computation times is the primary goal in

the implementation of the dynamics engine. The main difference between this

package and previous packages is that it includes units for robotic behaviors and

for evolutionary optimization of such behaviors. Implementation of the evolu-

tionary optimization is focused on open-ended problems, that is, including not

only parametric optimization but also structural optimization while allowing the

fitness measure to vary. Since optimal structures are not easily assigned in ad-

vance, structural optimization is an important part in the evolutionary process. In

an EA that allows structural modifications, the problem of efficient simulations is

also somewhat challenging from a programming point of view. The simulation

library described here is aimed at simplifying the implementation of evolutionary

optimization of robotic behaviors.

The next step in the continuing development of the simulation library will be

to include a general method also for the evolutionary organization of behaviors

but this has not yet been fully developed yet and is thus only briefly described

here.

4 1. Introduction

The report is organized as follows; first a very brief introduction to behavior-

based robotics, robotic behaviors, and behavioral organization will be given, fol-

lowed by a short introduction to the special case of bipedal walking robots. Next,

the actual simulator will be described in some detail, starting with the solid body

dynamics and continuing with the evolutionary optimization of behaviors.

5

2 Behavior-based robotics

The field of behavior-based robotics (BBR), which is developing at a rapid rate,

is mainly concerned with autonomous robots, which are supposed to function

in unstructured environments, where the robot often finds itself in situations not

previously encountered [1].

In BBR, there is a strong coupling between perception and reaction, where

sensors are the main source of information. Unlike classical artificial intelligence

(AI), BBR does not use explicit internal world models. Building such models

in which, for example, reference trajectories are constructed, is computationally

expensive and reduces the reactiveness of a robot.

Behavior-based robotics uses a bottom-up approach for the generation of ro-

botic brains (control systems), where complex behaviors are built by combining

several simple behaviors. Examples of such simple behaviors are; find energy

source, avoid obstacles, pursue object etc. Behaviors are often inspired by animal

behaviors as observed by ethologists [10], and are commonly generated by means

of biologically inspired computation methods.

Behaviors can be implemented using a variety of methods, ranging from clas-

sical control (e.g. PD controllers) for low-level motor behaviors to artificial neural

networks (ANNs) and finite state machines (FSMs) for complex motor behaviors

and non-motor (e.g. cognitive) behaviors.

Unlike industrial robots (manipulators), where the accuracy of the end-effector

is crucial for the applicability of the robot, autonomous robots do not require the

same amount of precision. Hence, the use of more flexible and adaptive methods

for behavior generation and implementation, such as biologically inspired meth-

ods, becomes a suitable choice.

One of the main difficulties in BBR is the organization of behaviors, i.e. how

the selection of different behaviors should be made at any given instant. Given in-

formation from relatively simple and incomplete sensors, choosing the appropriate

behavior is often extremely difficult. Many methods rely on hand-coded settings.

While useful in simple cases, such methods often lead to solutions that are not

robust [19] in more complex cases involving several behaviors. In this case, the

connection to biology is important, since even the simplest of animals are able to

make intelligent choices (behavioral selection) within their environments.

Since behaviors constitute the building blocks in BBR, solving the problem of

behavioral organization is crucial for the development of the field. It should be

noted that the research field is still very young, around 20 years, and is constantly

developing. Up until now, seemingly simple problems have been investigated, and

the current level of intelligence in autonomous robots is considered to be at the

level of insects [13].

6 2. Behavior-based robotics

2.1 Robotic behaviors

In behavior-based robotics, a behavior is a unit that produces an action based on

sensory information, and is responsible for handling a part of the robot’s overall

task. In the current version of the simulator presented here, focus is mainly on

robotic motor behaviors, i.e. behaviors that produce torques or forces used for

moving a robot or a part of it.

For robots that are intended to move in controlled environments, such as e.g.

a work cell in a factory, motor behaviors based solely on pre-defined reference

trajectories are suitable. However, autonomous robots require the use of more

adaptive systems in order to function in unstructured environments full of uncer-

tainties.

Examples of representations that are useful in the implementation of such sys-

tems are ANNs, generalized finite state machines (GFSMs), and fuzzy logic con-

trollers (FLCs).

In contrast to ANNs, both GFSMs and FLCs are representations which are

easy to interpret. When using biologically inspired computation methods, such as

evolutionary algorithms, interpretability of the final result might be an important

factor, and even more so in the case of open-ended problems, where not only the

parameters are modified but also the structure. On the other hand, ANNs have

several other useful features, such as graceful degradation in the case of neuron

loss and the ability to generalize to situations not previously encountered.

2.2 Behavioral generation

Basic behaviors, such as avoid obstacle, find energy source, follow target, etc. can

be generated in a number of different ways. The simplest types of behaviors can

be implemented by hand, whereas more complex types of behaviors can be gen-

erated by means of, for instance, an evolutionary algorithm. Other methods for

behavior generation includes reinforcement learning, which is based on rewards

and punishments, neural networks, where learning is achieved through changes

in the synaptic weights, and fuzzy control, which is a rule-based system (see [1]

and references therein for more detailed information).

2.3 Behavioral organization

Assuming that there exists a repertoire of behaviors; how to select the most ap-

propriate behavior at any given instant is a difficult problem.

For obvious reasons, the importance of a certain behavior will vary with time.

The robotic brain must, at any given instant in time, choose the most suitable

behavior in order to perform the task it was designed for.

2.3. Behavioral organization 7

Several methods have been proposed for behavioral organization, including

the subsumption method [3], in which a layered type of control is used, giving

the behaviors different priority, Distributed Architecture for Mobile Navigation

(DAMN) [18] in which behavioral selection is based on a voting system. Other

methods include activation networks [9], potential fields [7], and fuzzy com-

mand fusion [15]. For a review of behavioral organization, see e.g. [1] and [14].

In this simulation package only a very simple behavioral selection mecha-

nism is implemented. Since the package is oriented towards biologically inspired

computation methods, similiar inspirations has guided the choice of method in

the behavioral selection mechanism, which is based on the recently developed

utility function method [19]. In this method, each behavior is assigned a (time-

varying) utility value, which is determined based on sensory input and internal

signals within the brain of the robot. At all times, the behavior associated with

the highest utility value is selected for activation. Thus, the behavioral selection is

completely determined by the shapes of the utility functions, which are optimized

through artificial evolution.

8 3. The simulator

3 The simulator

The simulation library consists of a dynamics engine, using the Featherstone al-

gorithm for solving the equations of motion of tree-structured rigid body systems,

a generic implementation of an evolutionary algorithm, and basic implementation

of a behavioral selection mechanism.

Implemented in object-oriented Pascal, the library can be used in many differ-

ent operating systems. The development of the library was done in the Delphi [2],

an excellent environment for rapid application development, which is capable of

producing fast executables.

This section starts with the description of the implemented dynamics engine

and then proceeds by describing the parts related to behaviors and the evolutionary

algorithm included in the simulation library. At the end of the section, the public

interfaces of the different classes are listed.

3.1 The dynamics engine

3.1.1 Articulated body dynamics: The algorithm

The algorithm used here scales linearly with the number of degrees of freedom.

Thus, each serial chain has a computational cost ofO(N), where N is the number

of degrees of freedom of the chain. These algorithms are often referred to as

articulated body (AB) methods. Another group of algorithms commonly used

are called composite rigid body (CRB) methods [20] and these methods have a

computational cost of O(N3). However, when N is small the CRB methods are

more efficient than the AB method.

The AB dynamics algorithm is recursively formulated and can be divided into

three basic parts:

1. Forward kinematics (outboard recursion)

Computation of velocities and velocity dependent terms.

2. Backward dynamics (inboard recursion)

Computation of articulated body inertia and bias forces (contact forces and

applied torques).

3. Forward accelerations (outboard recursion)

Computation of joint and link accelerations.

For a single serial chain with a fixed base, the three recursions in the AB dy-

namics algorithm are shown in Algorithm 1, Algorithm 2, and Algorithm 3. (See

Appendix A for a description of the notation used.)

3.1. The dynamics engine 9

Algorithm 1 Forward Kinematics

Require: ω0 = 0, iRi−1,
i−1pi, q̇i

for i = 1 to NumberOfLinks do

ωi = iRi−1ωi−1 + σiq̇iẑ (1)

ζi =

[
0

iRi−1[ωi−1 × (ωi−1 ×
i−1pi)]

]

+

[
σi(ωi × q̇iẑi)
σ̄i(2ωi × q̇iẑi)

]

(2)

βi =

[
ωi × Īiωi

ωi × (ωi × hi)

]

(3)

end for

Algorithm 2 Backward Dynamics

Require: τi, I?
N = IN ,β?

N = βN − N+1XT

N fN+1

for i = NumberOfLinks to 1 do

ni = I?
i φi (4)

m?
i = φT

i I?
i φi (5)

Ni = I?
i − ni(m

?
i)
−1nT

i (6)

τ ?
i = τi + φT

i β?
i (7)

I?
i−1 = Ii−1 + iXT

i−1Ni
iXi−1 (8)

β?
i−1 = βi−1 + iXT

i−1

[
β?

i − Niζi − ni(m
?
i)
−1τ ?

i

]
(9)

end for

Algorithm 3 Forward Accelerations

Require: a′0 = [0T − 0aT
g]T

for i = 1 to NumberOfLinks do

āi = iXi−1a
′
i−1 + ζi (10)

q̈i = (m?
i)
−1τ ?

i −
[
ni(m

?
i)
−1

]T
āi (11)

a′i = āi + φiq̈i (12)

end for

10 3. The simulator

Frame {i}

Frame {i− 1}

Link i

Link i− 1

Axis i

Axis (i− 1)

ai
αi

di

θi

Figure 1: Definition of link frames and link parameters.

3.1.2 Link description

Using the recursive method presented in this report it is convenient to describe

the relations between successive coordinate frames using only four parameters.

This is possible since every joint in the tree-structured system only introduces one

extra degree of freedom. The parameters needed are two offsets and two rotations

(a, α, d, θ) and are commonly called the Denavit-Hartenberg (DH) parameters,

named after their inventors. Depending on how successive frames are enumerated,

they are sometimes called the modified Denavit-Hartenberg (MDH) parameters

[4].

The assignment of link frames can be done in a number of ways and there is

(usually) nothing unique about a certain configuration. For instance, when align-

ing the Ẑ-axis of a link’s frame with the joint axis, the direction of Ẑ may be

chosen arbitrarily. When faced with multiple choices one (generally) choose the

3.1. The dynamics engine 11

Ẑi−1

X̂i−1

Ẑi

X̂i

Figure 2: Link frames and their coordinate axes. The Ŷ -axis completes the right-

handed coordinate system and is not indicated since it is not involved in the link-

to-link transformations.

12 3. The simulator

placement of the link frame such that it causes as many paramaters as possible to

be zero, or simplifies the definition of the link’s inertia matrix.

�
�

�
�

A procedure for assigning link frames is proposed in [4] and is reproduced here

in a slightly modified form:

1. Identify the joint axes in the mechanism and imagine each axis as being

infinitely long.

2. Enumerate the joints from 1 to N , where index 1 refers to the joint closest

to the base of the mechanism and index N refers to the outermost joint (end

effector). Index 0 is used for the base reference frame. These indices are

later used to refer to the link frames.

3. Choose two adjacent joint axes (i and i + 1).

4. Identify the common perpendicular between axis i and i + 1. If the axes

intersect, the point of intersection is identified.

5. Assign the origin of link frame {i} to the point where the common perpen-

dicular (between joint axes i and i + 1) meets the ith joint axis. If the joint

axes intersect, place the origin of the ith link frame at the point of intersec-

tion.

6. Assign the Ẑi-axis along joint axis i. The direction may be chosen arbitrar-

ily.

7. Assign the X̂i-axis to lie along the common perpendicular, or, if the joint

axes (i and i+1) intersect, assign X̂i to be normal to the plane containing the

axes. In the case of intersecting joint axes, the direction of X̂i is arbitrary.

8. Assign the Ŷi-axis to complete the right-handed coordinate system.

9. Repeat step 3–8 until link frames {1}–{N − 1} have been assigned.

10. Assign frame {0} (base frame) and frame {N} (end effector) abitrarily, but

preferably so as to cause as many parameters as possible to become zero

(simplifies calculations).

11. Define the MDH parameters according to their definitions in (13).

�
�

�
�

Note that the procedure above does not handle cases where the mechanism con-

tains branching points. However, this can be solved by applying the above proce-

dure to each branch separately.

3.1. The dynamics engine 13

3.1.3 Modeling

In this section, the procedure of assigning link frames will be the described in

further detail. Modeling a system is basically a matter of positioning link frames

(local coordinate systems) and deriving parameters associated with them. In this

section the modified Denavit-Hartenberg (MDH) convention will be used to de-

scribe these parameters (see [4]). At the end of this section an example of the

modeling of a double pendulum is given.

Link frames are used to express parameters associated with a specific link,

e.g. rigid body inertia, position of the link’s center of mass, joint motion axis etc.

By following certain guidelines (given below) when positioning the link frames,

calculations are simplified and the computation cost will thus be reduced. When

considering links with only a single degree of freedom, the origin of a link frame

is usually placed such that one of the axes is aligned with the joint axis. This

simplifies link-to-link transformations and computations involving the joint mo-

tion axis. It is also advantageous to place the link frame in a position such that

the frame axes are coincident with the link’s center of mass and aligned with the

principal moments of inertia. This makes the spatial inertia matrix of the link di-

agonal, reducing the computation cost for the equations of motion. In this report

the frames will be positioned with the Ẑ-axis of the link frame aligned with the

joint axis. This approach is the most beneficial one from a computational point of

view.

When using the MDH convention, the Ẑi-axis of the ith link frame must be

aligned with the ith joint axis. In the case of a rotational joint, the Ẑ-axis is coin-

cident with the joint’s axis of rotation.

The link parameters used here are defined as follows (see Fig. 1):

ai = the distance from Ẑi−1 to Ẑi taken along X̂i−1

αi = the angle between Ẑi−1 and Ẑi taken about X̂i−1

di = the distance from X̂i−1 to X̂i taken along Ẑi

θi = the angle between X̂i−1 and X̂i taken about Ẑi

(13)

All angles are measured about the axes in a right-handed sense and the Ŷi-axes are

defined so as to complete the right-handed coordinate systems.

� EXAMPLE 3.1 Modeling of a double pendulum fixed in space (2 degrees of free-

dom).

(See Listing 2, p. 27 and Figure 3.)

First, the origin of the system (frame {0}) is positioned. In this case the system is placed

14 3. The simulator

Figure 3: Model (left) and physical (right) configuration of the double pendulum.

For clarity, the origins of frame {0} and frame {1} have been separated.

at the coordinate [5.0, 5.0, 10.0]T and rotated 90◦ around the y-axis, using the quater-

nion [0.0, 0.7071, 0.0, 0.7071]. The rotation is done in order to prepare for the next step:

aligning the Ẑ axis with the first joint’s axis of rotation (acc. to the specific model used).

Now, the first rotational joint is defined. In order to position frame {1} acc. to Fig. 3,

frame {0} is rotated 90◦ around the x0-axis. Thus, the MDH parameters for the first link

are [a1, α1, d1, θ1] = [0.0, 1.5708, 0.0, 0.0]. Imagining that the length of each link is three

units we can define the center of gravity for the first link to be located at [1.5, 0.0, 0.0]T

(relative to frame {1}).

Frame {2} is just an offset away from frame {1}. Hence, the MDH parameters for the

second (and last) link are defined as [a2, α2, d2, θ2] = [3.0, 0.0, 0.0, 0.0].

Having a configuration as shown in Listing 2, the double pendulum would initially be in

its stable (vertical) position. If the links should be positioned, let’s say 45◦ from the global

Z-axis, only θ1 of the first link would have to be changed to be equal to π/4 = 0.7854. ♦

3.1.4 Integration method

The method used to integrate the equations of motion was a Runge-Kutta method

with Cash-Karp parameters (see [16]). In this case a fourth order1 method was

used, with an error estimate (truncation error)2 taken as the difference between a

fourth and a fifth order approximation. This method takes a number of sampled

slopes over an interval and then uses this information to advance the solution. In

contrast with e.g. the backward Euler method, no prior behavior of the solution is

used in its propagation.

1A method is conventionally called nth order if its error term is O
(
hn+1

)
.

2Error induced by the method itself.

3.1. The dynamics engine 15

The formula for advancing the solution from time t to t + h, where h is the step

size, is

yk+1 = y + h
(

37

378
k1 + 250

621
k3 + 125

594
k4 + 512

1771
k6

)
, (14)

where the sampled slopes with Cash-Karp parameters are

k1 = f (t,y)

k2 = f
(
t + 1

5
h,y +

(
1

5
hk1

))

k3 = f
(
t + 3

10
h,y + h

(
3

40
k1 + 9

40
k2

))

k4 = f
(
t + 3

5
h,y + h

(
3

10
k1 −

9

10
k2 + 6

5
k3

))
(15)

k5 = f
(
t + h,y + h

(
−11

54
k1 + 5

2
k2 −

70

27
k3 + 35

27
k4

))

k6 = f
(
t + 7

8
h,y + h

(
1631

55216
k1 + 175

512
k2 + 575

13824
k3 + 44275

110592
k4 + 253

4096
k5

))
.

The estimate of the local truncation error is calculated as

err = h (D1k1 + D3k3 + D4k4 + D5k5 + D6k6) (16)

with the coefficients

D1 = 37

378
− 2825

27648

D3 = 250

621
− 18575

48384

D4 = 125

594
− 13525

55296

D5 = − 277

14336

D6 = 512

1771
− 1

4
.

(17)

The error estimate can be used to monitor the accuracy of the solution. In adaptive

routines, this estimate is used to control the step size. If an error estimate is above

a certain tolerance level, the step size is decreased and the solution is re-calculated,

using the new step size. It is also possible to increase the step size if the error

estimate is below a certain tolerance level.

The simulation library currently only supports a constant step size, which is

acceptable as long as the step size is taken sufficiently small. A typical step size

ranges from 0.001 to 0.01.

3.1.5 Contact model

In the current implementation of the simulation library, ground contact forces are

modeled by a spring/damper system. The model contains two pairs of spring/-

damper models, one in the normal direction of the contact point and one in the

16 3. The simulator

p

pc

r̄
δ

Figure 4: Checking for contacts.

tangent plane. This structure requires the assignment of four constants that define

the stiffness and the damping coefficients. Assuming that a contact point (r̄) is

defined with respect to a body’s coordinate system, a collision is determined by

calculating the vector δ (see Fig. 4) as

δ = (p + RTr̄)− pc , (18)

where R is the body’s orientation (rotation) matrix. If δ is negative then the two

bodies are in contact and the forces generated by the springs and dampers need to

be calculated

In order to compute the damping force, the translational velocity of the contact

point is needed. Since this contact is fixed to the current body, all that is needed is

to calculate the local velocity and then apply the current link’s rotational matrix,

transforming it from the local coordinate system to the inertial coordinate system.

The following equation yields the translational velocity of the contact point (w.r.t.

the inertial coordinate system):

vc = RT (v̄ + ω × r̄)
︸ ︷︷ ︸

v̄c

, (19)

where r̄ is the position of the contact point with respect to the link’s local coor-

dinate system (see Fig. 5) and R is the link’s orientation matrix. Note that the

rotation matrix R produces a transformation from the inertial coordinate system

to the local coordinate system.

Calculating the force in the normal direction is a simple matter of taking the

negative normal components of the spring displacement vector (δ) and the velocity

of the contact point (vc) and scaling them with their respective coefficients as

Fn = −(kn(δTn) + dn(vTn))n , (20)

where kn and dn are the coefficients in the normal direction for the spring and

damper, respectively. In order for the normal force to be valid it must have a

3.1. The dynamics engine 17

ω

v̄

r̄

Figure 5: Calculating the velocity of the body at the contact point.

magnitude greater than zero (‖Fn‖ > 0), otherwise it would correspond to the

unphysical case of objects attracting each other.

The force planar to the collision surface is calculated by multiplying the pla-

nar velocity vector and the planar displacement vector with their respective coef-

ficients: the planar damping coefficient (dp) and the planar spring coefficient (kp),

as

Fp = −(kp(δ − n(δTn)) + dp(v− n(vTn))). (21)

Once the planar and normal forces have been calculated, the contact point is

checked for sliding or sticking, i.e. whether to use the static friction coefficient

(µs) or the kinetic friction coefficient (µk). This is determined by calculating the

ratio between the magnitudes of the planar and normal force vectors as

{
if ‖Fp‖/‖Fn‖ < µk then slide,
if ‖Fp‖/‖Fn‖ > µs then stick.

(22)

If sliding is indicated by Eq. (22) then the planar force is re-calculated in order

to satisfy µk = ‖Ff‖/‖N‖, where Ff is the friction force and N is the normal

force.

F̂p =

{
‖Fn‖
‖Fp‖

µkFp if sliding

Fp if not sliding
(23)

Finally, the normal and planar force components are added and transformed

from the inertial coordinate system to the colliding body’s local coordinate system

as

F̄ = R(Fn + F̂p) . (24)

The resultant spatial force, affecting the colliding body, is then calculated as

fc =

[
r̄× F̄

F̄

]

, (25)

where the upper part of fc is the torque vector, with respect to the body’s local

coordinate system. If there are multiple contact points (at the same time), the

resultant spatial force is the sum of all contact forces.

18 3. The simulator

3.1.6 Software interfaces

In this section, the interfaces of the most important classes included in the library,

i.e. the parts that are accessible to the user (see Appendix C), are listed. Most of

the methods and variables shown in these listings are named in a self-explanatory

manner. However, in cases where they are not, a description of the method (or

variable) is given in connection with the listing. All listings are given in object-

oriented Pascal.

TABSimulation This class provides the main interface to the dynamics engine.

It supplies methods for visualizing the system, querying the contact sensors, re-

trieving link information, setting joint inputs etc.

Filename: ABSimulation.pas

Inheritance: TABSimulation = class(TObject)

Interface:
� �

1 TABSimulation = class(TObject)

2 public

3 {Public Declarations}

4 constructor Create(const AFile: string); overload;

5 constructor Create(const AStream: TStream); overload;

6 destructor Destroy; override;

7

8 procedure GetCOM(var pos: TCartesianVector);

9 procedure GetContactForces(MemberName: string; ContactIndex:

Cardinal;

10 var Fx, Fy, Fz: ABFloat);

11 function GetContactSensorValueZ(MemberName: string;

12 ContactIndex: Cardinal): ABFloat;

13 procedure GetLinkAccelerationAtPos(LinkName: string;

14 const RelativePos: TCartesianVector; var AccXYZ:

TCartesianVector);

15 procedure GetLinkCOMState(LinkName: string; var Pos, Vel:

TCartesianVector);

16 procedure GetLinkState(LinkName: string; var State:

TDynVector);

17 function GetRevLinkName(Index: Cardinal): string;

18 procedure Reset;

19 procedure Simulate;

20 procedure SimulateWithGraphics;

21 procedure SetRevJointInput(LinkName: string; Input: ABFloat)

;

22 procedure SetTransJointInput(LinkName: string; Input:

ABFloat);

23 procedure SetZeroInput;

24 procedure Terminate;

3.1. The dynamics engine 19

25 procedure UpdateContacts;

26

27 procedure DisplayAllMembers;

28 procedure DisplayContactLinkNames;

29 procedure DisplayPrismaticLinkNames;

30 procedure DisplayRevoluteLinkNames;

31

32 property ContactLinkNames: TStringList read Fcp_link_names;

33 property SimulationSteps: Cardinal read Fsteps write Fsteps;

34 property StepSize: ABFloat read Fdt write Fdt;

35 property System: TSystem read Fsystem;

36 property MaxSteps: Cardinal read Fmax_steps write Fmax_steps

;

37 property MemberNames: TStringList read Fsys_member_names;

38 property NumContacts: Cardinal read Fnum_contact_points;

39 property NumDOFs: Cardinal read Fsys_dof;

40 property NumRevoluteJoints: Cardinal read Fnum_rev_joints;

41 property NumTranslationalJoints: Cardinal read

Fnum_trans_joints;

42 property RevoluteLinkNames: TStringList read

Frev_joint_names;

43 property PrismaticLinkNames: TStringList read

Ftrans_joint_names;

44

45 property OnDoStep: TNotifyEvent read FOnDoStep write

FOnDoStep;

46 end;
� �

TDynObject This is an abstract base class (see Appendix C) common to all

objects in the simulation environment. Currently, it only stores a name for each

object.

Filename: AB_BaseObject.pas

Inheritance: TDynObject = class(TObject)

Interface:
� �

1 TDynObject = class(TObject)

2 public

3 constructor Create; virtual;

4 destructor Destroy; virtual;

5 procedure SetName(const AName: string);

6 function GetName: string;

7 property UserData[Index: integer]: TUserData read

GetUserData

8 write SetUserData;

9 end;
� �

20 3. The simulator

TEnvironment This class encapsulates everything needed for the interaction

with the environment, such as the gravity vector and height data describing the

terrain.

Filename: AB_Environment.pas

Inheritance: TEnvironment = class(TDynObject)

Interface:
� �

1 TEnvironment = class(TSystem)

2 public

3 constructor Create; override;

4 destructor Destroy; override;

5

6 procedure SetEnvironment(env: TEnvironment);

7 function GetEnvironment: TEnvironment;

8 procedure LoadTerrainData(FileName: string);

9 function GetTerrainData(var xdim, ydim: integer;

10 var spacing: ABFloat): TDynMatrix2D;

11 procedure SetGravity(const gravity: TCartesianVector);

12 procedure GetGravity(var gravity: TCartesianVector);

13 end;
� �

TForce This is an abstract base class for all instantiated force objects (external

forces). Derived classes are responsible for the implementation of all the class

methods in TForce. The method ComputeForce returns the spatial force vec-

tor defined as

f =

[
n

f

]

,

where n is the 3× 1 torque vector and f is the 3× 1 force vector.

Filename: AB_Force.pas

Inheritance: TForce = class(TDynObject)

Interface:
� �

1 TForce = class(TDynObject)

2 public

3 constructor Create; override;

4 destructor Destroy; override;

5

6 procedure ComputeForce(const val: TABForwardKinematics;

7 var force: TSpatialVector); virtual; abstract;

8 function GetNumContactPoints: Cardinal; virtual; abstract;

9 procedure GetContactForces(var force: TCartesianArray;

10 const offset: integer); virtual; abstract;

11 end;
� �

3.1. The dynamics engine 21

TMDHLink Class of links with one degree of freedom (revolute and prismatic),

specified by the modified Denavit-Hartenberg (MDH) parameters (see Fig. 1,

p. 10). This is the base class for the two kinds of single DOF link classes:

TRevoluteLink and TPrismaticLink. These two descendant classes (see

Appendix C) are responsible for implementing any abstract methods in this class.

Filename: AB_MDHLink.pas

Inheritance: TMDHLink = class(TRigidBody)

Interface:

� �

1 TMDHLink = class(TRigidBody)

2 public

3 constructor Create; override;

4 destructor Destroy; override;

5

6 procedure SetMDHParameters(a, alpha, d, theta: ABFloat);

7 procedure GetMDHParameters(var a, alpha, d, theta: ABFloat);

8 procedure SetJointLimits(min, max, spring, damper: ABFloat);

9 procedure GetJointLimits(var min, max, spring, damper:

ABFloat);

10 function GetNumDOFs: integer; override;

11 procedure SetState(const q, qd: TDynVector;

12 q_offset, qd_offset: integer); override;

13 procedure GetState(var q, qd: TDynVector;

14 q_offset, qd_offset: integer); override;

15 procedure SetJointInput(const JointInput: TDynVector;

16 const offset: integer); override;

17

18 procedure ABForwardKinematics(var q, qd: TDynVector;

19 q_offset, qd_offset: integer;

20 const inboard_link: TABForwardKinematics;

21 var current_link: TABForwardKinematics); override;

22 procedure ABBackwardDynamics(var current_link:

TABForwardKinematics;

23 const f_curr: TSpatialVector;

24 const N_curr: TSpatialTensor;

25 var f_inboard: TSpatialVector;

26 var N_inboard: TSpatialTensor); override;

27 procedure ABForwardAccelerations(const acc_inboard:

TSpatialVector;

28 var acc_current: TSpatialVector;

29 var qd, qdd: TDynVector;

30 qd_offset, qdd_offset: integer); overload; override;

31 end;
� �

22 3. The simulator

TPrismaticLink This is one of the two concrete descendants of TTransform,

i.e. implementing all parts of the inherited class (see Appendix C). It implements

the dynamics specific to a one degree of freedom translational joint. The main

reason for this class is to implement an optimized version of the spatial congru-

ence transformation of the AB inertia matrix.

Filename: AB_PrismaticLink.pas

Inheritance: TPrismaticLink = class(TMDHLink)

Interface:
� �

1 TPrismaticLink = class(TMDHLink)

2 public

3 constructor Create; override;

4 destructor Destroy; override;

5

6 procedure TransformationToInboard(const N: TSpatialTensor;

7 var I: TSpatialTensor); override;

8 end;
� �

TRevoluteLink Together with TPrismaticLink this is the second of the

two concrete descendants of TTransform. It implements the dynamics specific

to a one degree of freedom translational joint. The main reason for this class is to

implement an optimized version of the spatial congruence transformation of the

AB inertia matrix.

Filename: AB_RevoluteLink.pas

Inheritance: TRevoluteLink = class(TMDHLink)

Interface:
� �

1 TRevoluteLink = class(TMDHLink)

2 public

3 constructor Create; override;

4 destructor Destroy; override;

5

6 procedure TransformationToInboard(const N: TSpatialTensor;

7 var I: TSpatialTensor); override;

8 end;
� �

TRigidBody This class contain all the dynamic properties for rigid bodies that

are needed for the AB algorithm. Together with the class TTransform, which

implement the different transformations needed, it is equivalent to a link object.

Filename: AB_RigidBody.pas

3.1. The dynamics engine 23

Inheritance: TRigidBody = class(TTransform)

Interface:
� �

1 TRigidBody = class(TTransform)

2 public

3 constructor Create; override;

4 destructor Destroy; override;

5

6 function SetInertiaParameters(mass: ABFloat;

7 const Inertia: TCartesianTensor;

8 const COM_pos: TCartesianVector): boolean;

9 procedure GetInertiaParameters(var mass: ABFloat;

10 var Inertia: TCartesianTensor;

11 var COM_pos: TCartesianVector);

12

13 function GetNumForces: Cardinal;

14 procedure GetCenterOfMassPos(link_values:

TABForwardKinematics;

15 var p_COM: TCartesianVector);

16 procedure GetCenterOfMassVel(link_values:

TABForwardKinematics;

17 var v_COM: TCartesianVector);

18 function GetPotentialEnergy(link_values:

TABForwardKinematics;

19 const gravity: TCartesianVector): ABFloat; override;

20 function GetKineticEnergy(link_values: TABForwardKinematics)

: ABFloat;

21 override;

22 function GetNumContactPoints: Cardinal; override;

23 procedure GetContactForces(var forces: TCartesianArray;

24 const offset: integer); override;

25

26 property Mass: ABFloat read Fmass;

27 end;
� �

TSystem This is an abstract base class and contains references to each serial

chain (TTreeStructure) present in the system. The class method Dynamics

performs the recursions needed for each serial chain and returns the derivatives of

the system’s state variables. The derivatives are then passed to a suitable integrator

and then the state variables of the system are updated accordingly.

Filename: AB_System.pas

Inheritance: TSystem = class(TDynObject)

Interface:
� �

1 TSystem = class(TDynObject)

2 public

24 3. The simulator

3 constructor Create; override;

4 destructor Destroy; override;

5

6 function GetNumDOFs: Cardinal; virtual; abstract;

7 procedure SetState(const q, qd: TDynVector;

8 const pos_offset, vel_offset: integer); virtual; abstract;

9 procedure GetState(var q, qd: TDynVector;

10 q_offset, qd_offset: integer); virtual; abstract;

11

12 procedure InitVariables(var qy, qdy: TDynVector);

13

14 function GetPotentialEnergy: ABFloat; virtual; abstract;

15 function GetKineticEnergy: ABFloat; virtual; abstract;

16 procedure GetCOM(var pos: TCartesianVector); virtual;

abstract;

17

18 procedure Dynamics(var qy, qdy: TDynVector); virtual;

abstract;

19 end;
� �

TTransform Base class for all of objects that apply any kind of transformation

in the serial chain. Together with the class TRigidBody it defines a complete

link object, with transformations and dynamic properties.

This class implements all the necessary (common) transformations such as

e.g. rotational transformations and spatial transformations (both inwards and out-

wards).

Filename: AB_Transform.pas

Inheritance: TTransform = class(TDynObject)

Interface:
� �

1 TTransform = class(TDynObject)

2 public

3 constructor Create; override;

4 destructor Destroy; override;

5

6 function GetNumDOFs: integer; virtual; abstract;

7 procedure SetState(const q, qd: TDynVector;

8 q_offset, qd_offset: integer); virtual; abstract;

9 procedure GetState(var q, qd: TDynVector;

10 q_offset, qd_offset: integer); virtual; abstract;

11 procedure SetJointInput(const JointInput: TDynVector;

12 const offset: integer); virtual; abstract;

13

14 procedure ABForwardKinematics(var q, qd: TDynVector;

15 q_offset, qd_offset: integer;

3.1. The dynamics engine 25

16 const inboard_link: TABForwardKinematics;

17 var curr_link: TABForwardKinematics); virtual; abstract;

18 procedure ABBackwardDynamics(var current_link:

TABForwardKinematics;

19 const f_curr: TSpatialVector;

20 const N_curr: TSpatialTensor;

21 var f_inboard: TSpatialVector;

22 var N_inboard: TSpatialTensor); virtual; abstract;

23 procedure ABForwardAccelerations(const a_inboard:

TSpatialVector;

24 var a_current: TSpatialVector;

25 var qd, qdd: TDynVector;

26 qd_offset, qdd_offset: integer); overload; virtual;

abstract;

27 function GetPotentialEnergy(const link_values:

TABForwardKinematics;

28 const gravity: TCartesianVector): ABFloat; virtual;

abstract;

29 function GetKineticEnergy(const link_val:

TABForwardKinematics): ABFloat;

30 virtual; abstract;

31

32 function GetNumContactPoints: Cardinal; virtual; abstract;

33 procedure GetContactForces(var forces: TCartesianArray;

34 const offset: integer); virtual; abstract;

35 end;
� �

3.1.7 Usage

In order to load a specific system, a configuration file must exist which follows

a certain structure. Continuing Example 3.1, the configuration file for the double

pendulum is shown in Listing 2.

Pseudo-code for simulating a system is as follows:

(1) read the system configuration file and create the system

(2) read the environment data and create the environment

(3) For each time step

* simulate the system (integrate)

* update sensors

* update motor signals

* set system inputs

Example code for performing the sequence above is shown in Listing 1, where the

first two lines of code (line 12 and 13) creates the system (tree-structured) and the

environment. The environement is created for purposes of providing the graphics

26 3. The simulator

and for providing the contact model with ground elevation data. Some variables

in the listing have a name including the letters CM, or COM. Those letters refer to

the center-of-mass of one of the links in the system.

Listing 1: Example code for simulation of a system.
� �

1 procedure TAgent.Evalute;

2 var

3 Time: ABFloat;

4 TimeStep: ABFloat;

5 Nsteps: integer;

6 j: integer;

7 tree: TTreeStructure;

8 environment: TEnvironment;

9 CMPosition, CMVelocity: TCartesianVector;

10 InitialCMPosition,InitialCMVelocity: TCartesianVector;

11 begin

12 tree := LoadFile(SYSTEM_FILE);

13 environment := LoadEnvironment(ENVIRONMENT_FILE);

14 TimeStep := SimulationParameters.TimeStep;

15 tree := TTreeStructure(System);

16 tree.GetLinkCOM(2, InitialCMPosition, InitialCMVelocity);

17 Nsteps := SimulationParameters.Nsteps;

18 Time := 0.0;

19

20 for j := 1 to Nsteps do

21 begin

22 tree.GetLinkCOM(2, CMPosition, CMVelocity);

23 with (SensorReadings) do

24 begin

25 SetSensor(1,fContact_force[1][1][3]);

26 SetSensor(2,fContact_force[1][2][3]);

27 SetSensor(3,fContact_force[1][3][3]);

28 SetSensor(4,fContact_force[1][4][3]);

29 SetSensor(5,CMVelocity[1]);

30 SetSensor(6,CMVelocity[2]);

31 SetSensor(7,CMVelocity[3]);

32 end;

33 SensoryPreProcessingSystem.GenerateNewReadings(

34 SensorReadings);

35 RNN.Step(SensoryPreprocessingSystem.Readings,

36 TimeStep);

37 UpdateMotorSignals(Time);

38 joint_torque[1] := MotorSignals[1];

39 Joint_torque[2] := MotorSignals[2];

40 SetJointInput(joint_torque);

41 integrator.Simulate(TimeStep);

42 UpdateContactForces;

43 Time := Time + TimeStep;

3.1. The dynamics engine 27

44 end;

45

46 tree.Free;

47 environment.Free;

48 end;
� �

Listing 2: Configuration file for a double pendulum (see Example 3.1, p. 13).
� �

1 # Configuration file for a double pendulum.

2

3 object Pendulum: TTreeStructure

4 Position = {5.0, 5.0, 10.0}

5 Orientation_Quat = {0.0, 0.7071, 0.0, 0.7071} #{x,y,z,w}

6

7 object Link1: TRevoluteLink

8 Graphics_Model = Cylinder_X

9 Mass = 0.5

10 Inertia = {

11 0.1, 0.0, 0.0

12 0.0, 1.7, 0.0

13 0.0, 0.0, 1.7}

14 Center_of_Gravity = {1.5, 0.0, 0.0}

15 MDH_Parameters = {0.0, 1.5708, 0.0, 0.0} #{a,alpha,d,theta}

16 Initial_Joint_Velocity = 0.0

17 Joint_Friction = 0.35

18 end

19

20 object Link2: TRevoluteLink

21 Graphics_Model = Cylinder

22 Cylinder_Start_Point = {0.0, 0.0, 0.0}

23 Cylinder_End_Point = {3.0, 0.0, 0.0}

24 Cylinder_Start_Radius = 0.3

25 Cylinder_End_Radius = 0.2

26 Cylinder_Slices = 20

27

28 Mass = 0.5

29 Inertia = {

30 0.1, 0.0, 0.0

31 0.0, 1.7, 0.0

32 0.0, 0.0, 1.7}

33 Center_of_Gravity = {1.5, 0.0, 0.0}

34 MDH_Parameters = {3.0, 0.0, 0.0, 0.0}

35 Initial_Joint_Velocity = 0.0

36 Joint_Friction = 0.35

37 end

38

39 end #TreeStructure
� �

28 3. The simulator

3.2 Behaviors and evolutionary algorithm

In this library, behaviors are generated and, to a limited extent, organized using

evolutionary algorithms (EAs).

In general, an agent (e.g. a simulated robot) consists of a body, a brain, and

a genome which, when decoded, generates the body and the brain. However, the

agents presently included in this package (see the description of the TAgent class

below), are designed solely for generating simple motor behaviors, and thus have

a simplified structure.

EAs is the common term used for algorithms inspired by natural evolution.

Examples of such algorithms are: genetic algorithms (GAs) [6], genetic progam-

ming (GP) [8], and evolution strategies (ES) [17]. EAs operate on a population of

candidate solutions and apply genetic operators (selection, mutation, crossover)

to evolve the solutions and to improve their performance. The encoding of a can-

didate solution can be made in many different ways, such as, strings of digits,

arrays, lists, and trees. It is also possible to implement an EA in such a way that

the genetic operators act directly on the target structure, i.e. without using the in-

termediate steps of encoding and decoding. Regardless of the representation used,

the genetic operators must of course be defined such that they are able to operate

on that representation, i.e. such that they always generate valid structures.

EAs are suitable methods when searching through large spaces with many lo-

cal optima [12]. It is also possible to mix both continuous and discrete optimiza-

tion as long as it is possible to formulate a fitness (objective) function. Another

benefit is the possibility to use EAs in cases where it is difficult to derive an ana-

lytical model of the system, or when such a model simply does not exist [21].

A description of the classes defining the behavioral architectures, the agents,

and the EA, will now be given, followed by usage examples.

3.2.1 Behavioral architecture

In this simulation library, only two types of behavioral architectures are currently

included, namely a PD controller and a recurrent neural network (RNN).

TPDController The PD controller can take any number of inputs and produce

an output based on reference values, proportional gains, and damping constants.

Each output from the PD controller is generated as follows

y = Kp(xref − x) + Kd(ẋref − ẋ), (26)

where Kp, Kd are the proportional and derivative constants, respectively, and x
and ẋ are the inputs (cf. state variables) to the controller.

3.2. Behaviors and evolutionary algorithm 29

Filename: PDController.pas

Inheritance: TPDController = class(TObject)

Interface:
� �

1 TPDController = class(TObject)

2 public

3 {Public declarations}

4 constructor Create(NumberOfInputs, NumberOfOutputs: integer)

;

5 destructor Destroy; override;

6

7 procedure GenerateOutput(X, dX: TRealArray);

8 procedure SetParameters(Kp, Kd: TRealArray);

9 procedure SetKp(i: integer; Value: real);

10 procedure SetKd(i: integer; Value: real);

11 procedure SetReferenceValues(XRefValues, dXRefValues:

TRealArray);

12 property Output[i: integer]: real read GetVal; default;

13 property NumberOfInputs: integer read fNumInputs;

14 property NumberOfOutputs: integer read fNumOutputs;

15 property NumberOfVariables: integer read fNumVariables;

16 end;
� �

TRNN The recurrent neural network consists of a set of neurons and connection

weights between them. In addition, each network has a number of inputs, which

are connected to the neurons (some which might be output neurons) by the entries

in wIN (see class listing below). In the implementation used here, for a network

with N neurons, Nout outputs, and Nin inputs, the size of the matrix W is N ×N ,

and the first Nout neurons are taken as the output neurons. Thus, the number of

internal neurons equals N − Nout. The size of the wIN matrix equals N × Nin,

making it possible to connect each input to every neuron in the network (including

the output neurons).

For each neuron i, a time constant τi is defined, and the dynamical equations

for the neurons are

τiẋi + xi = g(bi +
N∑

j=1

wijxj +

Nin∑

j=1

wIN
ij Ij), (27)

where g(z) = tanh(cz) is the activation function (c is a constant), xi is the activa-

tion level of neuron i, and Ij denotes input signal j. The bi are bias terms which

determine the output of the neuron in the absence of external inputs.

Filename: RNN.pas

30 3. The simulator

Inheritance: TRNN = class(TObject)

Interface:
� �

1 TRNN = class(TObject)

2 public

3 constructor Create(NumberOfInputs, NumberOfOutputs,

NumberOfNeurons: integer; W, Win: TMatrix; Tau, Bias:

TVector); overload;

4 procedure SetSigmoidParameter(c: real);

5 procedure Step(Input: TVector; Dt: real);

6 destructor Destroy; override;

7 property M[i: integer]: real read GetVal; default;

8 property NumberOfNeurons: integer read fNumberOfNeurons;

9 property NumberOfInputs: integer read fNumberOfInputs;

10 property NumberOfOutputs: integer read fNumberOfOutputs;

11 property W: TMatrix read fW;

12 property Win: TMatrix read fWin;

13 property Tau: TVector read fTau;

14 property Bias: TVector read fBias;

15 end;
� �

3.2.2 Evolutionary algorithm

The evolutionary algorithm included in the library operates on a population of

genomes (of the type TGenome). As mentioned above, many different represen-

tations can be chosen for the genomes, and the class TGenome must therefore,

in general, be defined by the user. The specific case of genomes suitable for the

evolution of RNNs has been implemented in the package. It is also required, from

the point of view of the EA, that the user implements both the mutation and the

crossover operator in the interface of the TGenome class.

Filename: EA.pas

Inheritance: TEA = class(TObject)

Interface:
� �

1 TEA = class(TObject)

2 public

3 constructor Create; overload;

4 function FindBestIndividual: integer;

5 procedure SetTournamentSelectionParameter(PTournament: real);

6 procedure SetTournamentSize(Size: integer);

7 procedure MakeNewGeneration;

8 function TournamentSelect: integer; overload;

9 function TournamentSelect(Population: TPopulation): integer;

overload;

10 destructor Destroy; override;

3.2. Behaviors and evolutionary algorithm 31

11 property Population: TPopulation read fPopulation write

fPopulation;

12 end;
� �

TGenome The listing below shows the procedures that the user must define.

The TGenomeParameters class holds the various parameters associated with

the genome, such as e.g. mutation rates.

Filename: TGenome.pas

Inheritance: TGenome = class(TObject)

Interface:
� �

1 TGenome = class(TObject)

2 public

3 constructor CreateRandom(GenomeParameters: TGenomeParameters);

4 constructor CreateAndSet(Genome: TGenome);

5 procedure SetGenome(Genome: TGenome);

6 procedure Mutate;

7 class procedure Crossover(const X, Y: TGenome;

8 var Child1, Child2: TGenome);

9 destructor Destroy; override;

10 property M[i: integer]: real read GetVal write SetVal; default

;

11 property NumberOfGenes: integer read fNumberOfGenes;

12 property GenomeParameters: TGenomeParameters read

fGenomeParameters

13 write fGenomeParameters;

14 end;
� �

3.2.3 Agent

Objects of the TAgent class contain a genome, a brain (of type TRNN or TPD-

Controller), a set of motor signals, and a set of sensor signals. The robotic brain

is generated during the decoding of the genome. An example of a public interface

of an agent is shown in the listing below.

Filename: TAgent.pas

Inheritance: TAgent = class(TObject)

Interface:
� �

1 TAgent = class(TObject)

2 public

3 constructor Create; overload;

4 procedure SetGenome(Genome: TGenome);

32 3. The simulator

5 procedure DecodeGenome;

6 procedure UpdateMotorSignals(Inputs: TVector; Time: real);

7 destructor Destroy; override;

8 end;
� �

3.2.4 Usage

Below follows a short code example, showing the main loop of the evolutionary

algorithm. The first three lines of code concerns the initialization of the evolu-

tionary algorithm. The argument EAParameters is a variable containing all

the parameters needed by the EA, such as tournament size and tournament selec-

tion probability, and is typically set from a graphical user interface (GUI).

Basic code, needed for evaluating all the individuals in the population is shown

in Listing 3. First, an instance of the EA is created and its parameter are set by

the variable EAParameters. Then, a random population is created, where each

individual gets the properties as defined in the variable GenomeParameters.

Finally the main loop starts, evaluating each individual (agent), creating a new

population, and continues for as long as a termination criteria is not met.

Listing 3: Main loop in the evolutionary algorithm
� �

1 EA := TEA.Create;

2 EA.SetParameters(EAParameters);

3 EA.Population := TPopulation.CreateRandom(PopulationSize,

GenomeParameters);

4

5 repeat

6 for i := 1 to EA.Population.PopulationSize do

7 begin

8 Agent := TAgent.Create;

9 Agent.SetGenome(EA.Population[i]);

10 Agent.DecodeGenome;

11 Agent.Evaluate;

12 EA.Population.SetFitness(i, Agent.Fitness);

13 Agent.Free;

14 end;

15 EA.MakeNewGeneration;

16 until (Terminate);

17

18 EA.Free;
� �

33

Appendices

Appendix A Notation

ṽ Skew-symmetric 3× 3 matrix constructed from the vector v such that

ṽw = v× w

ṽ =

0 −v3 v2

v3 0 −v1

−v2 v1 0

i−1pi Relative position vector from the origin of frame {i− 1} to the origin

of frame {i}.
i−1vi 6× 1 spatial velocity vector in frame {i} expressed in frame {i− 1}.

A spatial velocity vector is composed by the 3 × 1 angular velocity

vector ω and the 3× 1 linear velocity vector v as

v =

[
ω

v

]

.

i−1ai 6 × 1 spatial acceleration vector of in frame {i} expressed in frame

{i−1}. A spatial acceleration vector is composed by the 3×1 angular

acceleration vector ω̇ and the 3× 1 linear acceleration vector v̇ as

a =

[
ω̇

v̇

]

.

Īi 3 × 3 rigid body inertia tensor of the ith link with respect to its own

coordinate system.

Ii 6 × 6 spatial inertia matrix for the ith link, mapping velocity to mo-

mentum, and defined as

Ii =

[

Īi h̃i

h̃
T

i mi13

]

, (28)

where hi = misi, mi is the link’s mass, si is the vector from the

origin of the link’s coordinate system to it’s center of mass, and 13 is

the 3× 3 identity matrix.

I?
i 6 × 6 articulated body (AB) inertia matrix “felt” at the ith link’s co-

ordinate system. The AB inertia represents the linear relationship

between a force and an acceleration.

34 A. Notation

β?
i 6× 1 vector containing the resultant bias force on the ith link (includ-

ing outward bias forces).
iRi−1 3 × 3 rotational transformation matrix from frame {i − 1} to frame

{i}.
iXi−1 6× 6 spatial transformation matrix from frame {i− 1} to frame {i}.

It is defined as

iXi−1 =

[
iRi−1 0

iRi−1
i−1p̃T

i
iRi−1

]

(29)

σi Boolean parameter denoting the joint type. σi = 1 if joint i is a

revolute joint and σi = 0 if it is a prismatic joint. σ̄i denotes the

negated value of σi.

q̇i, q̈i Relative velocity and relative acceleration between the inboard link

(i) and the outboard link (i− 1).

φi 6 × 1 spatial vector defining the joint motion axis (joint motion sub-

space) of joint i. If joint i is a revolute joint then φi = [0, 0, 1, 0, 0, 0]T

and if joint i is a prismatic joint then φi = [0, 0, 0, 0, 0, 1]T.

In order to simplify notation, the superscripts are dropped in case they are the

same as the subscripts (e.g. i−1vi−1 → vi−1).

35

Appendix B Transformations

This section lists all the transformations implemented in the simulation library.

Since the notation used in this section is important, a clarifying example is first

given before proceeding with the listing of different types of transformations.

� EXAMPLE B.1 Let ARB be the rotation matrix that rotates frame {B} to frame {A}.

Also let A
x represent a point in frame {A} and B

x represent the same point in frame {B}.

Then
A
x = ARB

B
x

transforms the vector B
x from frame {B} to frame {A}. Using this type of notation one

may use the fact that the matrix subscript and the vector superscript “cancel”. However,

care must be taken not to rely on notation alone.

Since rotational matrices are othogonal, the following holds:

AR−1

B = ART
B = BRA

which are useful properties when reversing transformations. ♦

�
�

�
�

A rotation around the Ẑ-axis is represented with

Rz(θ) =

cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 (30)

and a rotation around the X̂-axis is represented by

Rx(θ) =

1 0 0
0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)

 (31)

where θ is the angle of rotation. Note that the 2 × 2 sub-matrix, containing the

trigonometric terms, defines a plane rotation.

For the sake of completeness, the matrix that produces a rotation in the XZ-

plane is defined as

Ry(θ) =

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 (32)

36 B. Transformations

Figure 6: Rotation around the

Ẑ-axis.

Rz =

cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1

Figure 7: Rotation around the

X̂-axis.

Rx =

1 0 0
0 cos(α) sin(α)
0 − sin(α) cos(α)

Figure 8: Rotation around the

Ŷ -axis.

Ry =

cos(α) 0 − sin(α)
0 1 0

sin(α) 0 cos(α)

37

A general rotational transformation of a vector p can be seen as three succes-

sive planar rotations

p′ = Rz(γ) Ry(β) Rx(α) p, (33)

where the subscripts indicate the current axis of rotation and {α, β, γ} are the

angles of rotation. In Eq. (33) the first rotation is about the X̂-axis, the second

about the Ŷ -axis, and the third about the Ẑ-axis. It is important to remember that

the orientation of the two axes in the plane of rotation are also rotated. That is,

any following rotations are taken about the “new” axis.

Reversing the transformation in Eq. (33) can be done using brute force linear

algebra or by simply taking the the sequence of rotations in the reversed order

(with the negative angles) as

p = Rx(α)−1Ry(β)−1Rz(γ)−1p′

= Rx(α)TRy(β)TRz(γ)Tp′

= Rx(−α)Ry(−β)Rz(−γ)p′ ,
(34)

where the orthogonality of the rotation matrix was used (R−1 = RT) in the middle

equation above.

When using the MDH description for adjacent link frames, the rotational trans-

formation from frame {i− 1} to frame {i} is accomplished by applying two suc-

cessive planar rotations; the first around the X̂-axis and the second around the

Ẑ-axis:

iRi−1 = Rz(θi)Rx(αi) =

cθi sθi 0
−sθi cθi 0

0 0 1

1 0 0
0 cαi sαi

0 −sαi cαi

 . (35)

Going from frame {i− 1} to frame {i} involves the following steps:

1. Rotation αi around X̂i−1

2. Translation ai along X̂i−1

3. Rotation θi around (the new) Ẑi

4. Translation di along (the new) Ẑi

The vector from the origin of frame {i− 1} to frame {i} is defined as

i−1pi = [ai, 0, 0]T + Rx(−αi)[0, 0, di]
T =

ai

−di sin(αi)
di cos(αi)

 , (36)

where the vector containing di was rotated from frame {i} to frame {i− 1}. The

superscript indicates that the position vector is expressed with respect to frame

38 B. Transformations

{i − 1}. In order to shorten the notation in the description of the AB-algorithm,

spatial vectors are used to group together properties as velocities, accelerations,

forces. For instance, the spatial velocity vector is defined as v =
[

ωT vT
]T

.

Hence, a spatial, 6× 1 vector is formed by concatenating two cartesian vectors.

An outward transformation of a spatial vector is performed by applying the

following transformation matrix

iXi−1 =

[
iRi−1 0

iRi−1
i−1p̃T

i
iRi−1

]

, (37)

where i−1p̃i is the position vector from frame {i − 1} to frame {i} (w.r.t. frame

{i − 1}), composed such that p̃ω = p × ω. The skew-symmetric matrix p̃ is

taken as its transpose in order to compensate for a change of sign which arises

when taking the cross-product between two vectors in the reversed order (p̃Tω =
−p × ω = ω × p). Inertial quantities can also be grouped together, much in the

same sense as in the case of spatial vectors. The difference lies in the fact that

cartesian matrices instead of cartesian vectors are grouped together.

B.1 General transformations

Since the AB algorithm is iterative, transformations from inboard links to out-

board links (and vice versa) constitute a major part of the algorithm. From a

computational point of view, it is important to implement all transformations as

efficiently as possible.

General transformations between frames need six parameters. By using joints

which can be characterized by a single axis, it is possible to reduce the number

of parameters to only four. The MDH scheme uses the fact that any two lines in

space have a common perpendicular. Generally, this perpendicular is unique but

there are situations when this is not the case [4]. In the MDH scheme the Ẑ-axis

(of a link frame) is aligned with the joint axis and the X̂-axis is aligned with the

common perpendicular between adjacent joint axes.

Below follows a listing of all transformations in their general form. Sec-

tion B.2 lists computationally more efficient transformations for links with only a

single degree of freedom.

General outboard rotational transformation Transformation of a vector in

frame {i− 1} to the outboard frame {i} is done by

iωi−1 = iRi−1 ωi−1. (38)

B.2. Link transformations 39

General inboard rotational transformation Transformation of a vector in frame

{i} to the inboard frame {i− 1} is done by

i−1f i = i−1RT
i f i = iRi−1 f i. (39)

General outboard spatial transformation Transformation of a 6 × 1 spatial

vector in frame {i− 1} to the outboard frame {i} is done by

ivi−1 = iXi−1 vi−1. (40)

General inboard spatial transformation Transformation of a 6×1 spatial vec-

tor in frame {i} to the inboard frame {i− 1} is done by

i−1fi = i−1XT
i fi = iXi−1 fi. (41)

Rotational congruence transformation to inboard frame Transformation of

a 3× 3 symmetric matrix in frame {i} to the inboard frame {i− 1} is done by the

following congruence transformation

i−1Īi = iRT
i−1 Īi

iRi−1. (42)

where it is possible to use the fact that Ī is symmetric to reduce the computational

cost.

Rotational congruence transformation to inboard frame Transformation of

a general 3 × 3 matrix in frame {i} to the inboard frame {i − 1} is done by the

following congruence transformation (same as above)

i−1Gi = iRT
i−1 Gi

iRi−1. (43)

Spatial congruence transformation to inboard frame Transformation of a 6×
6 spatial matrix in frame {i} to the inboard frame {i−1} is done by the following

congruence transformation

i−1Ni = iXT
i−1 Ni

iXi−1. (44)

B.2 Link transformations

This section describes link-to-link transformations for links with a single degree

of freedom. These transformations are more efficient than using the general trans-

formations as defined in the previous section.

40 B. Transformations

Rotational transformation from inboard frame Rotation of a 3× 1 cartesian

vector in frame {i− 1} to the outboard frame {i} is done by applying two succes-

sive planar rotations as

pi = iRi−1 pi−1 = Rz(θi) Rx(αi) pi−1, (45)

where αi and θi are two of the MDH parameters for the ith link, as defined with

respect to link (i− 1).

Rotational transformation to inboard frame Rotation of a 3 × 1 cartesian

vector in frame {i} to the inboard frame {i− 1} is done by

pi−1 = RT
x(αi) RT

z (θi) pi . (46)

Spatial transformation from inboard frame Transformation of a 6× 1 spatial

vector in frame {i− 1} to the outboard frame {i} is most efficiently implemented

by applying two successive planar screw transformations as

vi = Xz(di, θi) Xx(ai, αi) vi−1 (47)

where the spatial planar screw transformations are defined as

Xx(ai, αi) =

[

Rx(αi) 0

Rx(αi) p̃T

x Rx(αi)

]

(48)

and

Xz(di, θi) =

[

Rz(θi) 0

Rz(θi) p̃T

z Rz(θi)

]

, (49)

where p̃T

x = [ai, 0, 0]T and p̃T

z = [0, 0, di]
T.

Spatial coordinate transformations cannot be handled the same way as cartesian

coordinate transformations. Letting X be any spatial transformation matrix, it is

not possible to reverse that transformation by simply taking the matrix transpose,

XT, as in the cartesian case (R−1 = RT). Using the inverse of the transformation

matrix is of course mathematically correct but inefficient from a computaional

point of view. Instead, one can use the spatial transpose. This is possible due to

the fact that coordinate transformations are spatially orthogonal (see [5] for more

details).

The spatial transpose operator is defined as

MS =

[
A B

C D

]S

=

[
DT BT

CT AT

]

, (50)

B.2. Link transformations 41

where {A,B,C,D} ∈ R
3×3 are 3 × 3 block matrices. In the case of spatial coor-

dinate transformations, the diagonal blocks are identical (A=D) and the inverse of

a spatial coordinate transformation can easily be constructed by assembling the

transposed blocks and use the relation X−1 = XS.

Another way of reversing a spatial coordinate transformation consisting of

successive planar screws is to reverse the sequence of the screw transformations

and change the sign of their arguments as

X−1 = Xx(−a,−α) Xz(−d,−θ) (51)

which is equivalent to (using the spatial transpose)

X−1 = XS
x(a, α) XS

z(d, θ) . (52)

Spatial transformation to inboard frame Transformation of a 6 × 1 spatial

vector in frame {i} to the inboard frame {i − 1} is most efficiently implemented

by applying two successive planar screw transformations as

vi−1 = Xx(−ai,−αi) Xz(−di,−θi) vi (53)

42 C. Delphi and object-oriented programming

Appendix C Delphi and object-oriented programming

Unlike procedural programming, object-oriented programming (OOP) provides a

higher level of abstraction. At its simplest level, OOP can be seen as a way of

modularizing the code, increasing the readability, and making the code easier to

maintain. OOP techniques provide the means of organizing the code.

The basic concept in OOP is the use of classes. A class is a collection of

variables containing methods for operating on those variables. An object is an

instance of a class. Keywords in OOP are: (1) encapsulation, (2) inheritance, and

(3) polymorphism.

Encapsulation concerns the way data can be made private to the class, i.e.

only the class itself is allowed to modify its data. Access to parts of a class is

done through the interface which is part of the definition of the class. In general,

there are basically three levels of visibilty (access levels) for both fields (data) and

methods (functions and procedures) in the class definition:

• Private elements are only visible from within the class itself.

• Protected elements extends the private visibility to include child classes,

i.e. it defines the interface to its descendants.

• Public elements defines the interface to the outside. Public elements unre-

stricted access.

Inheritance means that descendant classes inherits all the fields and methods

from its ancestor (base class). It can be seen as a way of extending (or specializing)

an already defined class (see Listing 4).

Polymorphism is tightly coupled to inheritance and run-time behavior; without

inheritance, polymorphism would not be possible. Polymorphism is defined as the

ability of related (but different) objects to implement the same method in their own

way. For example, a circle and a square object each have a Paint method. From

the outside, these methods look the same but are both implemented in different

ways. The ability of an object to implement a different behavior during run-time

is referred to as late binding.

Listing 4 shows an example of an abstract base class and a derived, concrete

class as defined in Delphi. The class TBaseAbstract is called abstract since it

does not provide an implementation of the Paint procedure. It is the responsi-

bility of the derived class TConcrete to implement that procedure. An example

on how to use the TConcrete class is as follows

var

obj: TConcrete;

begin

43

obj := TConcrete.Create;

obj.Paint;

obj.Free;

end;

where an instance of the class is created (the object obj) by calling the default

constructor Create, then the Paint procedure is called, and finally the object

is destroyed by calling the default destructor Free.

Listing 4: A simple example of an abstract base class and a derived class.
� �

1 interface

2 type

3 TBaseAbstract = class

4 private

5 data: integer;

6 public

7 procedure Paint; virtual; abstract;

8 end;

9

10 TConcrete = class(TBaseAbstract)

11 private

12 new_data: integer;

13 public

14 procedure Paint; override;

15 end;

16

17 implementation

18 procedure TConcrete.Paint;

19 begin

20 // implementation of Paint

21 end;
� �

44 References

References

[1] R. C. ARKIN, Behavior-based robotics, The MIT Press, 1998.

[2] BORLAND, Delphi. http://www.borland.com/delphi.

[3] R. BROOKS, A robust layered control system for a mobile robot, IEEE Jour-

nal of Robotics and Automation, RA-2 (1986), pp. 14–23.

[4] J. J. CRAIG, Introduction to Robotics: Mechanics and Control, Addison-

Wesley Publishing Company, 2nd ed., 1989.

[5] R. FEATHERSTONE, Robot Dynamics Algorithms, Kluwer Academic Pub-

lishers, 1987.

[6] J. HOLLAND, Adaptation in natural and artificial systems, MIT Press, Cam-

bridge, MA, 1992.

[7] O. KHATIB, Real-time obstacle avoidance for manipulators and mobile ro-

bots, in Proceedings of the IEEE International Conference on Robotics and

Automation, 1985, pp. 500–505.

[8] J. R. KOZA, Gentetic Programming: On the programming of Computers by

Natural Selection, MIT Press, Cambridge, MA, 1992.

[9] P. MAES, The dynamics of action selection, in Proc. of the Eleventh Interna-

tional Joint Conference on Artificial Intelligence (IJCAI-89), 1989, pp. 991–

997.

[10] D. MCFARLAND, Animal behavior: Psychobiology, Ethology and Evolu-

tion, Prentice Hall, 3rd edition ed., 1998.

[11] S. MCMILLAN, Computational Dynamics for Robotic Systems on Land and

under Water, PhD thesis, The Ohio State University, Columbus, OH, Sum-

mer 1994.

[12] M. MITCHELL, An introduction to genetic algorithms, The MIT Press, 1996.

[13] H. MORAVEC, Robot: Mere machine to transcendent mind, Oxford Univer-

sity Press, 1999.

[14] P. PIRJANIAN, Behavior-coordination mechanism – state-of-the-art, Techni-

cal report IRIS-99-375, Institute for Robotics and Intelligent Systems, Uni-

versity of Southern California, October 1999.

References 45

[15] P. PIRJANIAN AND M. MATARIC, A decision-theoretic approach to fuzzy

behavior coordination, in Proceedings of the IEEE International Symposium

on Computational Intelligence in Robotics and Automation, Monterey, CA,

November 1999.

[16] W. PRESS, Numerical recipes in C the art of scientific computing, Cam-

bridge University Press, 1992.

[17] I. RECHENBERG, Evolutionsstrategien, Holtzmann-Froboog, 1994.

[18] J. ROSENBLATT, Damn: A distributed architecture for mobile navigation, in

AAAI 1995 Spring Symposium on lessons learned for implemented software

architectures for physical agents, March 1995, pp. 167–178.

[19] M. WAHDE, A method for behavioural organization for autonomous robots

based on evolutionary optimization of utility functions, Journal of Systems

and Control Engineering, 217 (2003), pp. 249–258.

[20] M. W. WALKER AND D. E. ORIN, Efficient dynamic computer simulation of

robotic mechanisms, Journal of Dynamic Systems, Measurement, and Con-

trol, 104 (1982), pp. 205–211.

[21] K. WOLFF AND P. NORDIN, Evolution of efficient gait with humanoids us-

ing visual feedback, in Proceedings of the IEEE-RAS International Confer-

ence on Humanoid Robots, 2001, pp. 99–106.

Paper III

Application of the utility function method for

behavioral organization in a locomotion task

in

IEEE Transactions on Evolutionary Computation, Volume 9, Issue 5, October
2005, pp. 506–521.

506 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 5, OCTOBER 2005

Application of the Utility Function Method for
Behavioral Organization in a Locomotion Task

Jimmy Pettersson and Mattias Wahde

Abstract—The generation of a complete robotic brain for loco-
motion based on the utility function (UF) method for behavioral
organization is demonstrated. A simulated, single-legged hopping
robot is considered, and a two-stage process is used for generating
the robotic brain. First, individual behaviors are constructed
through artificial evolution of recurrent neural networks (RNNs).
Thereafter, a behavioral organizer is generated through evolu-
tionary optimization of utility functions.

Two systems are considered: a simplified model with trivial dy-
namics, as well as a model using full newtonian dynamics.

In both cases, the UF method was able to generate an adequate
behavioral organizer, which allowed the robot to perform its pri-
mary task of moving through an arena, while avoiding collisions
with obstacles and keeping the batteries sufficiently charged.

The results for the simplified model were better than those for
the dynamical model, a fact that could be attributed to the poor
performance of the individual behaviors (implemented as RNNs)
during extended operation.

Index Terms—Behavioral organization, behavior-based
robotics, evolutionary algorithms (EAs), structural optimiza-
tion, utility functions (UFs).

I. INTRODUCTION AND MOTIVATION

DURING THE last few years, the field of autonomous
robotics has been growing at a rapid rate. While the

results have often been impressive, several challenges remain
on the road to truly intelligent autonomous machines. Two
such challenges, which will be addressed in this paper, concern
locomotion of legged systems and behavioral organization
in behavior-based robots, i.e., the process of activating the
appropriate behavior at all times.

The first topic, legged locomotion, has been considered
by many authors [1]–[4], and many implementations exist in
bipedal robots such as Asimo, Qrio, etc. (see, e.g., [5] for a re-
view of bipedal robotics research). Several methods have been
proposed for posture control and locomotion of bipedal robots.
The most common methods for generating stable gaits include
the use of posture controllers together with real-time trajectory
planners based on the zero moment point (ZMP) [6], [7]. Using
explicit reference trajectories is, however, not suitable for
robots that operate in uncontrolled, dynamic environments. In
such environments, the robot must be able to handle unforeseen
events such as obstacles that suddenly appear near the robot
or actual physical perturbations. Thus, what is required is a
method for walking by sensing, where the robot makes its own

Manuscript received September 23, 2003; revised September 1, 2004.
The authors are with the Department of Applied Mechanics, Chalmers

University of Technology, 412 96 Göteborg, Sweden (e-mail: jimmy.
pettersson@me.chalmers.se; mattias.wahde@me.chalmers.se).

Digital Object Identifier 10.1109/TEVC.2005.850262

decisions about what action to take based on sensory input.
In other words, the robot must be equipped not only with
behaviors for locomotion and collision avoidance, but also with
a means of activating the right behavior at the right time.

Thus, the second topic, behavioral organization,1 constitutes
one of the most important (and also most difficult) problems
in behavior-based robotics (see, e.g., [8]–[10], and references
therein), and many different methods have been suggested for
solving this problem. In general, most methods require a signif-
icant amount of hand-coding and manual fine-tuning of the be-
havioral organization system [8], [10]. Here, the problem will be
approached using the recently developed utility function (UF)
method [10], in which the behavioral organization is obtained
using an evolutionary algorithm (EA), rather than through hand-
coding.

While the UF method itself uses an EA to generate behav-
ioral organization, the constituent behaviors can be generated
by any method. However, since legged robots are modeled on
biological organisms, the use of biologically inspired computa-
tion methods, such as EAs applied to recurrent neural networks
(RNNs) is a logical strategy for the generation of behaviors [11],
and also the method of choice for this paper.

In this paper, it is shown how a complete (albeit rather
simple) robotic brain2 for locomotion can be evolved, starting
with the evolution of constituent behaviors and completing
the task by evolving the behavioral organizer, thus avoiding
any manual fine-tuning of the robotic brain. As the emphasis
lies on the generation of the robotic brain, and in particular its
behavioral organization mechanisms, a simplified (compared
to a bipedal robot) legged system has been used, namely a
one-legged, hopping robot. Unlike, say, a wheeled robot, any
legged system (whether monopedal or bipedal) cannot, for
example, stop abruptly without losing its balance. Thus, while
considerably simpler than a bipedal robot, robust motion of
a one-legged robot is also a challenging task, and certainly
sufficiently challenging to make behavioral organization far
from trivial.

II. PROBLEM DESCRIPTION

The aim of this paper is to provide a simple one-legged robot
with a complete robotic brain for simple (linear) locomotion,

1Behavioral organization is sometimes also referred to as behavioral selec-
tion or action selection. Here, the term behavioral organization will be used
throughout.

2Throughout this paper, the term robotic brain will be used instead of the
more limited term control system, to emphasize that the generated behaviors
are ultimately to be added as components in a complete behavior-based robotic
brain, incorporating not only motor behaviors but other (e.g., cognitive) behav-
iors as well.

1089-778X/$20.00 © 2005 IEEE

PETTERSSON AND WAHDE: APPLICATION OF THE UF METHOD FOR BEHAVIORAL ORGANIZATION IN A LOCOMOTION TASK 507

Fig. 1. The robot in its environment. The goal of the robot is to move across
the arena without colliding with any obstacle. Periodic boundary conditions are
used in the horizontal direction. The length of the arena is 8 m, and its width is
3 m.

including the ability to avoid collisions with moving obstacles.
The problem faced by the robot is illustrated in Fig. 1. Its goal is
to move from bottom to top in the arena shown (from above) in
the figure, without colliding with any of the horizontally moving
obstacles, and without running out of battery energy.

While seemingly simple, the problem is in fact quite com-
plex. First of all, a dynamically modeled one-legged robot, as
the one used here, cannot start (or stop) instantaneously. Instead,
it needs to build up (or wind down) its speed by moving its single
leg back and forth. Second, the robot must occasionally stop
in order to charge its batteries, and must thus select the appro-
priate time (and place) for doing so. Third, the robot’s sensors
have a limited range. Finally, the obstacles, moving in different
directions, may sometimes force the robot to move backward,
even though it is only rewarded (at the end of an evaluation) for
moving forward.

As a minimum, such a robot must be equipped with four be-
haviors: move forward, move backward, stop (i.e., lower the
speed to zero), and charge batteries (by remaining stationary,
assuming that the charging is performed using, e.g., solar cells).
Equally important, as indicated by the previous paragraph, is
that the robot be equipped with a method for behavioral organ-
ization, i.e., for selecting and activating appropriate behaviors
in any given situation. Here, the UF method for behavioral or-
ganization (see [10] and Section III-B1) will be used for this
purpose.

Fig. 2. Simulated one-legged robot. The leg is actuated by two revolute joints,
located at the center of the supporting plate (foot). Four contact points under the
foot provide information about the external forces acting on the robot.

In order for behaviors to be organized, however, they must
first be generated. Here, the constituent behaviors will be repre-
sented by recurrent, continuous-time neural networks (RNNs),
and the generation of these behaviors, also by means of artificial
evolution, will be studied as open-ended problems, where the
complexity of the evolving networks is allowed to change (in-
crease or decrease in size). In addition, several different sets of
input signals will be considered, in order to investigate whether
other signals than the standard ones (joint positions and angular
velocities) can provide information that is more suitable as input
to an RNN.

III. MODELS AND METHODS

In this section, the simulated system will be described, as well
as the methods used for generating and organizing behaviors.

A. Simulated System

The simulated system, shown in Fig. 2, consists of two con-
nected rigid bodies, a rod (leg) with mass and a plate (foot)
with mass . Relative motion between the two rigid bodies is
allowed via two revolute joints (cf. ankle joints). In addition to
the two degrees of freedom (DOF) at the joints, the entire system
is free to move in space, thus adding six DOF, giving a total of
eight DOF. However, only the two DOF in the ankle joint are
actuated.

1) Motor Model: The two revolute joints between the
foot and the leg are driven by DC motors models. Motor
parameters were set according to a specification of the motor
DC-Micromotors Series 3863, manufactured by MicroMo [12]
and commercially available through the Faulhaber Group [13].

The model consists of a source voltage , armature resistance
, and the back EMF generated by the motor as

(1)

where is the current through the circuit. The source voltages
of the two DC motors are set by the two outputs from the RNN
(after being scaled to the appropriate voltage range).

508 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 5, OCTOBER 2005

Since the back EMF is proportional to the angular velocity of
the motor , and the torque produced is proportional to
the current , the final torque developed by the motor
is

(2)

where is an opposing torque due to friction in the motor.
In addition, a lossless gearbox is used to scale the output from

the DC motor. Since the gearbox is lossless, equal power is gen-
erated on both sides of the gearbox. As such, the gearbox effec-
tively functions as a simple scaling unit, having the following
relationships:

(3)

(4)

where is the torque applied to the rigid body, is the angular
velocity of the rigid body, and is the gearbox ratio. Also, the
(absolute) maximum torque allowed by the gearbox was set to

.
In real systems, it is difficult (or very expensive) to achieve

the same updating frequency as in simulated systems. This is
mainly due to limitations in single components or in combined
hardware. Therefore, the motor model used in the simulations is
only allowed to update with a frequency of 100 Hz, even though
the step size used when integrating the equations of motion is
smaller (0.002 s).

2) Sensors: In traditional control theory, the joint angles and
joint angular derivatives would be chosen as input signals to the
system. However, angles and angular derivatives are not explic-
itly available for the balancing of biological organisms (even
though some organisms are able to estimate joint angles using
vision or using sensors in muscles and joints). Instead, the sig-
nals available are, e.g., the pressure distributions under the feet,
as well as the information from the balancing organ (essentially,
an accelerometer). Thus, when approaching the problem of bal-
ancing using biologically inspired computation methods, it is
appropriate at least to consider the possibility of using input sig-
nals other than the traditional ones.

Thus, in addition to the joint angles (,) and joint an-
gular derivatives (,), which will be referred to as classical
(input) signals, four contact forces (, , ,), measured
at the corners of the plate representing the foot, and the acceler-
ations of the center of mass of the leg (, ,) were added
as potential input signals to the system. The four contact forces
are obtained through massless spring and damper systems, as
shown in Fig. 3. In essence, the four contact sensors measure
the pressure distribution under the foot. Since the foot is rigid
and is assumed to be located on a flat surface, four forces suffice
for this purpose.

The accelerations represent the signals generated by a bal-
ancing organ. Note that the accelerations are smoothed (to re-
duce noise) using a moving average before being presented to
the balancing system. The seven added potential input signals
will be referred to as biological (input) signals.

The robot was also equipped with three simple proximity sen-
sors (, , and), responsible for detecting obstacles in the
environment. Note that these sensors, however, were not made

Fig. 3. Spring and damper models for a single contact point. The two models
generate the horizontal and vertical force components, respectively. The white
circle represents the initial contact point.

Fig. 4. The robot as seen from above, equipped with three simple proximity
sensors, each with a triangular-shaped detection range. The filled black circles
illustrates points on an obstacle that are detectable by the range sensors. Dashed
lines indicates detected points in this particular configuration.

available to the robot when individual behaviors were generated.
Proximity sensors were only used in simulations involving be-
havioral organization.

One proximity sensor is placed in the robot’s forward direc-
tion and the other two are placed on the right and on the left sides
of the robot (see Fig. 4). As shown in the picture, each sensor has
a triangular detection range, with the base and height . In
case an obstacle is detected by a sensor, the output of the sensor
is calculated, somewhat arbitrarily, as

(5)

where is the distance to the detected obstacle and is the
maximum range of the sensor.

From a sensor’s point of view, each obstacle is composed of
eight points; the four corner points and the four midpoints in be-
tween. During simulation, each sensor goes through all obsta-
cles and checks for point inclusion in its range-defining triangle.
If multiple points are within sensor range (see Fig. 4), the sensor
output is calculated using the distance to the closest point. For

PETTERSSON AND WAHDE: APPLICATION OF THE UF METHOD FOR BEHAVIORAL ORGANIZATION IN A LOCOMOTION TASK 509

simplicity (and to speed up the simulations), only coordinates
in the ground plane are considered in the detection of obstacles.

In addition to the three simple proximity sensors, a fourth (in-
ternal) sensor is available for monitoring of battery level ,
which has maximum capacity . Like the proximity sen-
sors, this sensor was only used in the simulations involving be-
havioral organization.

The robot’s energy usage is based on the torques generated by
the motors (,) and the angular velocity of each joint (,

), with the instantaneous energy usage calculated as

(6)

where is the step size used in the integration of the equations
of motion.

In case the robot charges its batteries (which requires activa-
tion of the charging behavior, see Section IV-A), the energy in
the battery changes as

(for the first seconds)
(thereafter)

(7)

Thus, in order to gain energy the robot must keep the charging
behavior active for more than s.

It should be noted that, during simulations, sensors are only
allowed to update with a frequency of 100 Hz (for the same
reasons mentioned earlier in Section III-A1).

3) Simplified System: In addition to the dynamically
modeled one-legged robot, a simplified system (with trivial
dynamics) was used as well, mainly for verification that the set-
tings used for the UF method (see Section III-B1) were chosen
correctly. During simulations with this simplified system,
the four behaviors were implemented by simply setting the
velocity of the robot directly (to prespecified values) instead of
integrating the equations of motion. For the simplified system,
the speed in the move forward behavior is set to , and the
speed in the move backward behavior is set to .

4) Parameter Settings for the Robot: The parameter set-
tings, i.e., the actual values used for the constants introduced in
this section, are specified in Table I.

B. Robotic Brain

1) Behavioral Organizer: In this paper, the behavioral or-
ganizer, i.e., the system for selecting which behavior to acti-
vate in any given situation, is obtained by means of the UF
method [10]. This ethologically inspired behavioral organiza-
tion method uses artificial evolution to generate the behavioral
organizer, and has the advantage of requiring only a minimum of
hand-coding by the user. An additional advantage is the possi-
bility (not the requirement) of including prior knowledge before
the evolutionary optimization is initiated.

Here, only a brief introduction to the method will be given.
For a more complete description, see [10]. In the UF method,
each available behavior is associated with a utility function

that depends on the state variables of the robot, such as sensor
readings (e.g., contact forces and joint angles), battery energy
levels, etc. Once the utility functions have been generated, be-
havioral organization is simple: at any given time, the behavior

TABLE I
PARAMETER SETTINGS FOR THE SIMULATED ROBOT. THE TWO FINAL

PARAMETERS REFER TO THE SIMPLIFIED SYSTEM (SEE SECTION III-A3)

with the largest utility value will be active. The problem, of
course, is to generate the utility functions. In the UF method,
these functions are obtained via artificial evolution. The user
need only provide an ansatz for each utility function, e.g., an

th-degree polynomial in the state variables, for some positive
integer . Thus, when using the UF method, a population of be-
havioral organizers is generated, with initially random polyno-
mial coefficients in their utility functions. Each behavioral orga-
nizer is evaluated, by allowing it to control the robot for a certain
period of time, after which a fitness value is assigned based on
the overall performance of the robot, and evolution can proceed
as usual, until the best behavioral organizer has been found.

In general, assigning a suitable fitness measure is difficult for
a task involving several behaviors. Thus, another advantage with
the UF method is that fitness functions need only be provided
for the task behaviors of the robot, i.e., the behaviors directly
concerned with the task of the robot. For other (auxiliary) be-
haviors, no fitness functions need be assigned.

As an example, consider a simple exploration robot equipped
with two behaviors: one task behavior that simply keeps the
robot moving in a random fashion, and one auxiliary behavior
responsible for charging the batteries (by standing still, as-
suming the robot is equipped with solar panels). Now, the
charging behavior is clearly needed in most cases, but prefer-
ably the user should not have to assign a fitness function to it,
as this would require making an assessment, for each situation,
of the relative importance of the two behaviors. By contrast,
in the UF method, only the task behavior is assigned a fitness
function (e.g., distance moved). The occasional activation of
the charging behavior is the task of the behavioral organizer. If
properly evolved, the two utility functions will be such that the
utility of battery charging will rise as the energy in the battery
falls, so that, eventually, the charging behavior will be activated
for a while, thus allowing the robot (after charging has been
completed and the utility of charging falls below the utility

510 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 5, OCTOBER 2005

of the task behavior) to continue with its task behavior and
thereby achieving higher fitness. If instead charging had not
been activated, the robot would of course come to a standstill
after emptying its batteries, and would not be able to increase
its fitness. Thus, there is a strong incentive for the EA to find
utility functions such that the charging behavior is sometimes
activated.

While this example is strongly simplified (in most cases,
several additional auxiliary behaviors will be needed, e.g.,
obstacle avoidance, etc.), it illustrates the principle behind the
UF method.

Furthermore, in addition to the obvious state variables, the UF
method introduces so called internal abstract variables. These
are variables without a direct physical counterpart, which are
used, e.g., for avoiding rapid switching between behaviors [10].
In a biological analogy, these variables can be seen as repre-
senting hormone levels, which can act as internal variables gov-
erning the selection of behaviors.

Finally, the UF method also introduces the notion of behavior
time, i.e., a behavior-specific time variable which measures
the time since behavior was last activated, and which is equal
to zero when behavior is not active.

2) Constituent Behaviors: For the implementation of be-
haviors, there are many architectures available, such as, e.g.,
finite-state machines [14], fuzzy logic controllers [15], and
neural networks [16]. In addition, the components of classical
control systems, such as PD controllers, etc., are also applicable
for certain low-level, noncognitive behaviors, such as posture
control in the absence of strong perturbations. In this paper,
behaviors will be implemented in the form of RNNs, which are
described next.

Of course, other architectures than RNNs could, in principle,
have been used for the implementation of behaviors. However,
neural networks are generally able to represent and process a
data flow regardless of its structure (or lack thereof). In this
study, several different sets of input signals are used. From these
often disparate sets of signals (such as, e.g., angular positions
together with contact forces), useful information must be ex-
tracted, making neural networks a natural choice.

In this paper, the robotic brain contains four different behav-
iors, implemented as RNNs. It should be stressed here that the
evolution of the constituent behaviors is performed completely
independently of the process of behavioral organization. Thus,
when the four behaviors are evolved, they are considered as
separate entities, and no attempt is made, e.g., to make them
particularly suitable for the subsequent behavioral organization.
Thus, the proximity sensors and the battery energy sensor (see
Section III-A2) were not used when evolving the constituent
behaviors.

The fitness functions used for evolving each of the four be-
haviors should not be confused with the fitness function used
by the UF method. The latter is a function for selecting between
behaviors that are already present, regardless of how they were
obtained (e.g., by means of artificial evolution or some other
method).

The general architecture used for the four constituent behav-
iors will now be described.

a) Recurrent neural networks: The RNNs used here consist of
a set of input elements that send the input signals to the neurons
, whose dynamics is given by

(8)

where runs from 1 to (the number of neurons), and is the
number of input elements. Here, input elements refer to a set of
the available input signals described in Section III-A2. and

are the time constants and biases for neuron , respectively,
is the weight matrix for interneuron connections, and

are the weights connecting the input elements to the neurons.
The outputs (of which there are two in the applications consid-
ered here, representing the source voltages of the DC motors)
are taken as the signals and obtained from the first two
neurons. is the neuron activation function, here given by

(9)

where is a constant. Thus, the neuron signals are limited to
the range [1,1], and the output must thus be rescaled to the
appropriate range, as discussed in Section III-D.

b) Signal preprocessing: The final component associated with
the RNNs used here is a signal preprocessing system (SPS), as
shown in the left-hand side of the middle panel of Fig. 5. Bio-
logical organisms continuously process vast amounts of infor-
mation, and the massive flow of input signals generally under-
goes preprocessing (to reduce the volume of the flow) before
reaching, e.g., the part of the brain responsible for balancing.
Thus, augmenting the RNN model with a signal preprocessing
unit is motivated by biological considerations.

The SPS is given by the simple equations

(10)

where are the raw input signals and is the weight matrix
connecting those signals to the processed inputs signals (i.e.,
the input elements defined above). The entire system is shown
in Fig. 5.

Note that, in all runs presented below, a strongly simplified
SPS is used, in which there is a direct mapping between a raw
input signal and the corresponding processed signal, according
to

(11)

In this case, if . However, even such a simple
SPS serves the important purpose of automatically (through the
optimization of the weights) scaling the input signals to
appropriate ranges.

The SPS defined by (11) will be referred to as a reduced SPS
in contrast to the complete SPS defined in (10).

PETTERSSON AND WAHDE: APPLICATION OF THE UF METHOD FOR BEHAVIORAL ORGANIZATION IN A LOCOMOTION TASK 511

Fig. 5. RNN augmented with a signal preprocessing unit (SPS). In all figures
showing neural networks, squares represent input elements providing processed
input signals, triangles represent input elements providing raw input signals,
filled circles represent output neurons, and nonfilled circles represent internal
(i.e., nonoutput) neurons.

C. Parametric and Structural Optimization

In general, training an RNN is much more complex than
training a simple feedforward neural network (FFNN) using,
e.g., backpropagation. However, the use of an RNN rather than
an FFNN is motivated in part by the fact that the balancing
behavior must be equipped with a short-term memory to cope
with cases in which two identical (or very similar) sets of in-
stantaneous input signals (e.g., pressure distributions under the
foot plate) require different responses. In an RNN, the motion
just prior to the present state can be encoded, albeit implicitly,
in the activation levels of its neurons.

Furthermore, the optimal structure of a neural network for
balancing (or indeed for many other robotic behaviors) cannot
easily be specified in advance. Most neural network methods are
limited to parametric optimization, i.e., tuning of the weights in
a pre-defined network architecture. However, if the initial spec-
ification of an RNN does not contain a sufficient amount of neu-
rons for the problem at hand, it is possible that the solution will
not be found at all. On the other hand, if instead the RNN is
too large, the training of the network may become prohibitively
time-consuming. Thus, ideally, the training algorithm should be
capable not only of parametric optimization but structural opti-
mization as well.

D. Evolutionary Optimization of RNNs

For a general introduction to EAs, see, e.g., [17]. In the stan-
dard genetic algorithm (GA) [18], which is one example of an
EA, the variables of the problem are encoded in a fixed-length
string. By contrast, the EA used here acts directly on the RNNs.

Basically, the structure optimized by the EA can be divided
into two parts: 1) the weights of the signal preprocessing
system and 2) the neurons and their time constants, biases, and
connections (and).

Real-number encoding is used, i.e., all genes take floating-
point values in the open interval [0,1], which are then rescaled
to the appropriate range.

After each evaluation, a fitness value is assigned to each indi-
vidual. The details of the evaluation procedure are described in
Section IV-A. In the EA, generational replacement is used, i.e.,
all individuals are replaced by their offspring in each genera-
tion. The selection of individuals (for reproduction) is done by
means of the tournament selection method, using a tournament
size specified (at the start of a simulation) as a fraction of the
population size. In addition, elitism is used, i.e., a single copy
of the best individual is transferred without modification from
one generation to the next.

In a standard GA, the selection step is followed by crossover
(with a certain crossover probability) and mutation. In the EA
used in this paper, a rich variety of operators for mutation and
crossover can be defined, since the EA is designed to optimize
both the parameters and the structure of the RNNs. Obviously,
the selection of mutation and crossover operators, as well as the
values of the associated parameters, will affect the performance
of the EA. Thus, in Section V-A1, the specific choices made in
this paper will be motivated briefly. Mutation operators can be
divided into two categories: those that modify values of param-
eters, and those that modify the structure (i.e., the number of
neurons or the number of connection weights) of the RNNs.

c) Parametric mutations: Here, two kinds of parametric mu-
tations are defined, namely, full-range mutations that change the
value of a weight to a new random value in the allowed range

, and creep mutations, in which the parameter is
modified more gently according to

(12)

where is the creep rate and is a random number in [0,1]. Note
that the creep mutations can generate values (slightly) outside
the interval allowed for full-range mutations. The creep proba-
bility determines the probability of using a creep muta-
tion rather than a full-range mutation.

d) Structural mutations: Structural mutations of two kinds are
defined here. Connectivity mutations either add or remove an
incoming weight (either from a neuron or an input element) to
a given neuron. In case of addition, the connecting neuron or
input element is chosen randomly, and the weight is assigned
a random value in the allowed range. Neuron mutations, on the
other hand, add or remove entire neurons from the RNN. In case
of removal, all outgoing and incoming links associated with the
(randomly selected) removed neuron are also removed.

The case of addition is more complicated. In a small or
moderately sized network, the addition of a neuron, with both

512 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 5, OCTOBER 2005

TABLE II
FITNESS MEASURES USED WHEN EVOLVING THE FOUR CONSTITUENT BEHAVIORS.

SEE SECTION IV-A1 FOR THE DEFINITION OF THE y-DIRECTION

incoming and outcoming links, amounts to a macromutation,
i.e., a mutation causing a significant alteration of the phenotype
(the robotic brain, in this case). It is a well-known fact in
evolutionary biology that macromutations generally have a
detrimental effect, and the same holds in artificial evolution.

Thus, the addition of a neuron must be performed with care
and, to that end, two different addition operators have been de-
fined, namely: 1) zero-weight addition, which simply places an
unconnected neuron (with random time constant and bias) in the
network and 2) single connection addition in which a neuron,
with random time constant and bias, is added with a single in-
coming connection from a randomly selected neuron or input el-
ement, and a single outgoing connection to a randomly selected
neuron.

e) Crossover: Clearly, in view of the distributed nature of the
computation in a neural network, it is far from trivial to define
a useful crossover operator for such networks. Simply cutting a
network into two parts, as one would do in the case of a simple
GA chromosome, is unlikely to produce good results. In fact,
such a procedure can be viewed as a huge macromutation. The
situation is made even more complicated by the fact that dif-
ferent networks are, in general, of different size.

Several attempts were made to introduce a gentle crossover
operator which would be able to combine material from two in-
dividuals without reducing the fitness of the resulting individual.
However, as none of these crossover operators turned out to have
a positive effect on the EA, they were not used further, and will
therefore not be described here.

1) Simulation Package: All simulations were made using a
simulation library called EVODYN, developed by one of the au-
thors [19]. The rigid-body dynamics engine in EVODYN is based
on Featherstone’s algorithm [20], [21] and solves the equations
of motion in time proportional to the number of links in the
system. Developed in Delphi (Object Pascal), it supports tree-
structured rigid-body systems described in terms of MDH pa-
rameters [22] and uses a fourth order Runge–Kutta method for
numerical integration of the state derivatives of the simulated
system.

The simulation software must also be able to maintain a pop-
ulation of structures of varying size, and also be able to perform
the various operations on those structures that are needed by
the evolutionary process. Such features are an integral part of
EVODYN, simplifying the implementation of evolutionary opti-
mization of robotic brains for motor behaviors.

The rigid body dynamics engine implemented in EVODYN

runs significantly faster than real-time, making it useful in evo-
lutionary applications where many evaluations are needed.

IV. EXPERIMENTAL PROCEDURE

In this section, the steps involved in generating the robotic
brain will be described briefly, followed (in the next section) by
a description of the actual results of the investigation. There are
two main steps, namely: 1) the generation of individual behav-
iors and 2) the generation of the behavioral organizer.

A. Evolution of Behaviors

Here, behaviors were generated by means of an EA, and
were represented as RNNs. All behaviors described here were
evolved separately and independently of each other. Further-
more, during the evolution of individual behaviors, no obstacle
or energy sensors were used, and the robots moved in an ob-
stacle-free environment, as the problem of obstacle avoidance
is one to be solved by the behavioral organizer (see next).

The four generated behaviors were move forward (B1), move
backward (B2), stop (B3), and charge batteries (B4). The fit-
ness measures used when evolving each of the four behaviors
are summarized in Table II and the choice of input signals, pro-
vided to the RNNs representing each behavior, is described in
Section V-A1

1) Behaviors for Forward (B1) and Backward (B2) Mo-
tion: Here, the task is to move the robot as far as possible
during a limited amount of time. During evolution, these be-
haviors are awarded fitness according to the distance moved
along the -direction. The -direction is the vertical axis going
from the bottom of Fig. 1, pointing toward the top of the figure.

Both behaviors must be able to move the robot in the correct
direction. If activated, B1 (and B2) moves the robot in a straight
line, relative to the robots’s starting position, i.e., there is no cor-
rection of heading involved. Also, both B1 and B2 must be able
to start from a standstill, as the robot might have been brought
to a stop by some of the other available behaviors.

The maximum simulation time was set to 4 s and the fitness
measure was simply the distance traveled during that time. In
the case of B1, the direction of motion (yielding positive fitness)
was along the positive -direction. The direction of motion in
B2 was along the negative -direction.

2) Stop Behavior (B3): The task here is to bring the robot to
a halt. B3 should provide the robot with the ability to stop from
either a moving or a stationary state. In the latter case, the task
of B3 is to place the single leg of the robot in an upright position.
Thus, B3 must be very robust in order to handle a large variety of
initial starting positions and velocities. As long as B3 is activate,
the robot will position itself in an upright, standstill position.

3) Battery Charging Behavior (B4): The charging behavior
(B4) is similar to B3, the main difference being that it provides

PETTERSSON AND WAHDE: APPLICATION OF THE UF METHOD FOR BEHAVIORAL ORGANIZATION IN A LOCOMOTION TASK 513

the robot with the ability to charge its batteries. B4 need not be
as robust as B3 provided that the robot has already reached a
standstill position when B4 is activated. Making sure that this is
the case, makes the task for the behavioral organizer even more
challenging. The difference in the procedures used for gener-
ating B3 and B4, respectively, is described in greater detail in
Section V-B.

B. Evolution of Behavioral Organization

Once the four constituent behaviors have been generated, the
behavioral organizer can be generated using the UF method. In
this paper, the task of the behavioral organizer will be to select
between four behaviors (B1, B2, B3, and B4) to make the robot
move through an arena, shown in Fig. 1, populated by moving
obstacles. The arena is 8 m long and 3 m wide and the robot’s
starting position is located just outside one of shorter sides. Ob-
stacles move with constant velocity across the arena, using peri-
odic boundary conditions. That is, if an obstacle leaves the arena
on one side, it reappears on the other. Initially, all obstacles are
given directions of motion and initial positions using a uniform
random number generator with a specific seed. Thus, all sim-
ulated robots are exposed to exactly the same environment, in
order for the EA to progress smoothly. The risk of adaptation to
the exact conditions encountered in this deterministic arena is
lowered by the fact that the arena is quite long. However, some
arena-specific adaptation did occur, as discussed below.

For the UF method, all utility functions were given
the following functional form:

(13)

where is a vector (with elements) containing the values
of external/internal sensors and internal abstract variables. ,

, and are constant parameters to be determined by the
EA. Note that (for ease of notation), is a scalar, is a
vector, and is an upper triangular matrix, representing a con-
stant term, linear terms, and quadratic terms, respectively. Even
though (13) can be of any form, experience with the UF method
has shown that it is often sufficient to use a sum including con-
stant, linear, and quadratic terms.

In the setup used here, contains the values from three simple
proximity sensors (, , and), one battery sensor , and
one internal abstract variable for each behavior .
The internal abstract variables are (here) implemented such that

unless behavior is active.
The variation of the is given by

(14)

where , , and are constants and is the behavior time
(see Section III-B1), measuring the time since the last activation
of behavior . Both the fact that is only nonzero in behavior
and the specific variation given by (14) represent rather arbitrary
choices, motivated by experience with the UF method.

The could have been specified differently, but the present
specification introduces few additional parameters, and turns
out to be sufficient for the problems considered here. The ra-
tionale for the introduction of the is to give the EA some-

thing it can use, e.g., for preventing rapid behavior switching
(see Section VI-D).

With the specific functional form chosen for the utility func-
tions [see (13)] and the choice of variation for the internal ab-
stract variables, the number of parameters used in each behavior
can be calculated as

(15)

where is the number of arguments in the utility functions [see
(13)] and is the number of parameters used in the expression
for the internal abstract variable [see (14)]. Here, four different
behaviors are used, each with a utility function that takes five
arguments , adding up to a total of 96 pa-
rameters to be determined by the EA.

In the EA, all parameters are randomly initialized in the range
[1,1], to which they are constrained during the evolution. If a
parameter receives a value outside this range, for instance via a
creep mutation, it is forced to lie on the boundary of the range
[1,1].

V. RESULTS

In this section, the results of the investigation are presented,
starting with an investigation of optimal parameter choices.
Next, the evolution of the four individual behaviors is pre-
sented. Finally, the evolution of the behavioral organizer is
presented, both for the simplified dynamical system and for the
dynamically modeled robot.

A. Parameter Settings and Input Signal Selection

1) Optimal Parameter Choices: Before evolving behaviors
or behavioral organization, a large set of runs was performed to
find the best possible set of mutation operators and parameter
choices. In general, finding optimal parameter values in prob-
lems of the kind considered in this paper is very difficult, since
1) the runs are rather time-consuming and 2) the results can vary
quite strongly from run to run. Thus, in order to find a reliable
average performance for a given setup, many runs must be per-
formed. In order to make a fair comparison between different
runs, the results after 100 generations were used. In all runs, the
population size was equal to 50.

Some general conclusions could be drawn from these runs.
First of all, the results turned out to be quite insensitive to the
amount of creep mutations used, and to the relative creep length
. Second, the best performance was found in runs using a para-

metric mutation rate inversely proportional to the number of
parameters in the network, and the best results were found for

values in the range , where
denotes the number of parameters that can be mutated.

The optimal rate of structural mutations was
found to be around 0.1–0.3 . For the addition of neu-
rons, the best results were found if zero-weight addition (see
Section III-D) was performed with a probability of around
0.5–0.8 .

Based on these results, the following parameter set
was chosen, and was then used throughout the simula-
tions: , , relative

514 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 5, OCTOBER 2005

, ,
(for neuron addition). The specification of indicates that
this mutation rate was set either to or .
The optimal values found are those that would be expected: a
mutation rate of or will, on average, lead
to a few mutations per individual, a common optimum found
when setting mutations rates [23]. The lower value found for
the structural mutations is also natural, since those mutations
generally make larger modifications of the evolving RNNs than
the parametric mutations.

2) Input Signal Selection: Before evolving behaviors, a set
of input signals presented to the RNN must be chosen. Using
the parameter choices mentioned in the previous section, dif-
ferent sets of input signals were investigated. Possible input sig-
nals are contact forces under the foot , joint positions ,
joint velocities , and acceleration of the COM . Several
runs were made with five different combinations of these pos-
sible signals: 1) ; 2) ; 3) ; 4) ; and
5) .

As above, the EA used a population of 50 individuals, and
was allowed to run for a total of 100 generations, allowing a fair
comparison between different runs.

The results from these runs showed that the best set of input
signals did indeed vary for different types of behaviors. When
evolving a standstill (balancing) type behavior, the signal set
that produced the best result was . When a locomotion
behavior was being evolved, the best results were obtained with
the set , even though the set provided slightly
better average results.

B. Evolution of Behaviors

As mentioned earlier, each behavior was evolved separately
and independently. The parameters were set according to the
results presented in Section V-A1. Guided by the results from
the investigation of optimal input signals in the same section,
two different sets were chosen for the straight-line motion be-
haviors (B1 and B2) and the standstill behaviors (B3 and B4).
For the evolution of behaviors B1 and B2, the input signal set

was chosen, and in the case of B3 and B4, the set
was . In all runs, the EA used a population of 50 indi-
viduals and the architecture of each individual used a reduced
SPS (see Section III-B2). In all runs, the initial networks con-
tained between 3 and 12 neurons (random initialization), and
were allowed to change in size as a result of the evolutionary
process, although the minimum number of neurons was equal
to two, so that motor signals always could be generated.

For all behaviors, the output of the first two neurons was taken
as actuator signals and fed to the motors.

Several runs were made for each behavior. In this section,
detailed descriptions are given of the networks that were chosen
to be parts in the complete robotic brain.

1) Move Forward Behavior (B1): A typical run for the evo-
lution of B1 lasted around 1000 generations. The final networks
for B1 contained 10 2 neurons (average over five runs). Once
evolved, B1 was able to move the robot forward for the entire
length of the simulation (4 s). In extended runs, B1 was able
to keep the robot in a straight line for an additional 4 s, after

which it started to deviate slightly from its forward path. How-
ever, the robot did not fall over. The demonstrated ability of B1
to keep the robot moving throughout runs that were much longer
than those used during evolution, shows that the evolved B1 has
solved the problem of forward motion in a general sense, rather
than just adapting to the conditions during the first 4 s of the
run. The cyclical nature of the torque curves (after the initial
transient), see Fig. 6, also indicates that the evolved RNN dis-
plays an oscillatory behavior similar to that of a central pattern
generator [24]. The motion of the robot (while using B1) had
a jumping characteristic, where the robot used the bottom front
edge of the foot to lean itself forward before pushing off and
jump a short distance forward. The average power consumption
for B1 was 12 J/s and the average velocity was 0.15 m/s. The
final RNN, representing B1, consisted of eight neurons and is
shown in Fig. 7. As is evident from the figure, the network was
quite complex, and networks of similar complexity (not shown)
were obtained for the other behaviors as well.

2) Move Backward Behavior (B2): Behavior B2 was
evolved in the same way as B1 but displayed a significantly
different type of motion. Here, the robot performed a crawling
type of motion, by interchangeably using the corner points of
the foot to move itself forward.

In the final network obtained for B2, the motion during B2
was straight-lined for the first 6 s, after which it started to turn.
Thereafter, the robot kept turning, and after 12 s it had com-
pleted a full turn. However, during the time for which B2 was
evolved (4 s), the robot displayed perfect straight-lined motion.

The slightly less impressive generalization properties of B2
were acceptable since, in the full robotic brain described next,
B2 should normally only be used in emergencies, i.e., to move
the robot backward in cases where forward motion is impossible
and is, thus, not likely to be applied continuously for extended
periods of time.

In B2, the average power consumption of the robot was 8.6 J/s
and the average velocity during the straight-lined motion was
0.12 m/s. The final network representing B2 consisted of trn
neurons.

3) Stop Behavior (B3): In B3, the task was simply to keep
the robot upright. However, in the complete robotic brain de-
scribed below, one can expect that the activation of B3 will nor-
mally occur when the robot is in motion, i.e., when it is exe-
cuting either B1 or B2. Thus, the initial conditions for the acti-
vation of B3 may vary strongly from case to case, and the be-
havior must, thus, be sufficiently robust to handle many different
initial conditions. In order to achieve such a behavior, the robot
was subjected to perturbations (see below) throughout the evo-
lution of B3.

a) Perturbations: The simulated robotic leg was subjected to
perturbations in the form of nonperiodic torques added to the
joints according to

(16)

(17)

if , and 0, otherwise, where is the time elapsed
since the start of the simulation, and is a constant. The param-
eters , , , and were initialized to a value close to 0 at

PETTERSSON AND WAHDE: APPLICATION OF THE UF METHOD FOR BEHAVIORAL ORGANIZATION IN A LOCOMOTION TASK 515

(a) (b)

Fig. 6. The two torques, generated by the move forward behavior during the first 4 s. (a) Shows the torque applied to the lower joint of the robot’s ankle. (b) Shows
the torque applied to the upper joint.

Fig. 7. RNN representing the move forward behavior (B1). Squares represent
input units of the RNN and circles represent the neurons. Filled circles indicate
output neurons (of which there are two here). Excitatory connections are shown
as solid lines, and inhibitory connections (i.e., connections with negative
weights) are shown as dashed lines. Triangles represent input units to the SPS.

the start of the simulation, and were then allowed to grow expo-
nentially to a maximum value of 1 Nm. The exponential growth
in these parameters took place in a stepwise manner after each
period of nonzero perturbations.

The evolved behavior managed to keep the leg upright for
the entire simulation length of 8 s. B3 proved to be very ro-
bust during extended simulations (also with perturbations, of the
form described above), in which the robot was kept upright (and
at standstill) for a total time of 120 s.

The average power consumption in B3 was 0.9 J/s and, at
all times, the robot remained in the same position. The final
network representing B3 consisted of eight neurons.

4) Charge Behavior: B4 was evolved in a similar way as B3,
but without any external perturbations. Due to the absence of
these perturbations, B4 was not able to perform as well as B3
in the extended simulations. However, for the 8 s used in the
evolution of B4, the robot remained in an upright position. In
extended simulations, the leg of the robot slowly moved out of
position and toward the ground.

The final structure of the RNN representing B4 had 11
neurons. As in B3, the average power consumption in B4 was
0.9 J/s. Of course, the evolved RNN used for B3 could in
principle have been employed also for B4. However, the fact

that a less robust RNN was used for B4 makes the behavioral
organization task more challenging.

C. Evolution of the Behavioral Organizer

Once the constituent behaviors had been evolved, several runs
were made using B1, B2, B3, and B4 as the repertoire of behav-
iors made available to the behavioral organizer.

1) Simplified Model: First, and for verification of the UF be-
havioral organization method, several runs were made using the
simplified model (see Section III-A3). The task of the robot was
to move as far as possible across the arena, shown in Fig. 1,
while avoiding collisions with obstacles and keeping the bat-
tery level from dropping to zero. In case of collisions or if the
battery level reached zero, the simulation was terminated.

The size of the arena, (8 m 3 m), was deliberately chosen
such that it would generally be very difficult for the robot to
traverse it entirely, since the aim was to test the ability of the
robot to organize its behaviors while in a crowded environment,
and while dealing with other problems, such as lack of battery
energy.

Each behavior was associated with a utility function as de-
scribed in Section III-B1 and Section IV-B, and the EA was,
therefore, required to set the parameters of these functions, as
well as the parameters determining the variation of the internal
abstract variables (96 parameters in total), in order to solve the
problem of crossing the arena. The fitness measure was simply
taken as the distance moved in the positive -direction.

In these runs, the evolved RNNs were not used to implement
the behaviors B1, B2, B3, or B4. Instead, the behaviors were
represented by constant velocities, which were set to match the
average velocities of each evolved behavior (see Section V-B).
For B1 the velocity was set to 0.15 m/s in the positive -direc-
tion and for B2 the velocity was set to 0.12 m/s in the negative

-direction. The velocities for both B3 and B4 were set to zero.
Therefore, in the simplified model, B3 and B4 differ only in the
fact that, in B4, the robot gains energy, whereas in B3 it does not.
Thus, a rational behavioral organizer would avoid using B3.

Since no dynamical (mechanical) system was implemented
in this simplified system, each behavior had to be implemented
with an artificial power consumption. As with the velocities, the

516 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 5, OCTOBER 2005

(a) (b)

Fig. 8. (a) Shows the distance traveled, as a function of generation (in the EA), for the best individual in a run with the simplified model. The maximum simulation
time was 100 s. (b) The actual simulation time of the best individual is shown, again as a function of generation. This curve shows that, after around 40 generation,
the best individual was capable of moving for the entire duration of the simulation without colliding or running out of energy.

power consumptions were set according to their RNN equiva-
lents. That is, for B1, B2, B3, and B4, the power consumption
was set to 12, 8.6, 0.9, and 0.9 J/s, respectively.

Due to the relatively small amount of available energy in the
batteries, the behavioral organizer needs to activate the charge
behavior quite often. The storage capacity of the battery and its
properties during charging were deliberately chosen this way in
order to test thoroughly the behavioral organization method.

In all runs performed, the evolved behavioral organizer was
able to activate the different behaviors in such a way that the
robot managed to avoid both collisions and running out of en-
ergy, for the entire length of the simulation. In early runs, the
simulation time was set to 60 s. Once these runs were success-
fully completed, the simulation time was extended up to a max-
imum of 150 s. The storage capacity of the battery was normally
50 J, but in some runs it was raised to 75 or 100 J.

A representative case is illustrated in Fig. 8. In this simula-
tion, the maximum simulation time was set to 100 s, and the
best individual managed to move 6.5 m, giving it an average ve-
locity of around 0.065 m/s. Due to the battery parameter settings
chosen, i.e., the rather fast discharging of the battery, the robot
did spend a lot of time in B4, which explains the rather low av-
erage velocity.

In Fig. 9, a snapshot of a typical situation is shown, in order
to illustrate the operation of the evolved utility functions. Here,
the robot was initially moving forward (top left panel), when
it detected an obstacle in front at around s. At this
point, with the way forward being blocked, the behavioral or-
ganizer chose to drop the utility of B1 until the charging be-
havior became active s . Thus, while waiting for the
obstacle to pass, the robot charged the batteries. Two factors
then contributed to the reactivation of B1: The utility of B4 de-
creased (slightly) due to the rise of battery energy, and the pas-
sage of the obstacle (which disappeared from sight at around

s raised the utility of B1, which was reactivated at
around s (top right panel).

In early runs, a fast switching phenomenon was observed in
successful individuals. By switching between B1 and B4 at a
high frequency, the behavioral organizer was able to regulate the
speed of the robot while, at the same time, maintaining a high

battery level. Needless to say, such a switching phenomenon
would be less useful for the fully dynamical model (see below),
since the acceleration phase present in B1 would then prevent
the robot from moving at all.

Nevertheless, in order to avoid this problem, and also to gen-
erate a more realistic simulation, the constant in (7) was in-
troduced, and was set to 0.5 s. The introduction of success-
fully removed the fast-switching phenomenon.

Another observation was that the organizer managed to keep
the robot from getting caught in “traffic jams.” That is, if the
robot found itself (based on sensor values) in a situation with
two obstacles approaching, one from each side, and a third ob-
stacle blocking the forward direction, the organizer was able to
activate B2 in order to avoid collisions. These situations did not
occur frequently but when they did, the organizer handled the
situation perfectly.

Also, since the fitness decreased during the time that B2 was
active, successful individuals minimized the use of B2. Simi-
larly, as expected, it was observed that B3 was never used by
the simplified model.

a) Overfitting and validation: As is often the case in simu-
lations involving optimization, the problem of overfitting, i.e.,
adaptation to a special situation, must somehow be tackled.
Here, this has generally been done by evolving the simulated
systems in an arena sufficiently long for the robot to encounter
many different situations. However, some runs were also made
in which each individual was evaluated in several arenas
with different initial obstacle configurations.3 Increasing the
number of evaluations per individual is a standard procedure
for reducing overfitting. In these cases, the total fitness of the
individual was taken either: 1) as the average performance
(distance traveled) over the arenas or 2) as the worst
performance.

The results of several runs with different are shown in
Table III. As can be seen in the table, the runs with
showed better validation performance than those with smaller

, as expected. Common to all runs, however, is the fact that
the validation performance was worse than the performance

3A specification of an obstacle configuration consists of setting the initial
positions and directions of movement of all obstacles.

PETTERSSON AND WAHDE: APPLICATION OF THE UF METHOD FOR BEHAVIORAL ORGANIZATION IN A LOCOMOTION TASK 517

Fig. 9. A behavior switch sequence where, at first, behavior B1 (move forward) is active. Shortly thereafter, behavior B4 (charge) gets activated due to the
detection of an approaching obstacle. As the obstacle passes, and the sensor signal decreases, B1 is activated again. For clarity, only the utility values for B1 (solid
line) and B4 (dashed line) are shown in the bottom panel.

TABLE III
COMPARISON OF THE PERFORMANCE OF INDIVIDUALS EVOLVED AGAINST

ONE, THREE, AND TEN DIFFERENT ARENAS, RESPECTIVELY. THE SECOND

COLUMN SHOWS THE FITNESS TYPE (AVERAGE OR WORST) USED, THE

THIRD COLUMN SHOWS THE AVERAGE FITNESS (i.e., DISTANCE MOVED)
OBTAINED DURING TRAINING, THE FOURTH COLUMN SHOWS THE

AVERAGE FITNESS (OVER 100 RANDOMLY GENERATED ARENAS)
OBTAINED DURING VALIDATION, AND THE FIFTH COLUMN

SHOWS THE CORRESPONDING STANDARD DEVIATION

during training, even though most individuals could traverse
more than half of the arena regardless of the obstacle configu-
ration encountered.

Runs where is much larger than one are, of course, much
more time-consuming than runs with and, therefore,
for the considerably slower runs involving the dynamical model
(see next), only the single-arena case was studied.

2) Dynamical Model: Several runs were made using the
full, dynamical model of the robot, again introducing utility
functions for each behavior as described for the simplified
model above, and again using the distance moved in the posi-
tive -direction as the fitness measure.

In these runs, the simulation time was set to 60 s, and the EA
used a population size of 50 individuals. The parameters were
set as above.

In the initial stages of all runs, it was common to find indi-
viduals that exclusively used B4 and, thus, were able to stand
(in the same position) for the entire simulation. However, since
they did not receive any fitness, those solutions were quickly re-
moved by the EA. As the runs progressed, individuals appeared
that were able to move and, eventually, also start passing the
moving obstacles. However, in the case of the dynamical model,
the performance of the simulated robots was much worse than
for the simplified model.

Fig. 10 illustrates the performance of the best individual as a
function of generation for one of the more successful runs. As
can be seen in the figure, the best individual was able to move
1.6 m before it ran out of energy (the battery level was set to
100 J) after a total time of 12 s.

Even though the best individuals moved for a relatively short
time, compared with the best individuals obtained with the sim-
plified model, the evolved behavioral organizer made the robot
efficiently use its sensors to avoid the moving obstacles. Fig. 11
shows a sequence of screenshots from the early stages of the
motion of the best individual in a typical run, and the variation
of the four utility functions (bottom right panel) representing
B1, B2, B3, and B4.

Fig. 11 shows how the behavioral organizer uses the available
sensors to avoid colliding with an obstacle. The top left panel
shows the robot while it is moving forward (B1 is active) and,
at the same time, an obstacle is approaching from its left side
(i.e., the right side in the figure). As the robot moves forward,
the energy level decreases, and near s, a switch is made to
B4 (charge) and the robot stops (a nontrivial procedure for the
dynamically modeled robot). In the top right panel, the robot is

518 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 5, OCTOBER 2005

(a) (b)

Fig. 10. A typical run using the fully dynamical robot. (a) Shows the distance travelled by the best indiviual in each generation. (b) Shows the actual simulation
time of the best individual is shown for each generation. As the maximum simulation time was set to 60 s, the solutions shown here were only able to complete a
small part of that time (12 s). This is due to the fact that simulations were aborted in case the robot fell over, ran out of energy, or if a collision with an obstacle
occurred. In this particular case, the robot ran out of energy.

Fig. 11. Early stages of a typical run. The bottom right panel shows the variation of the four utility functions in one of the best performing individuals during
evolution with the dynamic model. The curves represent the utility values for the behaviors move forward (solid curve), move backward (dotted curve), stop
(dash-dotted curve), and charge (dashed curve). See Section V-C2 for a detailed discussion of this figure.

standing still, charging its batteries. After an additional 2 s (at
s), the front proximity sensor signal makes a sharp drop

due to the fact that the obstacle moves out of the sensor’s range
and the organizer then activates B1, making the robot move for-
ward again (bottom left panel).

It is important to note that the drop in utility for B2 at around
5 s is affected both by the increase in battery energy and the fact
that the obstacle moves out of range of the sensor. Turning the
sensors off leads to disastrous results (collision), demonstrating

that the activation of behaviors is not a result of, e.g., lucky
timing caused by adaptation to the situation at hand, but instead,
as it should be, an active choice based on the available sensory
information.

This demonstrates the strength of the behavioral organization
method and shows that it is possible to combine independently
evolved behaviors into a complete robotic brain. However, the
fact that the robot had problems repeating the success in the runs
made with the simplified model (see Section V-C1) points to-

PETTERSSON AND WAHDE: APPLICATION OF THE UF METHOD FOR BEHAVIORAL ORGANIZATION IN A LOCOMOTION TASK 519

ward the organizer’s difficulties in coping with the imperfect be-
haviors available in the dynamical case (see Section VI) in con-
junction with the properties of the robot (i.e., the low storage
capacity and fast discharging of the battery). In fact, the evo-
lution of the behavioral organizer was quite successful, as the
robot managed to do the best it could, given the situation.

Animations and screenshots, produced during the work with
this paper, can be downloaded from http://www.me.chalmers.
se/~mwahde/robotics/UFMethod/Locomotion/hopping.html.

VI. DISCUSSION

A. Behavioral Organization Using the UF Method

The main conclusion that can be drawn from the experiments
performed here, is that the UF method is indeed able to orga-
nize successfully a set of behaviors, starting from random utility
functions. Even more importantly, the method is able to make
good use of behaviors that have not be tailor-made for the par-
ticular application in which they are put to use. For example,
none of the behaviors B1–B4 were evolved using information
from proximity sensors. Instead, the ability of the final robotic
brain to avoid obstacles is an emergent property of the behav-
ioral organizer.

In addition, it can be concluded that, through the optimization
of the utility functions, the UF method allows the robot to ex-
ecute behaviors that do not generate a fitness increase. Indeed,
in one case (B2), even a behavior that decreases the fitness is
used when needed. Of course, failure to use the auxiliary be-
haviors B2–B4 would lead to lower fitness in the long run, since
the robot would run out of energy or would collide with obsta-
cles. However, the important point is that the UF method solves
the problem of continuous relevance assignment for different be-
haviors, at least in cases where the robot has a single main task
to perform. Expressed differently, in the UF method, it is not
required that the user be able to specify, by hand, the relative
importance of, say, charging batteries and moving forward.

B. Performance Limitations

As mentioned in Section V, the size of the arena was chosen
such that it would be very difficult for the robot, with its given
maximum simulation time, to traverse it completely. Neverthe-
less, the simplified robot, infact managed to traverse the arena
in several cases, whereas the dynamically modeled robot per-
formed worse. However, this decrease in performance can be
attributed to the fact that the dynamics of this robot is, per defini-
tion, much more complex than that of the simplified robot. Thus,
even if the behavioral organizer achieves near-perfect selection
of behaviors, the robot’s motion will be limited by the capabil-
ities of the constituent behaviors. Thus, an important (though
somewhat trivial) conclusion is that the capabilities of a robotic
brain depend not only on the behavioral organizer, but also on
the individual behaviors, and that even the best behavioral or-
ganizer can fail to achieve its goals if the constituent behaviors
are inadequate.

Furthermore, some of the failures of the behavioral organizer
in the case of the dynamical model were due to rare situations
that were simply impossible for the simulated robot to handle re-
gardless of the behavioral organizer used. An example is shown

Fig. 12. Illustration of an obstacle configuration that is impossible to pass (due
to the limited amount of energy available in the battery, with the settings used
here), yet very difficult to avoid (due to the limited sensor range).

in Fig. 12. In the situation shown in the figure, the robot is ini-
tially moving forward when it is disturbed by an incoming ob-
stacle. Passing the first obstacle, the robot continues to move
forward, only to discover a previously unseen (due to limited
sensor range) obstacle, forcing the robot to continue forward,
at which point another obstacle (the top one in the figure) en-
ters the sensor range, again preventing the robot from stopping.
Despite the perfect performance of the behavioral organizer, the
robot then failed, due to an empty battery. Thus, the failure was,
in this case, entirely a result of the specific settings used for
sensor range and battery level.

C. Performance During Validation Runs

The increase in validation performance as was increased,
also shown in Table III, indicates that the use of several dif-
ferent obstacle configurations is needed in order to find the best
possible behavioral organizers, even though those obtained with

at least managed to pass around half of the arena re-
gardless of the encountered obstacle configuration.

D. Behavioral Organization, Evolution, and Ethology

Evidently, the task of organizing several behaviors is by no
means trivial, since the utility functions and internal abstract
variables that determine the behavioral organization usually
come with a large number of parameters (96, in the case
considered here). The many parameters is one of the main
motivations for using an EA for the optimization, and it does
indeed (normally) arrive at a solution rather quickly, in terms
of the number of evaluated individuals. For example, for the
simplified models, successful behavioral organizers could be
obtained after the evaluation of around 5000 individuals (see
Fig. 8), which required around 2.5 hours on a P4 computer with
a 2.53 GHz processor (in cases where each individual was eval-
uated in a single arena. The running time scales linearly with
the number of evaluations per individual). The runs involving
the dynamical model required more individuals: in some cases,
up to 50 000 individuals were evaluated, in which case the runs
took several days.

It should be noted that the EA is, to a great extent, paralleliz-
able, meaning that a cluster of computers could speed up a

520 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 5, OCTOBER 2005

run by (slightly less than) a factor . However, it is doubtful
whether more extensive runs would improve the results, since
the performance of the evolved behavioral organizers was found
to be limited not so much by the number of evaluated individ-
uals, but rather by the quality of the constituent behaviors (see
Section VI-A).

The UF method [10] is based on ethological considerations.
Ethology is (or should be) an important source of inspiration for
(autonomous) robotics, since animals often show remarkably ef-
ficient solutions to the problem of behavioral organization (see
[25] for an excellent review). In particular, animals, (and, for
that matter, humans) behave as if they were maximizing a quan-
tity, which one may call utility, and which serves as the common
currency when a decision is made concerning which behavior to
activate in a given situation.

The behavioral organizers obtained via the UF method are de-
signed always to activate the behavior associated with maximum
utility. However, some behaviors, such as battery charging, usu-
ally display sinking utility values when activated, often leading
to a rapid switching back and forth between, say, a charging
behavior and a motion behavior. Taking a hint from ethology
(see, e.g., [26, p. 72]), such switching should be avoided: an-
imals normally do not switch rapidly back and forth between
different behaviors, unless it is absolutely necessary to do so,
since such switching normally reduces the overall performance.
Thus, the ansatz for a utility function must be such that it will be
possible for the behavioral organizer to avoid rapid switching.
This is one of the motivations for the introduction of the ab-
stract internal variables: the sudden jumps in their values when
a new behavior is activated reduces the risk for dithering. In-
deed, none of the evolved behavioral organizers obtained here
displayed rapid behavior switching, except for the early runs
with the simplified model. However, in that case, the behavior
switching was not caused by badly designed utility functions
and internal abstract variables, but rather by the unrealistically
simple charging behavior. Once the delay was introduced, all
dithering disappeared immediately.

E. Evolution of Individual Behaviors

In Section V, it was noted that the dynamically modeled robot
achieved worse results than the simplified model. While this
is not surprising, it points to a difficulty in using RNNs as an
architecture for motor behaviors. This is a problem of robust-
ness: even in careful evolution, where the evolving systems are
exposed to many different situations, the RNNs rarely become
sufficiently general to function in any situation (as mentioned in
Section V-B). It is interesting to note, however, that the behav-
ioral organizer was still able to do fairly well, due to its ability
to keep behaviors active only for as long as they performed as
intended. On the other hand, this represents an additional (and
somewhat unnecessary) complication for the behavioral orga-
nizer: it would certainly be better if the behaviors were always
performing their tasks well, so that the organizer could instead
focus completely on the selection of behaviors based on more
relevant factors (such as, e.g., battery energy, the presence or
absence of obstacles, etc.).

VII. CONCLUSION

In this paper, it has been demonstrated how a complete robotic
brain for single-legged locomotion can be generated by means
of a two-stage process, in which a repertoire of behaviors are
generated first, by whatever means desired (in this case, artifi-
cial evolution of RNNs), after which the behavioral organizer is
generated using the UF method. The utility functions, obtained
through artificial evolution in the UF method, allows the robotic
brain to select correctly between the available behaviors in order
to solve the primary task of the robot. It has also been demon-
strated that the UF method is able to solve the behavioral organ-
ization problem even in cases where the constituent behaviors
are not completely reliable in their performance over extended
periods of time, as was generally the case for the RNN-based
motor behaviors considered here. Finally, the importance of se-
lecting an appropriate repertoire of behaviors, as well as equip-
ping the robot with appropriate capabilities as regards, e.g., sen-
sors and batteries has also been demonstrated. If the behavioral
repertoire (or, e.g., the sensory capabilities) are chosen badly,
the robot may fail in its task even if the behavioral organization
is carried out perfectly under the given circumstances.

REFERENCES

[1] T. Arakawa and T. Fukuda, “Natural motion trajectory generation of
biped locomotion robot using genetic algorithm through energy opti-
mization,” in Proc. IEEE Int. Conf. Systems, Man, Cybern., 1996, pp.
1495–1500.

[2] J. Furusho, S. Akihito, S. Masamichi, and K. Eichi, “Realization of
bounce gait in a quadruped robot with articular-joint-type legs,” in Proc.
IEEE Int. Conf. Robotics and Automation, 1995, pp. 697–702.

[3] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The development of
Honda humanoid robot,” in Proc. IEEE Int. Conf. Robotics Automation,
1998, pp. 1321–1326.

[4] C. Paul and J. Bongard, “The road less travelled: morphology in the
optimization of biped robot locomotion,” in Proc. IEEE/RSJ Int. Conf.
Intell.Robots Syst., Maui, HI, 2001, pp. 226–232.

[5] M. Wahde and J. Pettersson, “A brief review of bipedal robotics re-
search,” in Proc. 8th UK Mechatronics Forum Int. Conf., Jun. 2002, pp.
480–488.

[6] Y. Fujimoto and A. Kawamura, “Simulation of an autonomous biped
walking robot including environmental force interaction,” IEEE Robot.
Autom. Mag., vol. 5, no. 2, pp. 33–42, Jun. 1998.

[7] Q. Li, A. Takanishi, and I. Kato, “Learning control of compensative
trunk motion for biped walking robot based on ZMP,” in Proc. IEEE/RSJ
Int.Conf. Intell. Robot Syst., vol. 1, 1992, pp. 597–603.

[8] B. Blumberg, “Action-selection in Hamsterdam: Lessons from
ethology,” in Proc. 3rd Int. Conf. Simulat. Adapt. Behav., Brighton,
U.K., Aug. 1994, pp. 108–117.

[9] P. Pirjanian, “Behavior-coordination mechanisms—State-of-the-art,”
Inst. Robotics and Intell. Syst., Univ. Southern California, Los Angeles,
CA, Tech. Rep. IRIS-99-375, Oct. 1999.

[10] M. Wahde, “A method for behavioral organization for autonomous
robots based on evolutionary optimization of utility functions,” J. Syst.
Control Eng., vol. 217, no. 4, pp. 249–258, Sep. 2003.

[11] X. Yao, “Evolving artificial neural networks,” Proc. IEEE, vol. 87, no.
9, pp. 1423–1447, 1999.

[12] MicroMo. [Online]. Available: http://www.micromo.com
[13] Faulhaber. [Online]. Available: http://www.faulhaber.com
[14] J. Pettersson, H. Sandholt, and M. Wahde, “A flexible evolutionary

method for the generation and implementation of behaviors for hu-
manoid robots,” in Proc. IEEE-RAS Int. Conf. Humanoid Robotics,
Nov. 2001, pp. 279–286.

[15] L. Magdalena and F. Monasterio-Huelin, “A fuzzy logic controller with
learning through the evolution of its knowledge base,” Int. J. Approx.
Reasoning, vol. 16, no. 3–4, pp. 335–358, Apr.–May 1997.

[16] C. Paul, “Bilateral decoupling in the neural control of biped locomotion,”
in Proc. 2nd Int. Symp. Adapt. Motion Animals Mach., Kyoto, Japan,
2003.

PETTERSSON AND WAHDE: APPLICATION OF THE UF METHOD FOR BEHAVIORAL ORGANIZATION IN A LOCOMOTION TASK 521

[17] J. Holland, Adaptation in Natural and Artificial Systems. Cambridge,
MA: MIT Press, 1992.

[18] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA:
MIT Press, 1996.

[19] J. Pettersson, “Evodyn: A simulation library for behavior-based
robotics,” Dept. Mach. Vehicle Syst., Chalmers Univ. Technol., Göte-
borg, Sweden, Tech. Rep., Sep. 2003.

[20] R. Featherstone, Robot Dynamics Algorithms. Norwell, MA: Kluwer,
1987.

[21] S. McMillan, “Computational dynamics for robotic systems on land and
under water,” Ph.D. dissertation, The Ohio State Univ., Columbus, OH,
Summer 1994.

[22] J. J. Craig, Introduction to Robotics: Mechanics and Control, 2nd
ed. Reading, MA: Addison-Wesley, 1989.

[23] G. Ochoa, I. Harvey, and H. Buxton, “Optimal mutation rates and se-
lection pressure in genetic algorithms,” in Proc. Genetic Evol. Comput.
Conf., 2000, pp. 315–322.

[24] T. Reil and P. Husbands, “Evolution of central pattern generators for
bipedal walking in a real-time physics environment,” IEEE Trans. Evol.
Comput., vol. 6, no. 2, pp. 159–168, Apr. 2002.

[25] D. McFarland, Animal Behavior: Psychobiology, Ethology and Evolu-
tion, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, Dec. 1998.

[26] P. Slater, Essentials of Animal Behavior. Cambridge, U.K.: Cambridge
Univ. Press, 1999.

Jimmy Pettersson received the B.Sc. degree in me-
chanical engineering from Mälardalens Högskola,
Eskilstuna, Sweden, in 1997, and the M.Sc. degree in
mechanical engineering from Chalmers University
of Technology, Göteborg, Sweden, in 1999. He is
currently working towards the Ph.D. degree in the
Adaptive Systems Group, Department of Applied
Mechanics, Chalmers University of Technology.

His main research concerns the use of biologi-
cally inspired computation methods in the field of
behavior-based robotics.

Mattias Wahde received the Ph.D. degree in me-
chanics from Chalmers University of Technology,
Göteborg, Sweden, in 1997.

He is currently an Associate Professor and leads
the Adaptive Systems Group, Department of Applied
Mechanics, Chalmers University of Technology.
His main research interests are biologically inspired
computation methods and their applications, par-
ticularly, in the fields of autonomous robots and
bioinformatics.

Paper IV

Structural Evolution of Central Pattern Generators

for Bipedal Walking in 3D Simulation

to appear in

Proceedings of the 2006 IEEE International Conference on Systems, Man, and
Cybernetics (SMC 2006), Taipei, Taiwan, October 2006.

Structural Evolution of Central Pattern Generators for Bipedal

Walking in 3D Simulation

Krister Wolff, Jimmy Pettersson, Almir Heralić, and Mattias Wahde

Abstract— Anthropomorphic walking for a simulated bipedal
robot has been realized by means of artificial evolution of
central pattern generator (CPG) networks. The approach has
been investigated through full rigid-body dynamics simula-
tions in 3D of a bipedal robot with 14 degrees of freedom.
The half-center CPG model has been used as an oscillator
unit, with interconnection paths between oscillators undergoing
structural modifications using a genetic algorithm. In addition,
the connection weights in a feedback network of predefined
structure were evolved. Furthermore, a supporting structure
was added to the robot in order to guide the evolutionary
process towards natural, human-like gaits. Subsequently, this
structure was removed, and the ability of the best evolved
controller to generate a bipedal gait without the help of the
supporting structure was verified. Stable, natural gait patterns
were obtained, with a maximum walking speed of around 0.9
m/s.

I. INTRODUCTION AND MOTIVATION

The great interest in humanoid robots during the last

decade is motivated by the many advantages of bipedal

robots over wheeled robots. First of all, humanoid robots

(and bipedal robots in general) are able to move in areas

that are inaccessible to wheeled robots, such as staircases and

rugged outdoor terrain. In addition, their human-like shape

allows such robots to function in constructed environments,

such as homes or industries which, naturally, are adapted to

people. Furthermore, recent studies [1], [2], [3] have claimed

that people are more comfortable interacting with a robot

with an approximately human shape, rather than a tin can-

like wheeled robot.

However, an obvious problem confronting humanoid

robotics is the generation of stable gaits. Whereas wheeled

robots normally are statically balanced and remain upright

regardless of the torques applied to the wheels, a humanoid

robot must be actively balanced, particularly if it is to

execute a human-like, dynamic gait. Several methods for

generating bipedal gaits have been proposed in the literature.

An important example is the ZMP method [4], where control

torques are generated in order to keep the zero-moment point

within the convex hull of the support area defined by the feet.

However, the success of gait generation methods based

on classical control theory, such as the ZMP method, relies

on the calculation of reference trajectories for the robot to

follow. That is, trajectories of joint angles, joint torques,

or the centre-of-mass of the robot are calculated so as to

satisfy the ZMP constraint [5], [6]. When the robot is acting

The authors are affiliated with the Department of Applied Mechanics,
Chalmers University of Technology, 412 96 Göteborg, Sweden. Correspond-
ing author’s e-mail: krister.wolff@chalmers.se

in a well-known constructed environment, the ZMP method

should work well. When acting in a dynamically changing

real world environment, however, the robot will encounter

unexpected situations which cannot all be accounted for

beforehand. Hence, reference trajectories can rarely be speci-

fied under such circumstances. To address this problem, there

has recently been a movement in the robotics community

towards alternative, biologically inspired control methods.

Such methods do not, in general, require any reference tra-

jectory. Typically, robotics researchers employ bio-inspired

control strategies based on artificial neural networks (ANNs)

[7], [8] or central pattern generators (CPGs) [9]. Often some

kind of evolutionary algorithm (EA) is utilized for the design

of the controller [10], [11], [12], [13], and [14].

Clearly, walking is a rhythmic phenomenon, and many

biological organisms are indeed equipped with CPGs, i.e.

neural circuits capable of producing oscillatory output given

tonic (non-oscillating) activation [15]. CPGs have been stud-

ied in several simple animals, such as the lamprey [16] for

which mathematical models have been developed as well

[17], [18]. CPGs have also been studied in more complex

animals, such as cats and primates ([19], [20], [21]), and

there are also observations that support the notion of CPGs

in humans. For example, treadmill training of patients with

spinal cord lesions is assumed to rely on the adequate

activation of a CPG [21].

Developing artificial counterparts to biological CPGs, with

the aim of generating robust gaits for bipedal robots, is an

active field of research. In seminal works by Taga et al.,

[9], [22], a gait controller based on the half-center CPG

model (see below) has been investigated. It was demonstrated

in a 2D simulation of a five-link biped that the controller

made the robot robust against physical perturbations [9].

Furthermore, obstacle avoidance through regulation of the

step length was realized [22].

Shan et al. [11] generated bipedal walking in a 2D simu-

lation using CPGs. A multi-objective genetic algorithm was

used to optimize the synaptic weights in a network composed

of nine CPG units. Reil and Husbands [23] used genetic al-

gorithms (GAs) to optimize fully connected recurrent neural

networks (RNNs), which were used as CPGs to generate

bipedal walking in 3D simulation. They used a GA, with

a real-valued encoding scheme, to optimize weights, time

constants, and biases in fixed architecture RNNs. Their biped

model had six degrees-of-freedom (DOFs), and consisted of

a pair of articulated legs connected with a link. The resulting

CPGs were capable of generating bipedal, straight-line walk-

ing on a planar surface. Furthermore, simple sensory input to

locate a sound source was integrated to achieve directional

walking.

CPGs have desirable properties, such as intrinsic aptness

for the formation of periodic output patterns and adaptation

to the environment through entrainment, for the generation

of gaits and other types of repetitive and stereotypic motions.

Manually tuning the parameters of the CPGs and defining

the feedback and interconnection paths in an optimal way is

a daunting task. In many cases reported in the literature, e.g.

[22], [24], [25], [26], and [27], the design of CPG networks

has commonly been carried out in an intuitive manner; a

time-consuming and difficult process which may lead to sub-

optimal performance. Even in cases where GAs have been

applied, as in several of the references mentioned above,

the approach has generally been restricted to parametric

optimization in a network of fixed architecture.

In this paper, the problem of generating both the structure,

i.e. the network feedback and interconnection paths, and

the parameters of a CPG network controlling a fully three-

dimensional, simulated bipedal robot with 14 DOFs will be

considered, using a GA as the optimization method. The

half-center CPG model, as originally proposed by Matsuoka

[28], will be adopted as the oscillator unit. A challenging

problem, which is seldom mentioned (the papers by Paul

and Bongard [29] are an exception), is the fact that, while

biological organisms have developed their walking patterns

(and, indeed, other behaviors as well), over long periods

of simultaneous evolutionary optimization of both body and

brain, in robotics one attempts instead to provide an already

fixed body structure with a brain capable of generating a

bipedal gait. This poses many problems for a GA-based

approach. For example, if only the distance covered is used

as the fitness measure, a common result is to find individuals

that simply throw themselves forward, rather than walking;

Walking would certainly yield a higher fitness value, yet this

solution may be very hard to find, given the readily accessible

local optimum found by those individuals throwing their

body forward. Thus, the evolutionary process grinds to a halt

almost immediately. Of course, this type of solution can be

avoided simply by adding constraints on body posture as part

of the fitness measure. However, such constraints must often

be added in an ad hoc manner, and they often lead to results

(such as non-natural gaits) that are undesirable. Rather than

changing the fitness measure, one may attempt to change

the body of the robot. Evolving an upright, bipedal gait

from, say, an initial population of crawling individuals would

perhaps be infeasible. However, another option, which will

be considered in this paper, is to add a supporting structure

to the robot, helping it to balance as it starts to walk. Some

different strategies for subsequently removing this support,

while maintaining a dynamically stable gait, will then be

investigated.

II. CENTRAL PATTERN GENERATORS

A. Models from biology

From biological studies, three main types of neural circuits

for generating rhythmic motor output have been proposed,

bv1

bv2

yw y12 2w y21 1

u0

u0

1

2

+

-

Fig. 1. A half-center model (Matsuoka) oscillator unit. Excitatory connec-
tions are indicated by open circles, and inhibitory connections are indicated
by filled disks.

namely the closed-loop model, the pacemaker model, and

the half-center model. The two former models are described

in [30]. The half-center model, which will be considered

in this paper, was proposed to account for the alternating

activation of flexor and extensor muscles of the limbs of a

cat during walking. The basis of this model is the classical

experiments reported by Brown from 1911 [31] and 1912

[19]. Each pool of motor neurons for flexor or extensor

muscles is activated by a corresponding half-center, or pool,

of interneurons. Another set of neurons provides for a steady

excitatory drive to these interneurons. Between each pool of

interneurons are inhibitory connections which ensure that,

when one pool is active, the other is suppressed. Matsuoka

[28] analyzed the mutually inhibiting neurons and found the

conditions under which the neurons generated oscillations.

B. Mathematical formulation of the CPG model

Commonly, a CPG is computationally modeled as a net-

work of identical systems of differential equations, which

are characterized by the presence of attractors1 in the phase

space [32]. Usually, a periodic gait of a legged robot is a

limit cycle attractor, since the robot periodically returns to

(almost) the same configuration in phase space.

Each node in the network is referred to as a neuron, or

cell. The half-center model mentioned above is commonly

adopted as the biological foundation for a rhythm generator,

see e.g. [9], [11], [22], [24]. The neurons in the half-center

model are described by the following equations [9]:

τuu̇i = −ui − βvi +
n∑

j=1

wijyj + u0, (1)

τv v̇i = −vi + yi, (2)

yi = max(0, ui), (3)

where ui is the inner state of neuron i, vi is an auxiliary

variable measuring the degree of self-inhibition (modulated

by the parameter β) of neuron i, τu and τv are time constants,

u0 is an external tonic (non-oscillating) input, wij are the

weights connecting neuron j to neuron i, and, finally, yi

1Attractors are bounded subsets of the phase space, to which regions of
initial conditions converge as time evolves.

Fig. 2. The leftmost panel shows the simulated robot, and the second panel from the left shows its kinematics structure with 14 DOF. The two right
panels show the robot with its supporting structure, the left one having four contact points, while the right one has two contact points.

is the output of neuron i. Two such neurons arranged in a

network of mutual inhibition (a half-center model), as shown

in Fig. 1, form an oscillator, in which the amplitude of the

oscillation is proportional to the tonic input u0. In addition,

if an external oscillatory input is applied, the oscillator will

lock to the frequency of the input. If the input is removed,

the oscillator smoothly returns to the original frequency.

III. METHOD

In this section the physical simulation environment, the

CPG network structure, the feedback paths, and the evolu-

tionary algorithm will be described.

A. Dynamical simulation

A fully three-dimensional bipedal robot with 14 degrees of

freedom, shown in the leftmost panel of Fig. 2, was used in

the simulation experiments. The simulated robot weighs 7 kg

and is 0.75 m tall. The distance between the ground and the

hips is 0.45 m. As shown in the second panel from the left

in Fig. 2, the waist has 2 DOFs, each hip joint has 3 DOFs,

the knee joints have 1 DOF each, and the ankle joints have 2

DOFs each. The CPG network generates torques, which are

applied to their respective joints in order to control the robot.

To guide the evolution towards a natural biped gait, the robot

has been fitted with two different mass-less posture-support

structures, as depicted in the two right panels of Fig. 2.

The simulations were carried out using the EvoDyn simu-

lation library [33], which was developed at Chalmers Univer-

sity of Technology. Implemented in object-oriented Pascal,

EvoDyn is capable of simulating tree-structured rigid-body

systems and runs on both Windows and Linux platforms.

Its dynamics engine is based on a recursively formulated

algorithm that scales linearly with the number of rigid bodies

in the system [34]. For numerical integration of the state

derivatives of the simulated system, a fourth order Runge-

Kutta method is used. Visualization is achieved using the

OpenGL library.

B. CPG network

In the CPG network, which is responsible for the genera-

tion of motions, each joint is assigned a specific half-center

oscillator consisting of two neurons; a flexor neuron and an

extensor neuron. The overall structure of the CPG network

is depicted in Fig. 3.

In order to reduce the size of the search space for the

GA, symmetry constraints were added, motivated by the fact

that, modulo a phase difference, the movements of the left

and right parts of the robot are symmetrical. Hence, the

structure of the CPGs on the right side of the robot mirrors

that of the left side. For example, the connection weight

between the left hip and the left knee is equal in value to

the weight connecting the right hip to the right knee. In

the network the hip CPG on a given side responsible for

rotation in the sagittal plane, can be connected to all the

other ipsilateral2 joint CPGs, the corresponding contralateral

hip CPG, and the waist CPGs as well. Note, however, that

this hip joint CPG can only receive connections from the

corresponding contralateral hip joint CPG. Thus, the total

number of connections to be determined sums up to 32, see

also Fig. 3 for the details of inter-CPG connectivity.

For reasons that will be discussed in Sect. IV, the internal

parameters of the individual two-neuron CPGs were set to

fixed values, generating a frequency approximating that of a

normal walking pattern. The CPG parameters were set to the

following values for all CPGs, except for the knee joint CPGs

and the waist joint (rotation in the sagittal plane) CPG: τu =
0.025, τv = 0.3, β = 2.5, u0 = 1.0, w12 = w21 = −2.0. In

analogy with human gait, the knee joint CPGs and the waist

joint CPG oscillate with double frequency, compared to the

other CPGs. Thus, for these joints’ CPGs the τu,v values

were set to half of the value for the other CPGs.

C. Genetic algorithm

A GA has been used for optimizing the structure of

the CPG network controlling the movements of the robot.

As mentioned above, the number of evolvable connections

equals 32. In the GA, two chromosomes were used for the

CPG network: one binary-valued chromosome determining

the presence or absence of each of the 32 connections,

2The term ipsilateral refers to the same side of the body, and is thus the
opposite of contralateral.

Fig. 3. Left panel: The structure of the CPG network used in the simulations. The connections are represented, in a slightly simplified way, by the arrows
in the figure. Note that an arrow indicates the possibility of full connection, as shown in the rightmost part of the panel. Right panel: The robot depicted
with a single hip joint CPG with feedback paths, and a possible choice of connection types. In the situation shown in the figure, the flexor neuron is
responsible for rotating the hip joint in the counterclockwise direction.

and one real-valued chromosome determining the parameter

values for those connections which are actually used in a

given individual. Along with the CPG network structure, the

feedback network can also be evolved using a third (real-

valued) chromosome, which includes 20 parameters deter-

mining the sign and the strength of the different feedback

paths (see below).

The fitness measure was normally taken as the distance

walked by the robot in the initial forward direction, decreased

by the sideways deviation. Some attempts were made to

use a multi-objective GA (MOGA), with three populations

evolving simultaneously towards different fitness measures,

namely (1) the distance walked, (2) the number of times an

entire foot touched the ground, and (3) the sum of the shortest

distance (of the two legs) in the vertical direction between

the hips and the knees over all time steps. Criterion (2) was

included in order to suppress running behavior where the

feet hardly touched the ground, which affected the frontal

plane balance. The last criterion should promote an upright

posture. However, the MOGA did not lead to any significant

improvement. Hence, a standard GA was eventually chosen

for the simulation experiments.

For selection, a tournament scheme of size 8 was adopted.

The individuals were randomly picked from the population

to compete against each other, based on the fitness values.

The individual with highest fitness value was then selected

with a probability equal to 0.75. After selection, the mutation

operator was applied, randomly changing a gene’s value with

the probability 10/N , with N being the total number of

genes of the individual.

D. Feedback

In order to guide the evolutionary process towards an

upright and stable bipedal gait, feedback was introduced

measuring the waist angle, thigh angle, and lower leg angle,

all relative to the vertical axis. Also, a touch sensor in each

foot was introduced in the simulation. This sensor is used

both to produce a feedback signal and to enable, or prohibit,

feedback to a certain joint CPG during a specific phase, e.g.

the stance phase. The feedback was incorporated into the

CPGs by adding an extra term to (1), which then becomes

τuu̇i = −ui − βvi +

n∑

j=1

wijyj + u0 + f (4)

where f is the feedback. In this setup, the feedback structure

is decided upon beforehand. However, the actual type of

the connection (inhibitory or excitatory) and the strength

of the feedback are determined by the GA. An example

of the feedback paths connected to the hip joint (and a

possible choice of connection type) is shown in the right

panel of Fig. 3. In detail, the feedback paths are given by

the following equations:

waist1 = c1w1f,e
θw + pr[w1f,e

(c2θr,u + θr,l)]

+pl[w1f,e
(c2θl,u + θl,r)] (5)

waist2 = w2f,e
θl,u − w2f,e

θr,u (6)

hip1,l = w3f,e
θl,u − w3f,e

θr,u + c3w3f,e
er (7)

hip2,l = el[w4f,e
θl,u] (8)

hip3,l = w5f,e
θhip3,l

(9)

kneel = er[w6f,e
θr,l] (10)

anklel = el[w7f,e
θl,u] (11)

footl = el[w8f,e
θl,l] + er[c4w8f,e

θr,l] (12)

hip1,r = w3f,e
θr,u − w3f,e

θl,u + c3w3f,e
el (13)

hip2,r = er[w4f,e
θr,u] (14)

hip3,r = w5f,e
θhip3,r

(15)

kneer = el[w6f,e
θl,l] (16)

ankler = er[w7f,e
θr,u] (17)

footr = er[w8f,e
θr,l] + el[c4w8f,e

θl,l] (18)

where waist1 is the joint rotating the torso in the sagittal

plane, and waist2 denotes the joint responsible for frontal

plane rotation. Likewise, hip1 rotates the leg in the sagittal

plane, while hip2 rotates the leg in the frontal plane. The hip3

joint is responsible for rotation around the vertical axis. The

strength and the sign of the feedback paths are determined by

the 16 weights wif,e
, along with the four additional constants

ci.

Since each joint CPG consists of two units, a flexor neuron

and an extensor neuron, two different connection weights are

used, wif
and wie

, respectively, as indicated in the equations.

Apart from this, the feedback paths for the two CPG neurons

are identical. Hence, the total number of parameters to be

determined sums up to 20.

Furthermore, θw is the torso angle in the sagittal plane,

θl,u is the left upper leg (thigh) angle, and θl,l is the left

lower leg angle. Correspondingly, the angles for the right

leg are denoted θr,u and θr,l. The angle of the hip3 joint in

the local frame is denoted θhip3,i
, where i is either r (right)

or l (left). Finally, ei and pi stand for enable and prohibit

respectively. If the corresponding foot is on the ground, ei is

equal to one, and zero otherwise. If the corresponding foot

is not in contact with the ground, pi equals one, and zero

otherwise.

IV. SIMULATIONS

In this section, simulation experiments of three different

methods, all involving posture-support structures, will be

discussed.

In order to guide the evolution towards human-like gait,

and at the same time avoid the problems related to complex

fitness functions (see Sect. I), the simplest fitness measure,

i.e. the distance covered, has been used here, in combination

with a mass-less posture-support structure, as shown in the

right panels of Fig. 2. Given a supporting structure, the robot

is forced to an upright position, and only individuals capable

of producing repetitive leg motion will gain high fitness.

When the support is used, such individuals will appear early

in the evolution. However, a drawback with this method is

that when the repetitive leg motion is discovered, individuals

will start to exploit the support mechanism in many different

ways. One common result is that individuals tend to take

unnaturally large steps. While this gives high fitness when

the support is used, it will certainly have a negative effect on

the frontal plane balance once the support is removed. Thus,

in an attempt to avoid this motion pattern, a choice was made

not to evolve the internal parameters of the individual two-

neuron CPGs, shown in Fig. 1, simply because the evolution

would strive towards lower frequencies. Also, in order to

prevent crawling behaviors, each individual run was aborted

if the hips of a robot collided with the ground.

Information concerning the simulations is given in Table I.

In the following subsections the simulation experiments will

be described in more detail.

A. Method 1: Four-point support

The first experiments were made using a posture support

with four contact points, as shown in the right panel of Fig. 2.

The four-point support was attached to the robot in such a

way that there was a predetermined distance d between the

contact points of the support and the ground. Different values

of d were examined, as shown in the 1st, 2nd, and 3rd rows

of Table I. Feedback was not used here, and the hip2, hip3

and ankle joints were locked. However, no successful gait

patterns were obtained in this way. The individuals simply

exploited the support too much, leading to unnatural gait

patterns of different kinds, also briefly described in the table.

For example, the 0.02, 2 support configuration (3rd row) led

to an individual performing a running gait, which one might

expect to be useful, but that individual over-exploited the

support to such an extent that it could not maintain its balance

at all without the support. In Fig. 4, some of the resulting

motions are depicted.

In order to meet the intended goal, i.e. evolving a human-

like gait for the robot, two modified strategies were also tried.

In the first strategy the support was gradually removed, in

the sense that d increased during evolution, as better fitness

values were obtained. The assumption here was that this

should eventually lead to an individual that was completely

independent from the support. However, this approach did

not improve the outcome, compared with the previous results.

In the second strategy, the support was not gradually

removed during evolution, but instead individuals were pun-

ished for using it. The fitness measure was simply decreased

by a factor, properly normalized, measuring the number of

ground contacts with the support. However, this approach

did not yield any improvements either.

In the case of four-point support no useful results were

obtained; the individuals simply exploited the support too

much, resulting in unnatural gait patterns. For example,

when using the first modified strategy, gradually removing

the support, a slow unstable gait pattern, resembling a

drunkard’s walk, emerged. When using the second modified

strategy, with punishment for support usage, the result was

an individual using a hop gait for locomotion.

B. Method 2: Two-point support in 2D, then 3D

Since no acceptable results were found with the four-point

support, the support structure was changed to one having

only a single contact point on each side of the robot, as seen

in the rightmost panel of Fig. 2. Rather than evolving 3D

balance at once, as in the previous case, the idea now was

to divide the problem into two phases; first evolving gait in

2D, and second, to generalize it to a full 3D gait.

In this procedure, a CPG network capable of producing

a stable upright gait in the sagittal plane should first be

evolved using the two-point support, with the hip2, hip3

and ankle joints locked at this stage. Second, when a stable

individual has been obtained, it should be cloned creating a

new population consisting of copies of this individual. At this

stage, the support should be removed and the GA should find

a way to balance the robot in the frontal plane as well. Before

the evolution starts, the hip2 and ankle joints should be

unlocked and the corresponding genes, including the genes

encoding the waist joint parameters, should be randomly

initiated for each individual in the population. Since the

remaining genes (which are identical for all individuals)

ensure sagittal plane balance they should not be changed

in the second step.

1) Phase 1: Evolving balance in the sagittal plane:

During this first phase the hip2, hip3 and ankle joints were

locked. Balance in the sagittal plane was evolved using a

Fig. 4. The left panel shows the simulated robot taking unnaturally large steps. The right panel shows the robot exploiting the four-point support. Note
that the supporting structure is not shown in the pictures.

two-point support, with contact points placed 2 m from the

robot and 0.25 m above the ground. This configuration was

chosen since it ensures low sideways leaning angle and at

the same time allows the robot to bend its knees without the

support touching the ground. Furthermore, if a robot’s hips

collided with the ground, the evaluation of that particular

individual was terminated.

In order to balance in the sagittal plane the evolutionary

procedure started misusing the torso as a third leg, achieving

speeds up to 0.3 m/s. This problem was solved by simply

removing the contact point in the torso which is used to

detect the collision with the ground. Once the torso could not

be used for support, evolution found the large step motion,

as described earlier, ensuring balance in the sagittal plane

with a speed of approximately 0.45 m/s, see the 4th and 5th

rows of Table I.

In order to reduce the step length, hand-tuned feedback

paths were introduced measuring torso, upper leg, and lower

leg angles, as described in Sect. III. Adding feedback, a

significant reduction in evolution time was observed. The

same fitness value as before could now be reached approx-

imately 5 times faster. However, the individuals were still

taking unnaturally large steps.

Success in obtaining an upright human-like gait, with

normal step size, was achieved using the following rule:

during the evaluation of each individual, if the robot’s hip

fell below a certain value, the support was removed until the

end of that run. If the step length is large and the support is

removed in this way, the robot will most likely be unable to

maintain the frontal plane balance. Thus, it will fall to the

ground ending the run. Forced by this rule, evolution was

able to find individuals moving at a speed of 1.13 m/s, see

Table I, 6th row. However, even after 400 generations, these

individuals could not walk more than 10 to 15 meters before

falling to the ground. In order to improve the performance,

the GA was allowed to evolve the feedback paths as well.

As a result, a stable individual, i.e. one that did not fall even

after the end of the nominal evaluation time, was obtained

within 50 generations, walking at a speed of 0.4 m/s, see

Table I, 7th row. To ensure stability, the whole foot sole was

on the ground during almost the entire stance phase, resulting

in a perfect condition for full 3D balance.

2) Phase 2: Evolving balance in full 3D: Once a satisfac-

tory stable individual had been obtained using the support,

TABLE I

PARAMETERS AND RESULTS OF THE SIMULATION RUNS

In the column labeled support, the numbers i, j denote the initial placement
of the contact points in a given run, where i is the height above the ground
[m], and j is the horizontal distance from the hip [m]. Evaluation time
is denoted by t [s], and the f column indicates whether or not feedback
was used. F [m] is the obtained fitness, v is the average locomotion speed
[m/s] of the robot during the evaluation period, and the last column gives
a short description of the resulting gait. Note: † denotes phase 1, and ‡

denotes phase 2.

Support t f F v Gait

4-point, 0.3, 2 7 No 3.85 0.55 hop gait

4-point, 0.1, 1 7 No 4.60 0.66 large steps

4-point, 0.02, 2 7 No 6.55 0.93 running

2-point, 0.25, 2 † 7 No 2.10 0.30 tripod gait

2-point, 0.25, 2 † 7 No 3.15 0.45 large steps

2-point, 0.25, 2 † 7 Yes 7.91 1.13 running

2-point, 0.25, 2 † 20 Yes 7.21 0.38 slow, stable

no support ‡ 40 Yes 18.26 0.46 slow, stable

1 sec. 0.25, 2 † 40 Yes 19.54 0.56 slow, stable

1 sec. 0.25, 2 ‡ 40 Yes 23.09 0.58 slow, stable

1 sec. 0.25, 2 40 Yes 35.56 0.90 fast walk

evolution in the full 3D environment could begin. In the

initial population at this stage, all individuals were mutated

copies of the best individual from the previous step, as

described above. The GA should now only consider the hip2,

ankle, and waist joints, as well as their feedback paths. The

fitness measure was still taken as the distance covered in the

initial forward direction, decreased by the sideways distance.

Within 150 generations, the best individual was able to

maintain balanced walking for up to 60 seconds. After an

additional 100 generations, the best individual was generally

able to maintain balance indefinitely, see Table I, 8th row.

Since the robot was unaware of its direction of motion and

because of the fact that the hip3 joints were locked, the

smallest perturbation would set it out of course, resulting

in a lower fitness value.

Given the best individual from phase 2, it was possible

to continue evolving the parameters for the hip3 joint. The

feedback for the hip3 joint was defined as described in

Sect. III. Evolution found a solution (not shown in the table)

striving towards keeping the feet facing forward. A similar

gait as before emerged.

C. Method 3: 2D one second support, then 3D

The reason for introducing the two-point posture-support

structure in Method 2 was mainly that it is much harder

Fig. 5. The best evolved stable gait pattern in the full 3D environment. The details of the corresponding individual are shown on the 10
th row of Table I.

to maintain balance in the frontal plane than in the sagittal

plane. By using the supporting structure, the problem was

separated into two stages of evolution; first, generating a

stable gait in 2D, and second, generalizing the 2D gait to

three dimensions. The assumption here was that this way of

splitting up the problem should make it easier for evolution

to find a good solution to the overall problem of generating a

robust 3D gait. However, since the hip2 and ankle joints were

locked during the 2D stage the balance in the frontal plane is

then only ensured by the torso. As a consequence, evolution

most often creates individuals that solve the problem in an

unnatural way, i.e. individuals that exploited the supporting

structure too much. Such individuals are usually not suitable

for further evolution in 3D. Another drawback of Method 2

is that there is no obvious way of deciding at what point to

interrupt the 2D evolution stage, and thus to enter the 3D

phase: This simply has to be judged by the experimenter

in an ad hoc manner. Hence, there is no guarantee that the

individuals evolved in 2D will perform well in the 3D stage.
Therefore, a third method was investigated as well. The

same two-point supporting structure as described in the 2D

case in the previous method, was used. The difference here,

as compared to the other method, is that under the first stage

in 2D the individuals were evaluated in a procedure where the

supporting structure was present only during the first second

of the evaluation, and was then completely removed. This

arrangement is motivated by the fact that it is during the start

sequence, before entering the gait cycle, that the individuals

are most vulnerable, in terms of frontal plane balance. Here,

the hip2, hip3 and ankle joints were still locked. However,

after some generations most individuals in the population

should be able to walk without the supporting structure

present, except during the initial second. This has been

confirmed to work well in simulation experiments. The goal

in this stage was to obtain a large portion of individuals able

to walk in cautious manner, which is essential for individuals

to be able to generalize to 3D. In the next stage, evaluations

were performed in full 3D. That is, the evaluation procedure

was performed in the same way as described above, but all

joints except the hip3 joints were unlocked. The 9th row

of Table I shows the results from evolution in 2D (joints

locked and 1 second support), and the 10th row of the table

shows the results from phase 2 (evolution based on the best

individual from the previous run, with hip2 and ankle joints

unlocked). A visualization of the gait for the best individual,

corresponing to the 10th row in the table, is shown in Fig. 5.

Moreover, the results from a run with hip2 and ankle joints

unlocked, performed in a single step, i.e. without the two-

phase procedure described above, is shown in the last row.

The gait obtained in this last run was fast, but appeared to

be rather unstable.

V. DISCUSSION AND CONCLUSIONS

The outcome of the examinations and experiments de-

scribed in this paper indeed fulfilled the intended goal, i.e.

to generate robust bipedal gaits for a simulated robot by

means of structural evolution of CPG networks: Two of the

three methods introduced in this paper solved the problem

of generating gaits for the simulated bipedal robot in 2D and

3D environments. However, Method 2 was affected by some

drawbacks, compared to the third method. Firstly, since the

support structure is present the whole time during phase 1

(evolution in 2D), evolution might very well find solutions

that receive high fitness scores in 2D, but are less successful

in generalizing to 3D. Examples of such solutions are indi-

viduals that walk with too long steps, giving high fitness in

2D because of their ability to cover large walking distances in

short time. However, this kind of walking behavior seriously

affects the frontal plane balance in 3D. Thus, evolution in

2D has to be aborted at an appropriate time, before this

kind of behavior emerges which, in turn, requires that the

evolutionary process is monitored more or less continuously

in order to determine when it should be interrupted.

Secondly, while it is possible (at least in principle) to

monitor the progress and stop the evolution when sufficient

locomotion speed is achieved, it is not always the case that

evolution chooses a path, i.e. relatively small steps with a

high speed, that is suitable for further evolution in 3D. Often

the large step motion behavior emerges before any stable,

small-step gait pattern is obtained.

In the case of the third method the two problems described

above are not present: Evolution is biased towards generating

gaits capable of handling the 3D environment from the

beginning. Thus, Method 3 seems to be the most promising

candidate for future investigations.

The need for the support structure during the initial

second, as described in the second method, indicates that the

CPG network cannot fully handle the start-up of the walking

cycle in an appropriate way. Thus, one should, in future

work, consider a dedicated controller, either a CPG-based

controller or some other type of controller, for the start-up

sequence of the walking cycle. It should then be tuned to

enter the walking cycle and hand over to a CPG network in

a more smooth way. Then, ultimately, it would be possible

to skip totally the support structure.

In this paper only straight-line walking has been consid-

ered, i.e. no turning motions were involved. However, one

could include such motions using the hip3 joint in order to

change deliberately the direction of walking, preferably by

using vision for feedback.

Another topic for future work would be to investigate

whether one could evolve the over-all feedback network,

without having to pre-specify certain feedback paths, as is

currently done. However, such an approach would prob-

ably increase the evaluation time considerably, since the

likelihood of finding a set of feedback paths in an early

generation that generates any gait at all would most probably

be very small. On the other hand, evolving the feedback

network could lead to better overall performance, compared

to specifying the paths ad hoc.

REFERENCES

[1] R. A. Brooks, C. Breazeal, M. Marjanovic, and B. Scassellati, “The
cog project: Building a humanoid robot,” Computation for Metaphors,

Analogy, and Agents, vol. 1562, pp. 52–87, 1999.
[2] H. Kozima and J. Zlatev, “An epigenetic approach to human-robot

communication,” in Proc 9th Int Workshop on Robot and Human

Interactive Communication (RO-MAN’00), Paris, France, 23–26 Mar.
2000, conference.

[3] T. Minato, M. Shimada, H. Ishiguro, and S. Itakura, “Development
of an android robot for studying human-robot interaction.” in Proc

17th Int Conf on Industrial and Engineering Applications of Artificial

Intelligence and Expert Systems, IEA/AIE 2004, 2004, pp. 424–434.
[4] A. Takanishi, M. Ishida, Y. Yamazaki, and I. Kato, “The realization

of dynamic walking by the biped walking robot WL-10RD,” in Proc

Int Conf on Advanced Robotics (ICAR’85), 1985, pp. 459–466.
[5] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The develop-

ment of honda humanoid robot,” in Proc Int Conf on Robotics and

Automation (ICRA’98). IEEE, 1998, pp. 1321–1326.
[6] T. Arakawa and T. Fukuda, “Natural motion generation of biped

locomotion robot using hierarchical trajectory generation method
consisting of GA, EP layers,” in Proc Int Conf on Robotics and

Automation (ICRA’97). IEEE, 1997, pp. 211–216.
[7] A. L. Kun and W. T. Miller, “Control of variable speed gaits for a

biped robot,” IEEE Robotics & Automation Magazine, vol. 6, no. 3,
pp. 19–29, Sep 1999.

[8] H. Wang, T. T. Lee, and W. A. Gruver, “A neuromorphic controller
for a three-link biped robot,” IEEE Transactions on Systems, Man and

Cybernetics, vol. 22, no. 1, pp. 164–169, Jan/Feb 1992.
[9] G. Taga, Y. Yamaguchi, and H. Shimizu, “Self-organized control of

bipedal locomotion by neural oscillators in unpredictable environ-
ment,” Biological Cybernetics, vol. 65, pp. 147–159, 1991.

[10] J. Pettersson, H. Sandholt, and M. Wahde, “A flexible evolution-
ary method for the generation and implementation of behaviors
for humanoid robots,” in Proc 2nd Int Conf on Humanoid Robots

(Humanoids’01), IEEE-RAS, Waseda University. Tokyo, Japan:
Humanoid Robotics Institute, 22-24 Nov. 2001, pp. 279–286.

[11] J. Shan, C. Junshi, and C. Jiapin, “Design of central pattern generator
for humanoid robot walking based on multi-objective ga,” in Proc

Int Conf on Intelligent Robots and Systems (IROS 2000)., vol. 3.
Takamatsu, Japan: IEEE-RSJ, 2000, conference, pp. 1930–1935.

[12] M. Y. Cheng and C. S. Lin, “Genetic algorithm for control design
of biped locomotion,” Journ. of Robotic Systems, vol. 14, no. 5, pp.
365–373, 1997.

[13] K. Wolff and P. Nordin, “Learning biped locomotion from first
principles on a simulated humanoid robot using linear genetic pro-
gramming,” in Proc Genetic and Evolutionary Computation Conf

(GECCO’03), ser. LNCS, E. Cantú-Paz, Ed., vol. 2723, AAAI.
Chicago: Springer Verlag, 12-16 July 2003, pp. 495–506.

[14] J. Ziegler, J. Barnholt, J. Busch, and W. Banzhaf, “Automatic evolution
of control programs for a small humanoid walking robot,” in Proc 5th

Int Conf on Climbing and Walking Robots (CLAWAR’02), P. Bidaud,
Ed. Professional Engineering Publishing, 2002, pp. 109–116.

[15] S. Grillner, “Neural networks for vertebrate locomotion.” Scientific

American, vol. 274, pp. 64–69, 1996.
[16] S. Grillner, T. Deliagina, Ö. Ekeberg, A. El Manira, R. Hill,

A. Lansner, G. Orlovsky, and P. Wallen, “Neural networks that co-
ordinate locomotion and body orientation in lamprey,” Trends in

Neurosciences, vol. 18, no. 6, pp. 270–279, 1995.
[17] Ö. Ekeberg, “A combined neuronal and mechanical model of fish

swimming,” Biological Cybernetics, vol. 69, no. 5-6, pp. 363–374,
oct 1993.

[18] P. Wallén, Ö. Ekeberg, A. Lansner, L. Brodin, H. Tråvén, and
S. Grillner, “A computer-based model for realistic simulations of
neural networks. II: The segmental network generating locomotor
rhythmicity in the lamprey,” J. Neurophysiol., vol. 68, pp. 1939–1950,
1992.

[19] T. G. Brown, “The factors in rhythmic activity of the nervous system.”
Proc R Soc London Ser, vol. 85, pp. 278–289, 1912.

[20] S. Grillner and P. Zangger, “The effect of dorsal root transection on
the efferent motor pattern in the cat’s hindlimb during locomotion.”
Acta Physiol Scand, vol. 120, pp. 393–405, 1984.

[21] J. Duysens and H. W. A. A. V. de Crommert, “Neural control of
locomotion; part 1: The central pattern generator from cats to humans.”
Gait and Posture, vol. 7, no. 2, pp. 131–141, 1998.

[22] G. Taga, “Nonlinear dynamics of the human motor control - real-
time and anticipatory adaptation of locomotion and development of
movements,” in Proc 1st Int Symp on Adaptive Motion of Animals

and Machines (AMAM’00), 8–12 Aug. 2000.
[23] T. Reil and P. Husbands, “Evolution of central pattern generators for

bipedal walking in a real-time physics environment.” IEEE Transac-

tions in Evolutionary Computation, vol. 6, no. 2, pp. 159–168, 2002.
[24] H. Kimura, S. Akiyama, and K. Sakurama, “Realization of dynamic

walking and running of the quadruped using neural oscillator,” Au-

tonomous Robots, vol. 7, no. 3, pp. 247–258, 1999.
[25] K. Tsuchiya, S. Aoi, and K. Tsujita, “Locomotion control of a biped

locomotion robot using nonlinear oscillators,” in Proc Int Conf on

Intelligent Robots and Systems (IROS’03). IEEE/RSJ, 2003, pp.
1745–1750.

[26] M. Lewis, F. Tenore, and R. Etienne-Cummings, “CPG design using
inhibitory networks,” in Proc Int Conf on Robotics and Automation

(ICRA’05), IEEE-RAS. Barcelona, Spain: Wiley, 18-22 Apr. 2005.
[27] M. Ogino, Y. Katoh, M. Aono, M. Asada, and K. Hosoda, “Rein-

forcement learning of humanoid rhythmic walking parameters based
on visual information,” Advanced Robotics, vol. 18, no. 7, pp. 677–
697, 2004.

[28] K. Matsuoka, “Mechanisms of frequency and pattern control in the
neural rhythm generators.” Biol Cybern, vol. 56, no. 5–6, pp. 345–
353, 1987.

[29] C. Paul and J. Bongard, “The road less travelled: Morphology in
the optimization of biped robot locomotion,” in Proc Int Conf on

Intelligent Robots and Systems (IROS’01), vol. 1. Maui, HI, USA:
IEEE/RSJ, 2001, pp. 226–232.

[30] G. M. Shepherd, Neurobiology, 3rd ed. Oxford University Press,
1994, ch. 20, pp. 435–451.

[31] T. G. Brown, “The intrinsic factors in the act of progression in the
mammal.” Proc R Soc London Ser, vol. 84, pp. 308–319, 1911.

[32] E. Ott, Chaos in Dynamical Systems. New York: Cambridge
University Press, 1993.

[33] J. Pettersson, “EvoDyn: A simulation library for behavior-based
robotics,” Department of Machine and vehicle systems, Chalmers
University of Technology, Göteborg, Technical Report, September
2003.

[34] R. Featherstone, Robot Dynamics Algorithms. Kluwer Academic
Publishers, 1987.

Paper V

UFLibrary: A Simulation Library Implementing the

Utility Function Method for Behavioral

Organization in Autonomous Robots

submitted to

International Journal on Artificial Intelligence Tools, August 2005.

August 30, 2005 13:43 WSPC/INSTRUCTION FILE
PetterssonWahde˙IJAIT2005

International Journal on Artificial Intelligence Tools
c© World Scientific Publishing Company

UFLIBRARY: A SIMULATION LIBRARY IMPLEMENTING

THE UTILITY FUNCTION METHOD FOR

BEHAVIORAL ORGANIZATION IN AUTONOMOUS ROBOTS

Jimmy Pettersson and Mattias Wahde

Department of Applied Mechanics

Chalmers University of Technology

412 96 Göteborg

Sweden

{jimmy.pettersson, mattias.wahde}@chalmers.se

Received (Day Month Year)
Revised (Day Month Year)
Accepted (Day Month Year)

A simulation software package (UFLibrary) implementing the utility function (UF)
method for behavioral selection in autonomous robots, is introduced and described by
means of an example involving a simple exploration robot equipped with a repertoire
of five different behaviors. The UFLibrary (as indeed the UF method itself) is aimed at
providing a rapid yet reliable and generally applicable procedure for generating behav-
ioral selection systems for autonomous robots, while at the same time minimizing the
amount of hand-coding related to the activation of behaviors.

It is demonstrated how the UFLibrary allows a user rapidly to implement individual
behaviors and to set up and carry out simulations of a robot in its arena, in order to
generate and optimize, by means of an evolutionary algorithm, the behavioral selection
system of the robot.

Keywords: Behavior-based robotics; utility function; behavioral organization; au-
tonomous robots, evolutionary robotics.

1. Introduction

The research field of behavior-based robotics (BBR)1 is concerned with building

robotic control systems (hereafter referred to as (robotic) brains, to avoid confusion

with the more limited systems based on classical control theory) in a bottom-up

fashion, starting from simple behaviors and combining these to form a robotic brain

capable of complex overall behavior. As opposed to classical artificial intelligence

(AI)2, BBR has not been strongly focused on human-level reasoning and cognition,

and has taken a more generous definition of intelligence, inspired by the ability

to survive and reproduce exhibited even by simple life forms. In implementations,

BBR-based subsystems are generally capable of handling low-level tasks such as

e.g. obstacle avoidance and wall-following, whereas methods from classical AI are

often used in subsystems handling higher-level behaviors. However, reconciling two

1

August 30, 2005 13:43 WSPC/INSTRUCTION FILE
PetterssonWahde˙IJAIT2005

2 Jimmy Pettersson and Mattias Wahde

such different approaches (BBR and classical AI) to form the brain of a robot

is, at best, a temporary solution. In the authors’ view (based on the capabilities

of biological organisms, as generated by evolution), the road to truly intelligent

machines is more likely to come from an extension of the behavior-based approach

to form more complex robotic brains than those considered so far.

Reaching such a goal, however, is a formidable problem involving several com-

plex tasks. So far, BBR has been successful in generating robots capable of simple

tasks, reaching approximately (some aspects of) insect-level intelligence. Yet the

elusive ultimate goal of robotics research is, of course, to generate machines capable

of human-level intelligence (or beyond), which can serve a useful purpose in soci-

ety. One of the main obstacles involved in extending the BBR-approach to higher

levels of complexity is the problem of behavioral organization, also known as action

selection or behavioral selection3,4, which will now be described briefly.

1.1. Behavioral Organization

Simplifying somewhat, a robotic brain in BBR can be considered as the conjunction

of (1) a repertoire of behaviors and (2) a method for selecting which behavior to

activate in any given situation (see Fig.1). The problem of behavioral selection has

been studied by many authors (for a review, see e.g. Ref. 3), and a variety of methods

have been suggested. In arbitration methods, i.e. the kind that will be studied in

this paper, one behavior is given control of the robot, even though the identity of

that behavior of course will vary with time, whereas in behavior fusion methods,

the action taken by the robot is a weighted average of the suggestions from many

behaviors.

Behavioral repertoire

Current state

Behavioral
organizer

Active behavior

Fig. 1. Illustration of the role of a behavioral organizer – selection of the most appropriate
behavior based on the current state of the robot and its environment.

A common problem in most methods for behavioral selection has been the fact

that they require the user to specify, in detail, the parameters determining the

selection and activation of behaviors (see Ref. 5 and 6), and thus effectively to

judge the relative importance of different behaviors in all situations encountered by

the robot, something which is notoriously difficult to do. By contrast, one of the

August 30, 2005 13:43 WSPC/INSTRUCTION FILE
PetterssonWahde˙IJAIT2005

UFLibrary: A Simulation Library Implementing the Utility Function Method.. 3

main purposes of the utility function (UF) method4 is to delegate the details of

the behavioral selection procedure to a structure based on utility functions that, in

turn, are generated by means of an evolutionary algorithm (EA).

An additional aim with the introduction of the UF method has been to provide

a generally applicable method for behavioral selection, i.e. one that is as indepen-

dent as possible of the details of the particular problem being considered, and also

independent of the specific implementations used for the constituent behaviors. For

illustration purposes, a specific example, namely a simple exploration robot, will be

presented in this paper. However, the UF method has also recently been applied to

other problems7,8.

The utility functions, which will be described further in Sect. 2 below, serve the

purpose of providing a common currency for assessing the relative importance of

different behaviors in any given situation. The notion of utility has a long history in

fields such as economic theory and ethology9, and has also been used in connection

with autonomous robots10,11. However, the utility function method represents, to

the authors’ knowledge, the first attempt at defining a general-purpose method for

behavioral organization based on evolutionary optimization of utility functions.

1.2. Software

In addition to a method for behavioral selection, a software library for its imple-

mentation is also needed, particularly in a method such as the UF method which

relies on an EA, commonly requiring simulations to be carried out before the robotic

brain is transferred to an actual robot.

While there are several software libraries implementing the physical aspects of

autonomous robots (such as the equations of motion, collision handling etc.), see

e.g. Ref. 12–16, there are, to the authors’ knowledge, no publicly available, general-

purpose libraries implementing a specific method for behavioral selection. The main

aim of this paper is to introduce and describe such a library (UFLibrary) and to

illustrate how it can be used rapidly to evolve a behavioral organization system for

any given, complex task.

2. The Utility Function (UF) Method

2.1. Basic description

The utility function (UF) method is a biologically inspired arbitration method4

for behavioral organization (selection) in autonomous robots. Here, only a brief

description of the UF method will be given. For a more detailed introduction, see

e.g. Ref. 4 or Ref. 17. In the UF method, each individual behavior is associated

with a utility function, and the selection (for activation) of behaviors is based on

the values of the utility functions, in such a way that the behavior with maximum

current utility is active. In general, a utility function Ui, corresponding to behavior

August 30, 2005 13:43 WSPC/INSTRUCTION FILE
PetterssonWahde˙IJAIT2005

4 Jimmy Pettersson and Mattias Wahde

i, can be written as

Ui = Ui(s,p,x) , (1)

where z = (s,p,x) = (s1, s2, . . . , p1, p2, . . . , x1, x2, . . .) are the state variables, di-

vided into three categories: external variables (s), such as e.g. the readings of prox-

imity sensors, internal physical variables (p), such as e.g. the readings of a sensor

measuring the current battery level, and internal abstract variables (x), which are

the readings of internal signaling variables referred to as hormones, in keeping with

the biological analogy of the UF method. In principle, each utility function may

depend on the full set z = (s,p,x) of state variables. However, in practice, most

utility functions will only depend directly on a few components of z.

In order to generate a behavioral organizer for a given robot, the utility functions

must be generated. In addition, the functions describing the variation of hormone

levels (hereafter: hormone functions) in each behavior, must be specified, as must the

fitness function (see below). Once the utility functions and the hormone functions

are available, behavioral selection is straightforward: At any given time, the variables

s and p can be measured and x can be computed, after which the values of the utility

functions Ui can be obtained, for each behavior i, and the active behavior iactive

can be obtained as

iactive = argmax(Ui) , i = 1, . . . , N, (2)

where N is the number of behaviors. The problem, of course, is how to specify the

utility functions. In the UF method, these functions are normally obtained using an

evolutionary algorithm (EA), even though there is nothing preventing the user of the

method to set these functions by hand, should it be possible to do so. In principle,

the functions may take any form. However, in practice, a polynomial ansatz is often

used for each function. Thus, for example, for a utility function U = U(s1, x1) the

following ansatz could be made:

U = a00 + a10s1 + a01x1 + a20s
2

1 + a11s1x1 + a02x
2

1 , (3)

where the aij are constants to be determined by the EA. Thus, when running the UF

method (e.g. by using the UFLibrary described here), the relevant state variables

and the polynomial degree is specified for each utility function, and the EA then

proceeds to optimize the parameters in these functions, so as to achieve the desired

overall behavior, the specification of which is given by the fitness function used in

the EA, which will now be described.

2.1.1. Fitness functions

In the UF method, behaviors are divided into two categories, task behaviors (which

are associated with a non-zero fitness function) and auxiliary behaviors (which do

not affect the fitness of the robot). Thus, a user of the method need only specify

the fitness function for the task behavior(s). How, then, can the auxiliary behaviors

August 30, 2005 13:43 WSPC/INSTRUCTION FILE
PetterssonWahde˙IJAIT2005

UFLibrary: A Simulation Library Implementing the Utility Function Method.. 5

be activated? Consider a simple case of a robot equipped with two behaviors, a

task behavior (B1) for floor-sweeping, and an auxiliary behavior (B2) for battery

charging. Only B1 gives a fitness increase, and an evolved robot will thus strive to

use B1 as much as possible (the fitness function can e.g. be taken as the fraction of

time spent in B1, or the area covered by the robot while executing B1). However,

from time to time, the robot must activate B2 in order not to run out of energy.

Thus, if properly evolved, the utility functions of the robot will be such that the

utility of B2 will rise as the battery energy falls, eventually surpassing the utility of

B1 and thus activating B2. As the battery becomes charged, the utility of B2 will

gradually fall, so that B1 again can be activated etc.

Hence, the evolved utility functions will take care of the activation of behaviors

at appropriate times, thus freeing the user from the daunting task of specifying the

relative importance of all behaviors. Indeed, this is one of the main advantages of

the UF method4: In many cases, there will be only one task behavior, for which the

fitness function often can be specified quite easily.

2.2. Hormone functions

In addition to the utility functions and the fitness function, the hormone functions

must also be specified. Thus, for example, a visual detection of an object in front

of a robot, a situation which would evoke an emotion akin to fear, may raise the

level of a hormone H , which could raise, say, the utility of a behavior for obstacle

avoidance or fleeing etc., The raise in hormone level may remain for some time,

thus (for example) keeping the obstacle avoidance behavior active for some time

even after the direct sensory input has vanished e.g. as a result of a change of

direction of the robot.

Ideally, in order to allow maximum flexibility, the hormone functions should be

evolved just like the utility functions. In the general case, those functions would de-

pend on the state variables, and the exact variation (i.e. the polynomial coefficients)

would be determined by the EA, as in the case of the utility functions. However,

this feature has yet to be implemented in the UFLibrary. Thus, at present, the

hormone functions must be specified by the user. In this paper, only very simple

hormone functions will be used, in which the levels of hormones are either 1 or 0,

as described in Sect. 4.1 below.

2.3. Hierarchical levels of behaviors

The above description of the UF method (as indeed the description given in Ref. 4),

is somewhat simplified, since it neglects the concept of hierarchical levels of behav-

iors, which will now be described briefly.

Since the UF method tries to keep individual behaviors as simple as possible, it

is often so that a given behavior may be divided into several sub-behaviors which

are easier to specify than the complete behavior (in effect, this amounts to placing

a heavier burden on the EA evolving the utility functions, while simplifying for

August 30, 2005 13:43 WSPC/INSTRUCTION FILE
PetterssonWahde˙IJAIT2005

6 Jimmy Pettersson and Mattias Wahde

Fig. 2. An illustration of hierarchical levels of behaviors.

the user of the method). In such cases, a level-by-level, tree-like comparison is

made in order to find the active behavior, as illustrated in Fig. 1. In this example,

eight behaviors are available, namely B1, B1.1, B1.2, B2, B2.1, B2.1.1, B2.1.2, and

B2.2. When the robot starts its operation, it will first compute the values of all

the utility functions, and then compare the utilities U1 and U2 of B1 and B2,

respectively. Consider the case where U2 > U1. In that case, a behavior from the

branch emanating from B2 will be selected, beginning with a comparison of U2.1

and U2.2. If, say, U2.1 > U2.2, a behavior from the branch emanating from B2.1 will

be selected. Thus, U2.1.1 and U2.1.2 are compared, and the behavior with the highest

utility (B2.1.2, say) is activated. As the robot continues its operation, a level-by-

level comparison is performed at all time steps. As long as U2 > U1, U2.1 > U2.2,

and U2.1.2 > U2.1.1, B2.1.2 will be active. If say, U2.1.1 suddenly exceeds U2.1.2,

the behavior B2.1.1 will be activated instead of B2.1.2. On the other hand if B1

suddenly exceeds B2, a behavior from the branch beginning at B1 will be selected

for activation, namely B1.1 or B1.2, depending on which of these two behaviors is

associated with the highest current utility value.

In addition to functioning as internal signals, hormone variables (or, more ex-

actly, their corresponding internal abstract state variables x) may also prevent

dithering between behaviors, by instantaneously raising the utility of an activated

behavioral hierarchy (providing, of course, that the utility functions have evolved to

do so). For example, in Fig. 2, if B1 corresponds to some task behavior (e.g. floor-

sweeping) and B2 is a battery charging behavior consisting of several sub-behaviors

(e.g. finding a charging station, approaching a charging station etc.), the activation

of a behavior, e.g. B2.1.1, in the hierarchy beginning at B2 should preferably raise

the utility of B2 so that U2 will remain above U1 for some time. However, it is

B2.1.1 rather than B2 which is activated, so how can U2 be raised? This is done by

calling an exit procedure for each level in the hierarchy that is being deactivated,

and an entry procedure for each behavior in the hierarchy that is being activated.

Thus, in switching from, say, B1.1 to B2.1.1, the exit procedures of both B1.1 and

B1 are called, and the entry procedures for B2, B2.1 and B2.1.1 are called. Both

August 30, 2005 13:43 WSPC/INSTRUCTION FILE
PetterssonWahde˙IJAIT2005

UFLibrary: A Simulation Library Implementing the Utility Function Method.. 7

the entry and the exit procedures may modify hormone levels.

Thus, in the example just described, a hormone H corresponding to hunger

may be responsible for activating the hierarchy under B2. However, as the robot

begins charging the batteries, (the level of) H would decrease, thus activating the

B1 hierarchy, again raising the hunger level etc. To prevent such dithering, the

activation of the B2 hierarchy may be associated with an instantaneous rise in H,

which, in turn, may raise the utility U2 of behavior B2, thus preventing immediate

re-activation of B1.

3. The UFLibrary

The UFLibrary has been written using the Borland Delphi object-oriented Pascal

language18. UFLibrary makes possible the construction of robotic brains of arbitrary

complexity, provided that certain guidelines (as enforced by the UF method) are

followed. The functionality is provided in the form of a simulation library, similar to

a dynamic link library (DLL), rather than as a stand-alone application. Note that

the UF method (and thus the UFLibrary) is concerned with behavioral organization,

i.e. the process of selection of appropriate behaviors at all times, rather than the

actual generation of the constituent behaviors included in the behavioral repertoire.

Thus, the behaviors in the repertoire can be generated by whatever means chosen

by the user who, for example, may generate some behaviors by hand, and evolve

other behaviors using any suitable software, before including them in the repertoire

as described in Sect. 3.2 below.

Although some programming is required to make full use of the UFLibrary (for

example to define new behaviors or to define a new stand-alone application based on

the library), it is possible, for basic usage, to control most aspects of the simulations

through the use of simple text files. These files have an object oriented structure

(see Fig. 5) and provide an informative and intuitive interface, even to users that

have no programming experience.

When implementing an application, a minimum of two definition files are re-

quired; one for the world (arena) in which the robot is supposed to move and

operate, and one for the robot itself. Each file contains the definition of entities

known as objects, as well as the values of their respective parameters. Whereas the

robot definition file, an example of which is given in Ref. 17, often contains a hier-

archical structure with the body and the brain being on the highest level, the arena

definition file consists of a simple list of objects such as walls, doorways, furniture,

and windows.

The contents and usage of the UFLibrary will now be introduced. A summary

of the usage procedure is given in Sect. 3.3 below.

3.1. Contents of the UFLibrary

The UFLibrary contains a total of more than 12, 000 lines of code, divided into 51

source units, ranging from general units concerning e.g. the evolutionary algorithm

August 30, 2005 13:43 WSPC/INSTRUCTION FILE
PetterssonWahde˙IJAIT2005

8 Jimmy Pettersson and Mattias Wahde

(EA) to more specific units such as those defining, for example, a DC motor or a

laser range finder. In addition, a few basic behaviors, such as a navigation behavior,

an obstacle avoidance behavior etc., have been included as well.

The library contains a general implementation of an EA that, by default, uses

generational replacement, tournament selection, elitism, single point crossover, and

both creep and full range mutations, even though other operators, such as, for ex-

ample, roulette-wheel selection and steady-state replacement, are available as well.

The task of the EA is to optimize the utility functions responsible for the selection

of behaviors. In the basic implementation, each utility function is considered as one

gene and, by default, the crossover procedure works by cutting the genome at a

crossover point between two genes, and swapping the genes downstream from the

crossover point between individuals. However, a user may override this procedure in

order to implement a custom crossover procedure. Mutations modify the coefficients

of the polynomials defining the utility functions. In this case as well, a user may

override the mutation procedure to allow e.g. the addition or removal of polynomial

terms.

The EA operates on a population of agents, where an agent is an abstract base

object that only provides access to a genome and a fitness value. For the evolution

of agents with a physical appearance, the UFLibrary includes a robot class that

extends the functionality of an agent by including physical properties, such as a

body and a brain. Both the body and the brain are instantiated through text files

written by the user. This allows the user to incorporate any type of robot into the

simulation, provided that the correct interface is implemented in the derived classes.

As indicated above, the library also contains several objects that are not directly

related to the UF method but are crucial for the simulation of a robot, for example

a dynamical model of a differentially steered robot, and a model of a DC motor

(TDCMotor), derived from the base class TMotor. When defining a robot, two such

motors (one for each wheel) can be added to the body of the robot, through its

definition file, an example of which can be found in Ref. 17. Alternatively, the user

may write a custom motor class, derived from TMotor. In addition, several sensors

types, namely a 2D laser range finder, a battery sensor, and an IR detector, have

been defined, and can be added to a robot through its definition file. IR detectors

read the signals from an IR beacon, an implementation of which is also available in

the UFLibrary.

Simplified (2D) collision checking is also provided, and operates by slicing the

arena in horizontal sections and checking for line intersection between the slice of

the arena and the geometric shape of the robot. This simplified collision checking

can be used by individual behaviors and also as a possible termination criterion for

the evaluation of a robot.

August 30, 2005 13:43 WSPC/INSTRUCTION FILE
PetterssonWahde˙IJAIT2005

UFLibrary: A Simulation Library Implementing the Utility Function Method.. 9

3.2. Defining and adding behaviors

The addition of a behavior to the behavioral repertoire contained in a robotic brain

is a two-step procedure. First, the user must write the actual behavior class (unless

the behavior already exists, and can be used in an off-the-shelf manner). Second,

the behavior must be added to the definition file describing the structure of the

robotic brain.

3.2.1. Writing a behavior class

When implementing a new behavior, together with its corresponding class, there are

a number of rules, enforced by the base class TBehavior (included in the UFLibrary)

that must be followed. The TBehavior class has been defined specifically so as to

minimize the amount of work carried out when defining a new behavior. Thus, all

new behaviors are derived from the base class TBehavior, and the specifics of the

behavior in question must be provided by writing a few procedures overriding the

corresponding procedures in the base class, namely the Step procedure defining

the action(s) taken in each time step, the Enter and Exit procedures (described

in Sect. 2.3 above), and the LoadFromDefinition procedure that sets all properties

specified in the definition file. Furthermore, any constructors and destructors present

in the base class TBehavior should also be implemented and overridden (using the

override directive). As a final step before using the new behavior (and in order for

the UFLibrary to find the new class) the class must be registered in the run-time

environment.

In Fig. 3, an actual class interface is shown. For the sake of both clarity and

brevity, the interface shown corresponds to a trivial turning behavior. When ac-

tive, this turning behavior will cause the robot to change its direction of head-

ing by setting the motor output to two different values (fLeftMotorOutput and

fRightMotorOutput), as seen in the implementation of the behavior’s Step proce-

dure in Fig. 4. Note that, in this very simple behavior, it would have been possible

also to set the motor output already in the Enter procedure of the behavior.

3.2.2. Writing a definition file

The definition of the specific properties (such as parameter values and variable

usage) of all behaviors is done in the robot definition file within the brain’s list

of behaviors (TBehaviorList). As an illustration, a simplified brain with only one

behavior can be defined as shown in Fig. 5, where a simple exploration behavior is

used as an example. In this behavior, the robot would normally move with constant

motor torque, but would occasionally change direction (randomly) based on the

readings of a laser range finder, using a slightly lower motor torque.

The behavior has one input variable (used internally by the behavior, in this

case as a trigger for direction changes) and one state variable (used in the utility

function), in this case the average reading of a laser range finder. Note that in this

August 30, 2005 13:43 WSPC/INSTRUCTION FILE
PetterssonWahde˙IJAIT2005

10 Jimmy Pettersson and Mattias Wahde

TSimpleTurningBehavior = class(TMotorBehavior)

private

fLeftMotorOutput: real;

fRightMotorOutput: real;

public

constructor Create; override;

constructor CreateAndSet(B: TBehavior); override;

function Copy: TBehavior; override;

procedure LoadFromDefinition(ObjDef: TObjectDefinition); override;

procedure Step(TimeStep: real); override;

procedure Enter; override;

procedure Exit; override;

destructor Destroy; override;

end;

Fig. 3. Interface of a simple turning behavior.

procedure TSimpleTurningBehavior.Step(TimeStep: real);

begin

fOutputVariables[1] := fLeftMotorOutput;

fOutputVariables[2] := fRightMotorOutput;

end;

Fig. 4. Implementation of the Step procedure in the simple turning behavior.

simple case, with a single behavior, the actual values of the utility function would

be of no use, since there is only one behavior to select.

As seen in this simple example, all objects are defined within object...end

blocks. Immediately to the left of the word object, the name and the class of the

object must be specified (separated by a colon). Everything contained within such

a block consists of properties (such as e.g. the ExplorationMotorOutput property

in Fig. 5) or further objects.

3.3. Basic usage

The use of the UFLibrary for the generation of a behavioral selection system for a

robotic brain involves several steps, which can be summarized as follows (see also

Fig. 6):

(1) Implement all behaviors that are to be included in the behavioral repertoire,

unless the behaviors already provided in the UFLibrary are sufficient.

(2) Construct the body and brain of the robot by writing the corresponding de-

finition file(s), specifying e.g. the state variables and input variables for each

behavior, as well as the parameters of the behavior.

(3) Write the arena definition file by composing a list of available arena objects

August 30, 2005 13:43 WSPC/INSTRUCTION FILE
PetterssonWahde˙IJAIT2005

UFLibrary: A Simulation Library Implementing the Utility Function Method.. 11

Object Brain: TBrain

Object Behaviors: TBehaviorList

Level = 1

Object Exploration: TExplorationBehavior

ExplorationMotorOutput = 5.0

TurnMotorOutput = 3.0

Object InputVariables: TinputVariables

Object InputVariable1: TsensorVariable

CorrespondingSensorName= ’RangeFinder1’

end

end

Object StateVariables: TStateVariables

Object StateVariable1: TExternalVariable

CorrespondingSensorName = ’RangeFinder1’

ReadingProcedure = ’rpAverage’

end

end

end #Exploration

end #Behaviors

end

Fig. 5. A simple definition file for a robotic brain containing a single behavior (see Sect. 3.2.2).

(such as walls, doorways, etc.).

(4) Specify the ansatz for each utility function by providing the polynomial degree.

(The number of variables in each utility function, equal to the number of state

variables used in the behavior in question, is set automatically.)

(5) Specify the variation of the hormone functions for each behavior.

(6) Specify a fitness function, for example the distance traveled by the robot.

(7) Specify the termination criterion (or criteria) for the evaluation of an individual.

(8) Write the actual application, linking the UFLibrary to the executable file. This

step can be made very simple, and amounts essentially to writing a simple GUI

for passing information to and from the UFLibrary (something which is done

very rapidly using Delphi). The source file of a basic, illustrative application

is appended to UFLibrary, and can be used as a template, in order to further

simplify this step.

At a first glance, the steps in the list above may seem quite complicated. However,

as described in Sect. 3.2.1 above, step 1 in the list, i.e. the implementation of a

behavior class derived from the base class TBehavior, is rather straightforward in

most cases. For steps 2 and 3, pre-defined template files, such as those available

in Ref. 17, can often be used. Step 4 amounts simply to providing an integer.

Experience with the UF method shows that a value of around 2-4 (higher values

August 30, 2005 13:43 WSPC/INSTRUCTION FILE
PetterssonWahde˙IJAIT2005

12 Jimmy Pettersson and Mattias Wahde

yielding somewhat better results) is appropriate 7, making this step almost trivial.

Step 5 is currently needed, as explained in Sect. 2.2, but will be eliminated once

the evolution of hormone functions has been included in the UFLibrary. Step 6 is

generally simple, at least in situations involving a single task behavior. Step 7 is

optional. By default, the simulation ends when the maximum simulation time has

been reached. Since the UFLibrary relies upon the open-source software GLScene19

for visualization, step 8 may require (if visualization is used) that this software

library should be downloaded and installed.

ArenaRobot

Behavioral repertoire

Fitness function

Hormone variation

UFLibrary

Application
Behavioral
organizer

Fig. 6. Basic usage of the UF library. The dashed box indicates entities defined by the user.
Within this box, white icons indicate text files, whereas gray icons correspond to source code.

4. Example: An Exploration Robot

The UFLibrary will now be illustrated by means of an example, namely a simple

exploration robot, with a behavioral repertoire containing five behaviors. The actual

program, i.e. the executable file (UFLibDemo), used for this example, as well as the

definition files and additional relevant information can be found in Ref. 17.

4.1. Description

The task of the exploration robot is to navigate in an arena while at the same time

avoiding collisions with (stationary) obstacles, and avoiding complete discharging of

the battery. Such a robot could be used e.g. as a night watchman for an industrial

facility. The robot used in this example is a differentially steered robot equipped

with three sensors; (1) an internal battery sensor that measures the level of the

battery, (2) a laser range finder measuring the distance to objects in a given sector,

and (3) an IR detector for locating charging stations (represented by IR beacons).

August 30, 2005 13:43 WSPC/INSTRUCTION FILE
PetterssonWahde˙IJAIT2005

UFLibrary: A Simulation Library Implementing the Utility Function Method.. 13

In addition, the robot is equipped with two DC motors and a battery with a speed-

dependent discharge rate defined as

dE

dt
= −kr − km v (4)

where kr and km are constants and v is the absolute speed of the robot. The

constants in Eq. (4) where set so that the battery energy lasts around 60 s. during

normal operation. Charging the battery takes a minimum of 10 s. Note that rather

high discharge and charge rates were used in order to speed up the simulation. With

these rates, the robot can go through several cycles of discharging and charging in

a relatively short time, thus testing the behavioral selection system.

The behaviors included in the repertoire for the robotic brain are Explore (B1),

Avoid obstacles (B2), and Maintain energy (B3) (all on the same hierarchical level),

as well as Locate charging station (B3.1) and Carry out charging (B3.2), which are

placed under B3, as illustrated in Fig. 7. The state variables were s1, the sector

Fig. 7. Behaviors and hierarchy used in the exploration robot example. See the main text for a
description of the behaviors.

average of distances measured by the laser range finder; p1, the battery level; s2,

the reading of the IR detector; and x1, x2, and x3, three hormone variables called

fear, hunger, and inverse satiation, respectively. The roles of the hormone variables

are approximately those indicated by their names. The utility function polynomials

were of degree 2, and the state variables were used in the utility functions as follows:

U1 = U1(s1, p1), U2 = U2(s1, p1, x1), U3 = U3(s1, p1, x2), U3.1 = U3.1(s2, p1), U3.2 =

U3.2(x3). As mentioned above, the hormone variables, and the corresponding state

variables, are here used in a simplified fashion: the variable x1 is simply set to 1

when B2 is active, and to 0 otherwise (the setting of the hormone variable is handled

by the entry procedure in B2). Similarly x2 is set to 1 when any behavior under B3

is active, and to 0 otherwise. x3 is, in the same way, set to 1 when B3.2 is active,

and to 0 otherwise.

The behaviors were implemented in a rather simple fashion, in keeping with the

UF method philosophy of delegating the difficult parts, such as the proper activation

of behaviors, to the evolving behavioral selection system. B1 makes the robot travel

August 30, 2005 13:43 WSPC/INSTRUCTION FILE
PetterssonWahde˙IJAIT2005

14 Jimmy Pettersson and Mattias Wahde

in straight lines and changing the direction of heading (in a deterministic fashion)

at regular time intervals. B2 produces motor output such that the robot turns away

from any nearby objects. If the utility of B3 exceeds that of B2 and B1, either B3.1

or B3.2 is selected for activation; B3 itself does not perform any actions other than

selecting a behavior from its own list of behaviors. In B3.1, the robot starts to turn

and if an IR beacon is discovered (by the IR detector), the robot travels to that

IR beacon in a straight line. It should be noted that only B2 is capable of avoiding

obstacles. Consequently, if an obstacle appears in front of the robot while B3.1 is

active, the behavioral organizer must select B2 in order to avoid the obstacle, and

then re-activate B3.1. Finally, B3.2 makes the robot remain in its position, so that

if the robot is located at a charging station, it will charge its batteries.

Since the task of the robot is to explore the environment (see Fig. 8) as much

as possible, B1 is the task behavior and the fitness increase for each activation of

B1 is set equal to max(0, t1 − 1), where t1 is the time spent in B1, i.e. a fitness

increment is only given when the robot spends at least one second in B1 (of course,

other fitness measures would be possible as well, e.g. the distance traveled by the

robot during an evaluation).

Fig. 8. Screenshot from the program UFLibDemo.exe used in the demonstration of the UFLi-
brary. The arena consists of a floor (5×5 meters) with surrounding walls. Inside the room there are
four obstacles, two charging stations (not shown), and two IR beacons, shown as ball-like objects.

4.2. Results

Several runs were performed with the UFLibDemo program in order to find a be-

havioral organizer capable of selecting behaviors in such a way that the robot would

manage to explore the arena while avoiding obstacles as well as complete discharging

of its batteries.

August 30, 2005 13:43 WSPC/INSTRUCTION FILE
PetterssonWahde˙IJAIT2005

UFLibrary: A Simulation Library Implementing the Utility Function Method.. 15

Note that no noise was added in the runs presented here. However, the UFLi-

brary supports noise addition on all levels, e.g. in sensors and actuators. Clearly,

any real robot will be subject to noise, both in its sensors and its actuators, and an

accurate assessment of the performance of a simulated robot’s brain, will generally

require several separate evaluations, from which a fitness measure can be generated

(e.g. as the average of the performance in each evaluation). However, in order to

reduce running times (by keeping the simulations fully deterministic), noise was

omitted in the particular example discussed here.

Typical parameters used during the runs are shown in Tab. 1. On a 3.2 GHz

computer with 1 GB RAM, the UFLibDemo program evaluates around 5,000 in-

dividuals per hour. Apart from the different parameters for the EA shown in the

Table 1. Typical parameter settings used in the runs.

Time step length 0.01 s

Range of the maximum simulation time 100− 300 s

Range of the polynomial degree of the utility functions 2− 4

Range of the polynomial coefficients [−3, 3]

Population size 100

Range of the crossover probability 0.1− 0.6

Range of the parametric mutation rate 0.03− 0.05

Tournament size 5

Tournament selection probability 0.7

table, various settings for e.g. the initial battery level and the starting position of

robot were also tested.

Fig. 9. Path traveled by one of the best robots (arena seen from above). The filled circle marks the
robot’s starting position. The robot first moves to one of the corners to recharge its batteries, and
then proceeds to explore the arena, occasionally interrupting this activity to recharge its batteries,
using either of the two charging stations.

August 30, 2005 13:43 WSPC/INSTRUCTION FILE
PetterssonWahde˙IJAIT2005

16 Jimmy Pettersson and Mattias Wahde

15 20 25 30 35
Time

0

2

4

6

8
U
t
i
l
i
t
y

Fig. 10. Variation of utility functions associated with the behaviors B1 (exploration, solid line),
B2 (obstacle avoidance, dashed), and B3 (energy maintenance, dotted) during a typical charging
episode.

Due to the stochastic nature of the EA, the exact results varied from run to run.

However, in general, the UFLibDemo program was able quickly to find appropriate

utility functions, enabling the robot to perform its exploration task. In typical runs,

evaluation of around 105 individuals was needed in order to arrive at a satisfactory

result, implying run times of around one day.

In one of the best runs obtained, the polynomial degree of the utility functions

was set to three, and the initial battery level to 50% of its maximum value. The

robot was able to explore large parts of the arena (see Fig. 9) while avoiding battery

depletion. In the particular run shown in Fig. 9, the robot utilized the charging

stations (located in the upper right and lower left corners of the arena) several

times in order to recharge its batteries and managed to explore the arena for a total

of 198 seconds, before finally colliding with a wall.

The utility functions associated with B1, B2, and B3 during one of the charging

sequences are illustrated in Fig. 10, where behavior B3 (energy maintenance) is

active from around 21.5 s to 27.5 s. The robot then turns away from the wall by

activating B2 (obstacle avoidance) for around 3 s, before activating B1 (exploration)

again.

In other runs, the initial battery level was set relatively small (15% of the total

capacity), requiring the robot quickly to find a charging station. Indeed, in these

runs (one of which is illustrated in the form of a movie in Ref. 17), the evolved

robotic brain quickly activates B3.1 and proceeds to one of the charging stations.

While positioned near the charging station, the robotic brain activates B3.2, and

the battery is recharged. Once the battery level is sufficiently high, the robotic brain

activates B1 and starts exploring the room while avoiding any obstacles that may

appear in the path of the robot by, in such cases, activating B2.

August 30, 2005 13:43 WSPC/INSTRUCTION FILE
PetterssonWahde˙IJAIT2005

UFLibrary: A Simulation Library Implementing the Utility Function Method.. 17

As a further illustration of the dynamics of behavioral selection, Fig. 11, shows

the variation of U1 and U2 in a common situation were B2 is temporarily activated in

order to avoid an obstacle. Note that the activation of B2 results from the combined

effects of a reduction in U1 and an increase in U2.

0 2 4 6 8 10
Time

0.4

0.6

0.8

1

1.2

1.4

1.6

U
t
i
l
i
t
y

Fig. 11. Variation of the utility of B1 (solid) and B2 (dashed) when an obstacle is encountered.
Initially, before the obstacle poses any threat, B1 has the highest utility and is therefore active.
At around 3.5 s, a switch to B2 occurs as the utility of B2 increases when an obstacle is detected.
When robot has turned so that it no longer senses the obstacle, the utility of B2 decreases rapidly
(at 5 s) and the robot continues exploring the arena by activating B1 again.

5. Discussion and conclusion

In this paper, the UFLibrary software package has been introduced and illustrated

by means of an example involving a simple exploration robot. It has been shown that

the UFLibrary allows a user to evolve a behavioral selection system for a complex

robotic brain containing several simple behaviors, with a minimum of effort. For

example, given access to the UFLibrary and the template definitions files for the

body and brain of the robot, and for the arena, the application (i.e. the executable

file) and the definition files can be assembled in a matter of a few hours. Writing

additional behaviors (derived from TBehavior) is also easy, the writing of a typical

behavior taking around an hour or so.

Thus, when using the UFLibrary, the user must, as in any method for behavioral

organization, supply some basic information, such as the individual behaviors as well

as setup files, as explained in Sect. 3.3. However, it is important to realize that, with

the exception of the hormone variables, a user of the UFLibrary is not required to

determine, by hand, the criteria for appropriate activation of behaviors, a fact that

distinguishes the UF method from most other methods for behavioral organization,

as mentioned in Sect. 1.1.

August 30, 2005 13:43 WSPC/INSTRUCTION FILE
PetterssonWahde˙IJAIT2005

18 Jimmy Pettersson and Mattias Wahde

The UFLibrary is provided as a software library rather than a fixed executable

program. The reason for this approach is that, at least in the authors’ experience,

it is better to provide a library that gives the user the freedom to generate what-

ever executable file is needed for the project at hand, rather than attempting to

generate a program that would be applicable in all possible investigations. All in-

vestigations differ in some respects and, with UFLibrary the user is not forced to use

a pre-defined program that would perhaps, not be perfectly suited to the problem

at hand. The drawback, of course, is that the user who wishes to generate a new

executable program, must do some programming (and must have access to the Del-

phi programming environment18 and GLScene19). However, such an executable file

can be generated quite easily, using the sample source files appended to UFLibrary.

The example described in Sect. 4 illustrates the philosophy behind the UF

method, which is to use simple individual behaviors, thus relegating the genera-

tion of complex overall behavior to the behavioral organizer. The rationale behind

this approach is that the user must write the individual behaviors which, therefore,

should be made as simple as possible, whereas the UF method should take care of

the activation of behaviors at appropriate times. An additional advantage with this

approach is that the evolutionary procedure, as implemented by the UF method,

for generating a behavioral organizer based on utility functions (and, eventually,

hormone functions), can be specified once and for all, as is done in the UFLibrary

described in this paper.

Note also that the user has a great deal of freedom when writing specific imple-

mentations of a given behavior. As long as the obvious requirements are fulfilled, e.g.

that the behavior should only make use of readings from sensors that are actually

available on the robot, vastly different implementations of the individual behaviors

can be used, without any modification of the UF method, i.e. the procedure for

generating the behavioral organizer.

A possible drawback of the UF method is that the heavy use of an EA requires

that the generation of the behavioral organizer must be carried out in simulation,

evolution directly in hardware being too time-consuming and difficult to monitor.

Of course, no simulation can capture accurately all aspects of reality, meaning that

some fine-tuning and, possibly, iterations involving repeated simulations and hard-

ware tests, must be performed. However, this is a rather small price to pay for the

ability to construct a general behavioral selection system of arbitrary complexity,

using a minimum of hand-coding. The issue of transferring the results obtained with

the UFLibrary to actual robots is a topic for current and future research, the results

of which will be presented elsewhere.

Finally, it should be noted that the UF method optimizes the selection of be-

haviors within a hierarchy defined by the user, as shown e.g. in Figs. 2 and 7. In

principle, the method could be extended to allow the EA automatically to generate

the actual structure of the brain (which is currently supplied as a definition file,

based e.g. on the template provided in Ref. 17). In the authors’ experience, pro-

viding the structure of the robotic brain is often quite straightforward, so that the

August 30, 2005 13:43 WSPC/INSTRUCTION FILE
PetterssonWahde˙IJAIT2005

UFLibrary: A Simulation Library Implementing the Utility Function Method.. 19

need for making also this step automatic is quite limited. However, the issue may

become relevant for very complex robotic brains.

Another important extension to the current version of the UFLibrary will be

to allow a more general specification of the hormone variables, by evolving their

variation (e.g. as polynomials, with the state variables as arguments) rather than

specifying it by hand as in the current version, thus completely eliminating the need

for hand-coding in the specification of the criteria for behavioral selection.

Acknowledgments

The authors would like to thank the Carl Trygger foundation for financial support

for this project.

References

1. R.C. Arkin, Behavior-based robotics, (MIT Press, 1998)
2. S.J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd Ed., (Pren-

tice Hall, 2002)
3. P. Pirjanian, Behavior coordination mechanisms – state-of-the-art, Technical Report

IRIS-99-375, Institute of Robotics and Intelligent Systems, USC, Los Angeles, (1999)
4. M. Wahde, A method for behavioural organization for autonomous robots based on

evolutionary optimization of utility functions, J. Systems and Control Engineering,
217, pp. 249–258, (2003)

5. B.M. Blumberg, Action selection in Hamsterdam: Lessons from ethology, In: From

Animals to animats 3, Proc. of the 3rd Int. conf. on simulation of adaptive behavior
(SAB94), (MIT Press, 1994)

6. P. Maes, Modeling adaptive autonomous agents, Artificial Life 1, pp. 135–162, (1994)
7. M. Wahde, J. Pettersson, H. Sandholt and K. Wolff Behavioral Selection Using the

Utility Function Method: A Case Study Involving a Simple Guard Robot, to appear in
Proc. of the 3rd Int. Symp. on Autonomous Minirobots for Research and Edutainment
(AMIRE 2005), (2005)

8. J. Pettersson and M. Wahde Application of the utility function method for behavioral

organization in a locomotion task, IEEE Trans. Evol. Comp., (2005, in press)
9. D. McFarland, Animal Behavior, 3rd edition, (Addison-Wesley, Harlow, 1999)

10. D. McFarland and T. Bösser, Intelligent Behavior in Animals and Robots, (MIT Press,
1993)

11. D. McFarland and E. Spier, Basic cycles, utility, and opportunism in self-sufficient

robots, Robotics and Autonomous Systems, 20, pp. 179–190, (1997)
12. O. Michel/Cyberbotics Ltd, WebotsTM: Professional Mobile Robot Simulation, pp.39–

42, International Journal of Advanced Robotic Systems, Volume 1 Number 1, (2004)
13. N. Koenig and A. Howard, Design and Use Paradigms for Gazebo, An Open-Source

Multi-Robot Simulator, IEEE/RSJ International Conf. on Intelligent Robots and Sys-
tems, (Sep. 2004)

14. C. Leger, Darwin2K: An Evolutionary Approach To Automated Design For Robotics,
(Kluwer Academic Publishers, 2000)

15. S. Nolfi, EvoRobot 1.1 User Manual, Institute of Psychology, Rome, Italy, (2000)
16. F. Delcomyn and J.A. Reichler, Dynamics Simulation and Controller Interfacing for

Legged Robots, The International Journal of Robotics Research, Vol. 19, No. 1, pp.
41–57, (Jan. 2000)

August 30, 2005 13:43 WSPC/INSTRUCTION FILE
PetterssonWahde˙IJAIT2005

20 Jimmy Pettersson and Mattias Wahde

17. UFLibrary demo, http://www.me.chalmers.se/˜mwahde/robotics/UFMethod/
UFLibrary/Demo.html

18. Borland Delphi, http://www.borland.com/delphi/
19. GLScene, http://glscene.org/

Paper VI

Behavioral Selection using the Utility Function

Method: A Case Study Involving a Simple Guard

Robot

in

Proceedings of the 3rd International Symposium on Autonomous Minirobots for
Research and Edutainment (AMiRE 2005), Fukui, Japan, September 2006,

pp. 261–266.

Behavioral Selection Using the Utility

Function Method: A Case Study Involving a

Simple Guard Robot

Mattias Wahde1, Jimmy Pettersson1, Hans Sandholt1, and Krister Wolff1,2

1 Department of Applied Mechanics, Chalmers University of Technology, 412 96
Göteborg, Sweden
{mattias.wahde, hans.sandholt, jimmy.pettersson}@chalmers.se

2 Department of Microtechnology and Nanoscience, Chalmers University of
Technology, 412 96 Göteborg, Sweden
krister.wolff@mc2.chalmers.se

Summary. In this paper, the performance of the utility function method for behav-
ioral organization is investigated in the framework of a simple guard robot. In order
to achieve the best possible results, it was found that high-order polynomials should
be used for the utility functions, even though the use of such polynomials, involving
many terms, increases the running time needed for the evolutionary algorithm to
find good solutions.

1 Introduction

In behavior-based robotics (BBR) [1], the artificial brain of a robot is built
in a bottom-up fashion, starting from simple low-level behaviors. An obstacle
facing the behavior-based approach is the problem of behavioral selection, i.e.
the problem of activating appropriate behaviors at all times. In simple robots,
with small behavioral repertoires, the selection of behaviors (for activation)
can be generated manually, which indeed is what is done in most methods for
behavioral selection [4, 5, 6].

However, in robots with larger behavioral repertoires, specifying behavioral
selection by hand is a daunting task, not least because of the difficulty in
comparing, at all times and in all situations, the relative merits of several
behaviors. Such comparison requries a common currency which, in economic
theory and game theory, goes under the name utility, a concept that has also
been introduced in ethology and, more recently, in robotics [3, 4].

In order to overcome the difficulties associated with behavioral selection,
a method known as the utility function (UF) method has been developed [4].
In this method, behavioral selection is based on the value of utility functions

2 Behavioral Selection Using The Utility Function Method

that are evolved rather than hand-coded, thus minimizing the bias introduced
by the user of the method.

In this paper, the UF method will be illustrated by means of an exam-
ple, namely a simple simulated guard robot. In addition, the performance for
various utility function specifications will be studied.

2 The Utility Function Method

Due to space limitations, only a brief description of the UF method will be
given here. A more complete discussion of the method is available in [4]. In
the UF method, each behavior Bj, j = 1, . . . , N , where N is the number of
behaviors, is associated with a utility function, whose variables are (a subset
of) the state variables of the robot. The state variables are of three kinds:
External variables, denoted si (e.g. the readings of IR sensors on the robot),
internal physical variables, denoted pi (e.g the readings of a battery sensor),
and internal abstract variables, denoted xi. The latter correspond to the read-
ings of internal variables known as hormones in the UF method. In general,
each utility function is given by a polynomial ansatz. For example, the ansatz
for a second-degree polynomial utility function of two variables s1 and x1 is
given by

U(s1, x1) = a00 + a10s1 + a01x1 + a20s
2
1 + a11s1x1 + a02x

2
1. (1)

The UF method is an arbitration method, i.e. a method in which one and
only one behavior is active at any given time. Behavioral selection is simple
in the UF method: at all times, the behavior whose utility function takes the
highest value is activated. The problem, of course, is to specify the utility
functions so as to generate purposeful and reliable behavioral selection. In the
UF method, this is done using an evolutionary algorithm (EA). As in any EA,
a fitness function must be specified. In the UF method, the fitness is often
associated with the execution of a given task behavior, the other behaviors
being considered as auxiliary behaviors, i.e. behaviors which are needed (such
as battery charging), but which do not increase the fitness of the robot. Once
the fitness function has been specified, the task of the EA is thus to set the
coefficients of the N polynomial utility functions.

An interesting question in this regard concerns the number of such coef-
ficients, which, in turn, determines the complexity of the problem that the
EA must solve. In general, it can be shown that a polynomial function of n
variables and of degree p contains

(

n + p

p

)

=

(

n + p

n

)

(2)

distinct terms. (For example, in Eq. (1), n = 2 and p = 2, so that the number
of terms, according to Eq. (2), equals

(

4

2

)

= 6).

Behavioral Selection Using The Utility Function Method 3

3 Case Study: A Simple Guard Robot

As a case study, consider a simple simulated guard robot whose task it is
to patrol the arena shown in the left panel of Fig. 1. The arena contains
numerous obstacles in the form of pillars, as well as three battery charging
stations, located at corners in the arena. The simulated robot is a differentially
steered, two-wheeled robot, with two DC motors. The robot will be equipped

Fig. 1. Left panel: The arena patrolled by the guard robot. Right panel: Behavioral
hierarchy of the robotic brain.

with five behaviors, namely straight-line navigation (B1), obstacle avoidance

(B2), energy maintenance (B3), corner seeking (B3.1), and battery charging

(B3.2). In the UF method, as implemented in the UFLibrary software library
currently under development at Chalmers University of Technology, behaviors
are organized in hierarchies, as indicated in the right panel of Fig. 1. Utility
functions are compared on a level-by-level basis. Thus, for each time step, it
is determined which of the three functions U1, U2, and U3 takes the highest
value. If it happens to be U3, the comparison of U3.1 and U3.2 will determine
which of these two behaviors is active.

In B1, the robot simply moves in a straight line, by setting its motor
outputs to equal values. In B2 the robot turns until no obstacle is visible
in front of it, and then stops. If B3.1 is active, the robot will rotate in an
attempt to find a charging station (each of which is associated with an IR
beacon detectable by a sensor on the robot). In B3.2 the robot remains at a
standstill, charging the batteries if it happens to be at a charging station.

Since the task of the robot is to cover as much of the arena as possible, a
suitable fitness measure is simply the time spent in the navigation behavior
B1. In order to avoid rapid swapping between behaviors, a slightly modified
fitness function was used, however, in which the robot only obtains a fitness
increase if it spends at least one full second executing B1.

Due to space limitations, the full ansatz for each utility function will not
be given here. Suffice it to say that the number of variables in U1, U2, U3, U3.1,
and U3.2 were 4, 3, 3, 2, and 1, respectively. Thus, for degree p, the number
of polynomial coefficients that must be determined by the EA equals

4 Behavioral Selection Using The Utility Function Method

nc =

(

4 + p

4

)

+ 2

(

3 + p

3

)

+

(

2 + p

2

)

+

(

1 + p

1

)

. (3)

4 Simulation program

A simulation program was written in Delphi object-oriented Pascal [2] using
the UFLibrary software package. The UFLibrary provides a general imple-
mentation of the UF method, handling all issues involving the evolution of
polynomial utility functions for behavioral selection. The task of the user is
to provide (1) the constituent behaviors for the behavioral repertoire, (2) the
polynomial degree p of the utility functions, (3) a fitness function, (4) the
arena, in the form of a text file readable by the UFLibrary, (5) the definition
of the robot body and the general structure of its brain (as shown in the
right panel of Fig. 1), also in the form of a text file in a given format. The
specification of the robotic brain also involves specifying the state variables
included in each utility function polynomial.

5 Results

For simplicity, the simulations were performed without any sources of noise.
Each evaluated individual was allowed a maximum simulation time of 100s.
However, the evaluation of a simulated robot was terminated directly in case
of collisions with obstacles or if the on-board battery became fully discharged.
In each run, 10,000 individuals were normally evaluated, even though some
extended runs were carried out as well (see below).

Four different polynomial degrees were investigated, namely p = 1, 2, 3,
and 4, for which the number of polynomial coefficients (nc) equals 18, 44,
89, and 160, respectively. In order to allow a fair comparison between the
performance of the EA for different values of p, mutation rates (pm) were set
to 1/nc or 3/nc. The population sizes np were set to 20 or 100 individuals.
In the UFLibrary, the crossover procedure swaps entire polynomials between
chromosomes. Here, the crossover probability pc was set to 0.2 or 0.8. Fur-
thermore, tournament selection was used, with the tournament size nt set to
10% of the population size. Thus, a total of 4 × 2 × 2 × 2 = 32 parameter
combinations were investigated. Furthermore, because of the stochasticity of
EAs, several (NR) runs had to be performed for each setting, in order to form
a reliable average. Since a typical run lasted for a few hours, NR was limited
to 5-7, resulting in a total of around 200 runs.

Due to the richer dynamical structure accessible in runs with large p, it
could perhaps be expected that these runs would outperform those with lower
p values. However, no such simple trend was found: The averages (over all runs
with a given value of p) of the best fitness values found after 10,000 evaluated
individuals, were found to be 10.36, 9.33, 10.31, and 9.43, for p = 1, 2, 3, and

Behavioral Selection Using The Utility Function Method 5

Table 1. Averages of the best fitness values found after 10,000 individuals, for runs
with different values of the polynomial degree p and the mutation rate pm.

Polynomial degree

pm 1 2 3 4

1/nc 8.973 6.396 7.255 5.291
3/nc 11.76 11.73 13.35 13.59

4, respectively. As can be seen in Table 1 there is, on the other hand, a strong
trend in favor of the larger of the two mutation rates. A similar, albeit weaker,
trend (not shown) was also found in favor of large population sizes, whereas
no discernible trend was encountered for the crossover probability. Note also
that, within the categories shown in Table 1, the spread between different runs
was quite large, with the majority of runs reaching rather low fitness values.

6 Discussion and conclusion

While the average results obtained from the runs performed here show only
very little variation with the polynomial degree p, this does not necessarily
imply that the choice of p does not matter. Two possible interpretations of
the results are that (1) perhaps larger values of p do indeed make it possible
to achieve better results but that finding such solutions becomes progressively
more difficult as p is increased (due to the large increase in the size of the
search space), or (2) maybe p = 1 or 2 is sufficient for the problem at hand
and that, in the runs with larger p, the coefficients in front of the third and
fourth-order terms are simply eliminated by the EA. However, an inspection
of those coefficients showed the latter not to be the case.

Table 2. Averages of the three best fitness values found for each polynomial degree
p in the extended runs.

Polynomial degree

1 2 3 4

23.24 37.23 47.91 49.33

Evidence in favor of the first interpretation can be found, on the other
hand: As shown in Table 1, the increase in performance as the mutation
rate is raised is stronger for large p values than for small ones, indicating
that the larger p values require a more thorough inspection of the search
space before the best solutions can be found. In order to test this tentative
conclusion further, several extended runs were performed, the results of which
are summarized in Table 2. Note that the extended runs differed somewhat
in length: The number of evaluated individuals was on the order of 50,000

6 Behavioral Selection Using The Utility Function Method

to 100,000. For this reason, the table shows an average of the three best
results obtained for each p. In Table 2, the results clearly show an increase
in performance as p is raised. Thus, it may be concluded that the choice of p
strongly influences the quality of the results that can be achieved, but that
the benefits of larger p values only become evident after the evaluation of a
large number of individuals.

Finally, note that the chosen fitness measure (time spent in behavior B1)
does not lead to an incentive for the robot to explore the whole area. However,
such solutions were indeed found by the EA in some runs. One example is
shown in Fig. 2, with a fitness value equal to 44.57 found after the evaluation
of 41,400 individuals.

Fig. 2. The motion of one of the best robots found by the EA. The squares in the
upper right, lower left, and lower right corners represent the charging stations.

Acknowledgments

The authors wish to thank the Carl Trygger foundation for financial support
for this project.

References

1. Arkin, R.C., Behavior-based robotics, MIT Press, 1998
2. http://www.borland.com/delphi
3. McFarland, D. and Bösser, T. Intelligent behavior in animals and robots, MIT

Press, 1993
4. Wahde, M., A method for behavioural organization for autonomous robots based

on evolutionary optimization of utility functions, Journal of Systems and Control
Engineering, 217, pp. 249–258, 2003

5. Maes, P., How to do the right thing, Journal of Connection Science, 1, No.3,
pp. 291–323, 1989

6. Blumberg, B.M., Action selection in Hamsterdam: Lessons from ethology, In:

From Animals to animats 3, Proc. of the 3rd Int. conf. on simulation of adaptive
behavior (SAB94), MIT Press, 1994

Paper VII

Behavioral selection in domestic assistance robots: A

comparison of different methods for optimization of

utility functions

to appear in

Proceedings of the 2006 IEEE International Conference on Systems, Man, and
Cybernetics (SMC 2006), Taipei, Taiwan, October 2006.

Behavioral selection in domestic assistance robots: A comparison of

different methods for optimization of utility functions

Jimmy Pettersson, David Sandberg, Krister Wolff, and Mattias Wahde

Abstract— In this paper, the performance of several evo-
lutionary algorithms (EAs), involving different operators, is
investigated in connection with the utility function (UF) method,
a method for generating behavioral organization (selection)
systems in autonomous robots.

The standard UF method, which uses an ordinary genetic
algorithm (GA) with fixed-length chromosomes is compared
with modified evolutionary methods in which the chromosomes
are allowed to vary in size.

The results show that, contrary to expectations, the standard
UF method performs at least as well as the modified methods,
despite the fact that the latter have larger flexibility in exploring
the space of possible utility functions. A tentative explanation of
the results is given, by means of a simple, analytically tractable,
behavioral organization problem.

I. INTRODUCTION AND MOTIVATION

As the percentage of elderly people increases, there will be

an increase in the demand for domestic robots. These robots

are expected to perform tasks such as notifying the owner

about periodic events (e.g. intake of medicine), alerting in

case of danger, providing transportation assistance, serving

as an interface to nurses or doctors, vacuuming floors, and

partly filling the need for social stimulation. Already today,

there are numerous robots available, designed for domestic

use, with vacuum cleaning and entertainment being the most

common applications.

For domestic robots to become widely used, they need to

become more intelligent and to be able to handle reliably

a multitude of tasks. In behavior-based robotics (BBR) [1],

the aim is to develop truly intelligent robots, capable of per-

forming their duties in unstructured environments, through

the combination of several low-level behaviors. In BBR, a

robotic brain commonly consists of a repertoire of behaviors,

and a system (the behavioral organizer) responsible for

activating the correct behavior at any given time. Thus, a

major issue in BBR is to determine when (i.e. under what

circumstances) a behavior from the repertoire should be

selected for activation. In order to solve this problem, several

methods for behavioral organization (or behavior selection)

have been proposed [2], [3].

However, most such methods require the user to specify

numerous parameters by hand. One of the aims of the

recently introduced utility function (UF) method [3] is to

free the user from this burden. In the UF method, the

relative merit (utility) of each behavior is obtained from a

This work was supported by the Carl Trygger foundation.
The authors are affiliated with the Department of Applied Mechanics,

Chalmers University of Technology, 412 96 Göteborg, Sweden. Correspond-
ing author’s e-mail: mattias.wahde@chalmers.se

utility function (normally a polynomial). The utility functions

determining the behavior selection in a given robotic brain

are optimized by means of an evolutionary algorithm (EA).

With the UF method, selection among behaviors is simple,

as soon as the utility functions have been obtained: At

all times, the behavior associated with the highest utility

value, as obtained from the utility function, is selected for

activation.

In the UF method, each utility function depends on several

state variables (see below), and the normal procedure is to

use complete polynomials to represent the utility functions,

i.e. polynomials containing all possible combinations of vari-

ables, up to a maximum degree d. For example, a complete

utility polynomial Uc(s1, s2) of two variables and degree 2

would take the following form

Uc(s1, s2) = a00 + a10s1 + a01s2 + a20s
2

1 +

+ a11s1s2 + a02s
2

2
, (1)

where the aij are constants to be determined by the EA.

However, it is evident that the number of terms in such a

polynomial representation grows rapidly with the number

of variables n and the polynomial degree d, thus making

the search space very large. In view of the long evaluation

times (several seconds up to several minutes per individual)

in many behavior selection problems, the need for efficient

optimization methods (for the utility functions, in the case

of the UF method) is evident.

An obvious alternative to using complete polynomials

would be to use non-complete polynomials, i.e. polynomials

lacking certain terms. A non-complete version (Unc) of Uc

could, for example, take the form

Unc(s1, s2) = a00 + a20s
2

1
+ a11s1s2, (2)

or any other form involving a subset of the 6 terms in (1).

Provided that the EA would be able (through crossover and

mutations) to modify the exact nature of the terms in the

non-complete polynomials, one might expect that such a

representation would lead to faster optimization of the utility

functions.

In this paper, the performance of different EAs will

be studied for the case of a simple domestic exploration

robot, which can serve as a metaphor for e.g. a vacuum

cleaning robot. Specifically, the performance of a standard

genetic algorithm (GA), which uses complete polynomials, is

compared to the performance of several modified GAs, which

use incomplete (or at least variable-structure) polynomials.

II. THE UTILITY FUNCTION METHOD

In the UF method, each behavior in the behavioral reper-

toire {B1, B2, . . . , BN} is associated with a utility function

Ui(s,p,x), i = 1, 2, . . . , N, (3)

where s is a set of external variables (such as external

sensor readings), p is a set of internal physical variables

(such as wheel encoder signals), and x is a set of internal

abstract variables (corresponding to hormones in a biological

organism).

The standard UF (hereafter: SUF) method sets up a pop-

ulation in which the chromosomes specify the coefficients

of the utility functions for the individual in question. In the

initial population, the coefficients are set to random values

within a given range. Each individual is then evaluated, by

running a simulation in a given arena while monitoring the

performance (fitness) of the individual. The exact nature of

the fitness measure will, of course, vary from problem to

problem.

Being an arbitration method, i.e. one in which only a

single behavior is allowed to be active at any given instant,

the UF method selects, during the operation of a robot, the

behavior whose utility function has the highest current value.

The utility functions are optimized using an EA in which

the fitness value only increases during the active period of

specific behaviors, the task behaviors. Behaviors that do

not modify the fitness value are referred to as auxiliary

behaviors.

Once all individuals have been evaluated, new individuals

are formed through the procedures of fitness-proportional

selection, crossover, and mutation. The new generation thus

formed is then evaluated in the same way as the first, etc.

For a more detailed discussion of the UF method, see [3].

As mentioned above, in the SUF method, each utility

function is represented by a complete polynomial, including

all terms up to a pre-specified degree d. If the number of

arguments, formed by the union of the sets s, p, and x, is

equal to n, it can be shown that the total number of terms

in the polynomial is equal to

Nt =

(

n + d

d

)

=

(

n + d

n

)

. (4)

An example with n = 2 and d = 2 is shown in (1). Denoting

the full variable set {s,p,x} by z, the utility functions can

thus be written as sums of terms of the form

czk1

1
zk1

2
· · · zkn

n , (5)

where c is a constant, and the ki are non-negative integers.

A utility function polynomial is said to consist of unique

terms if any given exponent combination (k1, k2, . . . , kn),
is represented at most once in the polynomial. As indicated

in connection with (1) above, a polynomial is said to be

complete if all exponent combinations occur exactly once.

Thus, in the case of the SUF method, the structure of the

utility functions remains intact throughout the optimization

process. However, using the methods defined in Sect. IV-B,

structural modifications are introduced that enable a variable

length of the polynomials, and thus the formation of non-

complete polynomials.

III. SIMULATIONS

Simulations were made using software based on the UFLi-

brary software package [4]. Implemented in object-oriented

Pascal, the UFLibrary provides a rapid way of generating

behavior selection systems and provides a general framework

for the UF method. In addition, the UFLibrary also contains

methods for visualization, utilizing the OpenGL interface,

methods for solving and integrating the dynamics associated

with differentially steered robots, various sensor models etc.

A. Simulation setup

The arena used in the experiments is a small apartment

having three rooms, as shown in Fig. 1. Specific areas of the

apartment, for instance the bathroom, are considered to be

off-limits, and have therefore been omitted from the model.

Cylindrical in shape, the simulated robot is differentially

steered, powered by two DC motors, each modeled with a

simple DC circuit. For sensing, the robot is equipped with

five IR sensors placed symmetrically on the front of the robot

in the directions −60◦, −30◦, 0◦, 30◦, and 60◦, respectively.

Each sensor has an opening angle of 0.5 radians, a range of

0.5 m, and uses a model based on a ray-tracing technique as

suggested in [5] for calculating the (diffuse) sensor reading.

In addition to the measurements provided by the IR

sensors, the robot is capable of measuring the amount of

energy available in its onboard battery. As the robot moves,

the battery discharges as

dE

dt
= −kr − km|v| , (6)

where kr and km are positive constants and v is the speed

(with sign) of the robot. The constants in (6) were set so that

the battery would last approximately 25 s. Charging of the

battery occurs with a constant rate (provided that the robot is

currently executing the battery charging behavior, see below)

as dE/dt = kc, with kc set so that an empty battery becomes

fully charged after 10 s of continuous charging. In all runs,

the initial energy level was set to half the battery’s capacity.

In order for the robot to be able to explore the arena,

three different behaviors were included in the behavioral

repertoire, namely straight-line navigation (B1), obstacle

avoidance (B2), and battery charging (B3). Each behavior is

responsible for setting the command signals to the two DC

motors in a certain way. If B1 is active, the motor command

signals are set to positive values (equal in magnitude),

causing the robot to travel forward in a straight line. In B2,

the motor signals are set to be equal in magnitude but with

opposite signs, making the robot turn on the spot, after an

initial transient in case B1 was active before the activation

of B2. The turning is aborted, and the motor signals are thus

set to zero, when the sector in front of the robot is free from

objects. When B3 is selected for activation, the motor signals

are set to zero and the robot stops.

For simplicity, battery charging was modelled in a very

simple way: In order to charge the battery, the robot simply

has to activate B3, thus avoiding the need of additional be-

haviors for locating and approaching charging stations. Such

behaviors would require additional sensors for identifying a

charging station as well as methods for localization.

Since the task of the robot is to explore the environment,

fitness is associated with the time spent in B1 (the task

behavior). Every time the robot uses B1 it receives a fitness

increase (upon leaving B1, or upon termination of the simu-

lation) equal to max(0, t1−1), where t1 is the time spent in

B1 since its latest activation. Thus, fitness is only increased

if B1 is active for a period longer than one second. By

incorporating this threshold in the fitness function, behavior

dithering (or behavior mixing) is effectively eliminated. A

situation involving behavior dithering could, for example,

occur between behaviors B1 and B3. Due to the fact that

battery charging occurs whenever B3 is active, without

regard to the current position of the robot, the behavior

selection could be optimized in such a way that B1 and

B3 would be effectively mixed by toggling between B1 and

B3 every time step. Due to the dynamical properties of the

robot, this would enable the robot to travel forward at low

speed while, at the same time, charging its onboard battery.

This situation is clearly unrealistic and was eliminated by

introducing the one-second threshold in the fitness function.

For the three behaviors B1, B2, and B3, the utility func-

tions were specified as

U1 = U1(s1, s2, s3, s4, s5, p1)

U2 = U2(s1, s2, s3, s4, s5, p1, x1) (7)

U3 = U3(p1, x2)

where si are the readings of the five IR sensors, p1 is the

amount of energy stored in the onboard battery, x1 is a

hormone variable corresponding to fear, and x2 is a hormone

variable corresponding to inverse satiation. The total number

of polynomial terms in a chromosome representing utility

functions for the SUF method can easily be calculated, using

(4), as

Nt =

(

9

3

)

+

(

10

3

)

+

(

5

3

)

= 214 . (8)

Collisions with objects in the environment, as well as

battery depletion, cause the simulation to be aborted. Thus, in

order for the robot to receive high fitness values, the auxiliary

behaviors B2 and B3 must be activated every now and then

for collision avoidance and battery charging, respectively.

Since the focus of this paper is to compare different evolu-

tionary approaches to the generation of utility-function based

behavioral organization systems, rather than the application

per se, several simplifications have been made: As indicated

above, the behaviors B1-B3 are very simple, and so is the

arena. Furthermore, the exploration carried out by the robot

does not include any measure of the covered area and neither

does it depend on any map. In addition, the rates of battery

charging and discharging have been set to very high values,

in order for the robot to be forced to activate all three

Fig. 1. Arena used in the simulations (view from above).

behaviors even during a rather short simulation. Finally, noise

was omitted from the analysis, and all simulations were

performed using the same initial setup (i.e. placement and

orientation of the robot in the arena).

IV. METHODS

A. Standard UF method

The UFLibrary implements the SUF method, with a GA

in which each gene in the chromosome encodes a complete

polynomial, representing the utility function associated with

a behavior. By default, a single-point crossover operator

is used that swaps genes between two selected parents, as

exemplified in the top panel in Fig. 2. Hence, the crossover

operator effectively swaps entire polynomials, keeping the

structure of each polynomial intact. The mutation operator

used in this method modifies the coefficients of the poly-

nomial terms, but not the exponents of the variables, again

keeping the structure of the polynomials intact.

B. Modified methods

Several modified methods, involving evolutionary opera-

tors different from those used in the SUF, were tried, namely

M1 Initialization1 by generating N = Nt (see (4)) random

polynomial terms up to a given maximum degree d. In

M1 the initial polynomials are complete, i.e. there exists

one, and only one, term (and thus one coefficient) for

each exponent combination (k1, . . . , kn), see (5).

M2 Initialization by generating polynomials with N ∈
[1, Nt] random terms up to a given maximum degree d.

Thus, in this method, the initial population will contain

utility functions with fewer terms than in M1. Further-

more, in M2, uniqueness is not enforced even in the

initial population. Thus, the polynomials may contain

more than one term for a given exponent combination

(k1, . . . , kn) (again, see (5)).

M3 As M1, but with the additional operation of simplifying

the polynomials resulting from the crossover operation

to ensure that the polynomials consist of unique terms

as defined in Sect. II. Thus, if, for example, an off-

spring chromosome contains the two terms c1z
k1

1
· · · zkn

2

1i.e. generation of the initial population.

U1 U2 U3

Ui

Fig. 2. Crossover operators used in the standard UF (SUF) method (top panel) and in the modified methods (bottom panel). Genetic material associated
with the two parent chromosomes is indicated with the colors white (first parent) and gray (second parent), and dashed lines indicate the randomly chosen
crossover points. In the top panel, the crossover operator effectively swaps entire polynomials between the two parents as the genes (three in this case)
encode the polynomials associated with each behavior. In the modified methods, the crossover operator swaps segments consisting of polynomial terms,
which are illustrated as small boxes in in the bottom panel. Note that, for the modified methods, even if the parent chromosomes contain unique polynomial
terms, the offspring may contain non-unique terms as a result of crossover.

and c2z
k1

1
· · · zkn

2
(with the same exponent combination

(k1, . . . , kn)), they are fused into one term with coeffi-

cient c = c1 + c2.

M4 As M2, but with the same simplification procedure as

in M3.

M5 As M1, but with an additional mutation operator that

randomly selects one existing term and generates a new

coefficient and new exponent values (with a maximum

degree d). Hence, c, k1, k2,. . . , kn in (5), for the chosen

polynomial term, are assigned new random values.

M6 As M2, but with the same additional operator as in M5.

In the methods M1–M6, a two-point crossover operator was

used, as illustrated in the bottom part of Fig. 2. Contrary to

the crossover operator used in the SUF method, in which

entire polynomials are swapped, the two-point crossover op-

erates on the genetic material contained in the polynomials,

i.e. on the level of polynomial terms. For each polynomial

in the chromosome, two segments of random lengths are

swapped between the two participating individuals. This

operator effectively swaps sequences of polynomial terms,

changing the structure of the involved polynomials.

Mutation was used in the same way as in the SUF method,

i.e. randomly changing the coefficients (c) of the polynomial

terms, leaving the combination of exponents unchanged,

except in M5 and M6, where exponents could be modified

as well (see above).

In both the SUF method and in the modified methods

(M1–M6), generational replacement and elitism were used

in the implementation of the algorithms. Thus, when forming

the new generation through selection, crossover, and muta-

tion, the best individual in the last generation was transferred

unchanged into the new generation.

V. RESULTS

In all runs, a population size of 100 individuals was used

and the EAs were normally run for 50 generations (5 000
evaluated individuals). The maximum simulation time was

set to 100 s, exceeding the time it takes for a fully charged

battery to deplete. Selection was performed using tournament

selection with a tournament size of 5 and a probability of

selecting the best individual set to 0.7. The probability of

crossover was set to 0.5.

In the runs involving the SUF method, a fixed polynomial

degree of 3 was used, as suggested by the results in [6]. For

the runs made with the modified methods, the same degree

was used as an upper bound of the generated polynomial

terms.

In the SUF method, a mutation rate of 3/Nt was chosen,

based on the results reported in [6]. Note that Nt is the

number of polynomial terms in a complete polynomial, as

defined in (4).

In the methods M1–M6, a variable mutation rate of 1/nc

was used2, where nc denotes the (variable) total number

of terms in the utility functions of a given individual. An

exception was the exponent mutations in M5 and M6, which

occurred with the rate 1/(5nc).

Due to the stochastic nature of EAs, several runs should

be made in order to evaluate the performance of any given

method. Here, 10 runs were made for each method, and the

average f̄ of the best fitness fbest obtained in each run was

formed. Thus, for any given method,

f̄ =
1

10

10
∑

i=1

fbest

i . (9)

2Some test runs were carried out using a mutation rate of 3/nc (for
M1–M6), but these runs did not give better results.

Fig. 3. Typical path taken by one of the best robots. The filled circle
marks the initial position of the robot. In the particular case illustrated here,
the behavior selection system was optimized using method M1 and was
obtained after the evaluation of 450 individuals.

As seen from the results in Table I, the value of f̄ in methods

M1 and M5 is similar to that of the SUF method whereas

M2, M4, and M6 perform significantly worse (on average).

M3 achieved intermediate values of f̄ .

In terms of the maximum fitness attained in any of

the 10 runs (fmax = maxi fbest

i), all methods performed

approximately equally well, i.e. all methods were capable of

finding at least one good solution. If the EAs were allowed

to run for longer periods of time (more than 5 000 evaluated

individuals), all methods eventually managed to escape any

local optima. The path travelled by one of the best robotic

brains obtained using the M1 method is shown in Fig. 3.

TABLE I

RESULTS FROM RUNS USING THE STANDARD UF (SUF) METHOD AND

THE SIX METHODS DEFINED IN SECT. IV-B (M1–M6). A TOTAL OF 10

RUNS WERE MADE FOR EACH METHOD. IN EACH RUN, A TOTAL OF 5 000

INDIVIDUALS WERE EVALUATED. fmax IS THE MAXIMUM FITNESS

ACHIEVED, f̄ IS THE AVERAGE OF THE MAXIMUM FITNESS OVER THE 10

RUNS, AND C95% IS THE CORRESPONDING 95% CONFIDENCE INTERVAL.

Method fmax f̄ C95%

SUF 59.07 55.75 1.92
M1 58.52 54.61 2.00
M2 54.20 40.87 8.53
M3 55.92 49.63 5.01
M4 58.36 40.96 10.00
M5 58.15 55.17 1.36
M6 54.87 40.86 6.87

VI. DISCUSSION

Looking at the averages f̄ of the best results obtained in

the 10 runs for each method, the most striking observation

is the fact that the methods M2, M4, and M6 perform

significantly worse than the SUF method. By contrast, M1,

M3, and M5 which, like the SUF method, all start from

complete polynomials, are comparable in performance to

the SUF method (with the possible exception of M3, which

performs slightly worse).

This was not anticipated since M2, M4, and M6 all start

from utility functions with fewer polynomial terms than the

Fig. 4. A robot in an arena with a circularly symmetric obstacle. The robot
is differentially steered and equipped with a single wide-range proximity
sensor.

SUF method and thus, effectively, are able to carry out their

search in a lower-dimensional space, and with flexibility as

to which terms should be included in the utility function

polynomials. Having obtained these results, one might be

tempted to conclude that all polynomial terms are needed

in order to find a good solution or, in other words, that

only complete polynomials, as defined in Sect. I, will lead

to proper behavior selection. However, this is not the case

since it is possible (albeit slower) to find good solutions even

if the polynomial degree d is lowered to 2, say.

How, then, can the difference in performance be accounted

for? Consider the simple toy problem in which a robot is

placed in a circularly symmetric arena as shown in Fig. 4.

The robot is assumed to be equipped with the two behaviors

straight-line navigation (B1) in which both motors receive

equal signals, and turning (B2), in which the motor signals

are equal in magnitude but have opposite sign, making the

robot turn without moving its center-of-mass. It is further

assumed that the robot moves slowly, that it can stop almost

instantaneously, and that it has an unlimited energy supply.

The proximity sensor is assumed to give a signal s = 1 if

an obstacle is detected and s = 0 otherwise. In order for the

robot to achieve collision-free navigation, maximizing the

distance travelled in a given time, it should, of course, keep

B1 active unless the sensor detects an obstacle, in which case

the robot should turn until the obstacle is no longer detected,

at which point the execution of B1 should be resumed (see

Fig. 4). Now, in order to solve this simple problem using the

UF method, one can without restriction set one of the utility

functions (U1, say) to 0. For U2, an ansatz of the form

U2 = a0 + a1s + a2s
2 + . . . + ads

d, (10)

can be used. For this simple problem, d = 1 would be

sufficient. However, assuming that the level of complexity

a
0

a
1

-L L

L

-L

Fig. 5. The integral I2. The region C corresponds to the shaded part of
the space.

of the problem is unknown (as is normally the case, in

more realistic applications), one must select a suitable value

of d, and then search the space of possible solutions. The

question is, then: What fraction of the search space will give

correct solutions (as described above), as a function of the

dimensionality (D = d + 1) of the search space? In this

problem, correct solutions occur if U1 > U2 for s = 0 and

U2 > U1 for s = 1. Hence, the conditions

a0 < 0 (11)

and
d

∑

i=0

ai > 0 (12)

must be satisfied in order for a given solution (i.e. a set

of polynomial coefficients) to be correct. Assuming that all

parameters ai lie in the interval [−L, L], the fraction of the

search space meeting these criteria can be formulated as an

integral, according to

ID = (2L)−D

∫

{ai}∈C

dA , (13)

where dA denotes da0da1 · · · dad, and the region C is

defined by the criteria given in (11) and (12). As an example,

the integral I2 is illustrated in Fig. 5. As is evident from the

figure, I2 = 1/8 = 0.125. It is straightforward to compute

the integral for any value of D, and the resulting values are

shown in Table II. As is evident from the table, the fraction

ID of the search space giving correct solutions increases

as the number of dimensions is raised. Put differently, the

results in Table II exemplify the fact that an increase in

the size of the search space does not always make it more

difficult to find the correct solution. Instead it is the fraction

of the search space containing correct solutions that matters.

TABLE II

THE INTEGRAL ID SHOWN FOR VARIOUS VALUES OF THE DIMENSION

(D) OF THE SEARCH SPACE. NUMERICAL VALUES WERE CALCULATED

USING A MONTE CARLO METHOD WITH A TOTAL OF AROUND 109

SAMPLED POINTS FOR EACH VALUE OF ID .

D ID D ID D ID

2 0.1250 6 0.1783 10 0.1948
3 0.1458 7 0.1837 11 0.1974
4 0.1615 8 0.1881 100 0.2327
5 0.1711 9 0.1918 214 0.2382

Finally, for the simulations, it should be noted that the

maximum attained fitness values fmax shown in Table I, are

quite similar. This is due to the fact that, during the 100 s

simulations used here, there is a limit to the amount of fitness

that can be attained. An estimate of the maximum attainable

fitness (the details of which will not be given here) leads to

a value of around 64, rather close to the maximum fitness

values reached by all methods. Had the problem been more

complex, involving, say, five or 10 behaviors, it is likely that

the difference in performance between, on the one hand the

SUF method, M1, M3, and M5 and, on the other hand, M2,

M4, and M6 would be evident also in the values of fmax.

VII. CONCLUSION

The main conclusion of this work is that, at least for

certain problems with fairly low level of complexity, the

performance of the standard UF method is equal to, or better

than, the performance of the modified methods, despite the

more rigid structure of the utility function polynomials in

the SUF method. A possible explanation is the fact that, in

some problems, an effective increase in the size of the search

space does not necessarily make the problem of finding good

solutions harder. This has been illustrated by means of an

analytically tractable toy problem, for which it was shown

that the probability of finding a correct solution increases

with the size of the search space.

VIII. ACKNOWLEDGMENTS

The authors gratefully acknowledge financial support from

the Carl Trygger foundation for this project.

REFERENCES

[1] R. Arkin, Behavior-based robotics. MIT Press, 1998.
[2] P. Pirjanian, “Behavior coordination mechanisms – state-of-the-art,”

Institute of Robotics and Intelligent Systems, USC, Los Angeles, Tech.
Rep., 1999.

[3] M. Wahde, “A method for behavioural organization for autonomous
robots based on evolutionary optimization of utility functions,” Journal

of Systems and Control Engineering, no. 217, pp. 249–258, 2003.
[4] http://www.me.chalmers.se/∼mwahde/robotics/UFMethod/UFLibrary/

Demo.html.
[5] N. Jakobi, P. Husbands, and I. Harvey, “Noise and the reality gap: The

use of simulation in evolutionary robotics,” in Lecture notes in computer
science, vol. 929. Springer-Verlag GmbH, 1995, pp. 704–720.

[6] M. Wahde, J. Pettersson, H. Sandholt, and K. Wolff, “Behavioral
selection using the utility function method: A case study involving a
simple guard robot,” in Proc. of the 3rd Int. Symp. on Autonomous
Minirobots for Research and Edutainment (AMiRE 2005), 2005, pp.
261–266.

Paper VIII

Improving generalization in a behavioral selection

problem using multiple simulations

in

Proceedings of the Joint 3rd International Conference on Soft Computing and
Intelligent Systems and the 7th International Symposium on advanced Intelligent

Systems (SCIS & ISIS 2006), Tokyo, Japan, September 2006, pp. 989–994.

Improving generalization in a behavior selection
problem using multiple simulations

Jimmy Pettersson and Mattias Wahde

Department of Applied Mechanics
Chalmers University of Technology

412 96 Göteborg, Sweden
E-mail: {jimmy.pettersson, mattias.wahde}@chalmers.se

Abstract— Various methods of improving the validation per-
formance of behavior selection systems for autonomous robots,
based on the utility function (UF) method is investigated bymeans
of simulations involving a robot carrying out a simple exploration
task. In the UF method, behavior selection is based on utility
functions which, in turn, are optimized using an evolutionary
algorithm (EA). The computer simulations used for generating
the utility functions can be set up in many different ways and,
in this paper, several different setups are compared with respect
to their ability of generating reliable behavior selectionsystems.

The results show that better validation performance is ob-
tained in cases where several simulations are carried out in
the evaluation of an individual, provided that the simulations
are sufficiently long so that the robot will have to make many
behavior selection decisions. Furthermore, the results indicate
that the choice of method for combining the results obtainedin
different simulations to form a scalar fitness value has onlya
rather limited impact on the performance.

I. I NTRODUCTION AND MOTIVATION

In order for autonomous robots to become widely applicable
they must be able to operate in a great variety of different
environments with varying degrees of unpredictability. Inthe
behavior-based approach, robots are commonly equipped with
a repertoire of (rather simple) behaviors and a method for
selecting between those behaviors, also called a behavioral
organization system. Due to its central importance, many
methods have been developed for behavioral organization [1]
or behavior selection, as it is also called. In this paper, the
investigation will be centered around one such method, namely
the utility function (UF) method [2], in which the selectionof
behaviors (for activation) is based on utility functions which,
in turn, are optimized in simulations using an evolutionary
algorithm (EA).

In the UF method, the evaluation of robotic brains (control
systems) is based on the results obtained from one or several
simulations, where simulations differ in their setup, i.e.the
initial position and velocity of the robot, the initial battery
energy, the number of moving obstacles (and their types of
motion) etc. In cases where only a single training setup is
used, the overall behavior of an evolved robot will invariably
be tailored to that particular setup (i.e. overfitting will occur)
limiting the ability of the robot to handle situations that were
not encountered during training.

An additional problem is that detailed simulation of au-
tonomous robots is a computationally very intensive undertak-
ing: The simulator must, in each time step, take into account

the sensors and actuators of the robot, as well as the interaction
of the robot with its environment. In order to test the selection
of behaviors in all relevant situations, each evaluation must
usually cover a rather long time. Energy maintenance is a case
in point: If a robot starts its operation with a near-full battery, it
will clearly take a while before the battery charging behavior
becomes relevant. Of course, this particular problem can be
mitigated in several ways, e.g. by introducing an artificially
high battery discharge rate, or by starting the robot with a
near-empty battery. However, similar considerations occur in
other behavior-switching situations as well.

In addition, other more subtle problems occur for the special
case of behavior selection. For example, a robot may have a
choice between say, a straight-line navigation behavior (B1)
and an obstacle avoidance behavior (B2). As an illustration,
consider the slightly simplified situation where the robot is
started with a long, empty stretch in front of it, and assume
that the robot is given fitness only for executing the navigation
behavior, the obstacle avoidance behavior being an auxiliary
behavior that does not contribute to the fitness of the robot
[3]. The EA will then quickly find solutions in which the
robot moves in a straight line and then hits a wall, causing
the simulation to be terminated. After some time, robots will
appear that are able to avoid the collision (for example by
lowering the utility of B1, or raising the utility ofB2 when
a collision with a wall is imminent, as measured e.g. by IR
sensors on the robot). However, the search problem is made
more difficult by the absence of a proper gradient: Robots that
follow a straight line into the wall will all receive the same
fitness, regardless of how close they were to switching between
the two behaviors. It is only when a switch actually occurs that
the robot will be able to avoid the wall and then continue along
some other direction, thus increasing its fitness. Of course, in
this simple example, it would be possible to provide a gradient
for the EA simply by letting the fitness measure also depend on
how close the robot was to switching to the obstacle avoidance
behavior. However, in most cases, it is undesirable to have to
specify such a detailed fitness measure. In fact, one of the
main advantages with the UF method is that the user should
not have to provide a very detailed fitness measure involving
all possible situations that may occur.

Clearly, this problem is not limited to the UF method -
in any method where a reward (i.e. a fitness increase) is
given only for the continuous execution of a single behavior,

the same problem will appear. Evidently, these problems, in
connection with the long evaluation times, make the search
for good behavior selection systems even more difficult (and
time-consuming).

While the problem of overfitting (i.e. lack of generalization
properties due to adaptation to special conditions) has been
studied extensively for e.g. artificial neural networks, the
problem has not been much studied in relation to behavior
selection in autonomous robots. This paper aims to investigate
how evaluations of robotic brains should be devised in order
to evolve a behavior selection system capable of generalizing
to previously unseen situations.

In Sect. II a brief introduction to the UF method is given.
The simulations (setup and software) are described in Sect.III,
and the results are presented in Sect. IV. In Sect. V, the results
are discussed and some conclusions are drawn.

II. T HE UTILITY FUNCTION METHOD

In the UF method, each behavior in the behavioral repertoire
{B1, B2, . . . , BN} is associated with a utility function that
measures the relative merit of each behavior. By default, the
UF method uses a polynomial ansatz for each utility function
with the polynomial degree specified by the user. An example
of a second degree polynomial ansatz is

U(s1, p1) = a00 + a10s1 + a01p1 + a20s
2

1 +

+ a11s1p1 + a02p
2

1
, (1)

wheres1 andp1 are state variables and theaij are constants
to be determined by the EA. State variables can be of three
kinds: (1) external variables, denotedsi (e.g. the readings of
IR sensors) (2) internal physical variables, denotedpi (e.g. the
battery level), and (3) internal abstract variables, denoted xi

(variables used as internal signals, roughly corresponding to
hormones in biological organisms). As exemplified in Eq. (1),
the UF method uses a complete polynomial, i.e. including all
terms up to the specified degree, for each utility function.

The UF method is an arbitration method, i.e. a method in
which only a single behavior is active at any time [1], and
it uses a rather straightforward behavior selection mechanism:
At all times, the behavior currently associated with the highest
utility value (as generated by the corresponding utility func-
tion) is selected for activation. For a more detailed description
of the UF method, see [2].

As in any application involving an EA, a proper assignment
of fitness is crucial in order for the robot to carry out its
intended task. In the UF method, the assignment of fitness is
often associated with the execution of a giventask behavior,
during which the fitness is changed (increased). Other behav-
iors, not directly related to the designated task, are referred
to asauxiliary behaviors. For instance, if a robot is supposed
to follow walls, the behaviorfollow wall is the designated
task behavior and the fitness measure could, for instance, be
proportional to the distance traveled during the active period of
that behavior. Continuing the same example, in order to avoid
battery depletion, the robot’s behavior selection system must
activate the behaviorcharge battery every now and then in
order to secure future fitness increases (by making it possible
for the robot to travel further). Since the behaviorcharge

Fig. 1. Arena used in the simulations (seen from above).

battery is not directly linked to the wall following task, it
is considered to be an auxiliary behavior.

III. S IMULATIONS

Simulations were made in software built using the UFLi-
brary software package [4]. The UFLibrary is intended to pro-
vide a quick and reliable way of generating behavior selection
systems for any type of agent (e.g. an autonomous robot).
Implemented in object-oriented Pascal, it provides, in addition
to the basic framework of the UF method, the equations of
motion for differentially steered robots, a numerical solver,
collision managers, OpenGL visualization, and various sensor
models.

A. Simulation setup

The task of the robot was to explore the arena shown in
Fig. 1, corresponding to e.g. a room in a gallery, containinga
number of obstacles and four charging stations placed in the
corners of the arena (indicated in Fig. 3). In order to make it
easier for the robot to locate the charging stations, each station
was accompanied by an IR beacon, transmitting a signal that
the robot could identify.

The robot model was chosen to be of a differentially steered
type, with a cylindrical shape. The robot was equipped with
five IR sensors positioned symmetrically on the front of the
robot’s body, each having a range of 0.5 m and an opening
angle of 0.5 radians. The robot was also able to determine
the amount of energy stored in its onboard battery, which
discharges as

dE

dt
= −kr − km|v| , (2)

wherekr andkm are positive constants andv is the velocity of
the robot’s center of mass. The constants were set so that a full
battery would last approximately50 s. Assuming that the robot
is positioned at a charging station, battery charging occurs at
a constant rate, allowing a fully depleted battery to recharge
in 10 s. The unrealistically short intervals for discharging and
charging were, of course, selected so that the robot would

have to activate its battery charging behavior from time to
time, even in the rather short simulations used in this paper.

In order for the robot to be able to perform the task of
exploring the arena, it was equipped with five behaviors,
arranged in a hierarchical structure shown in Fig. 2. At the
top level there are three behaviors: (1)straight-line navigation
(B1), (2) obstacle avoidance (B2), and (3)energy maintenance
(B3). BehaviorB3 is divided into the two behaviorscharging
station localization (B3.1) and battery charging (B3.2). In
UFLibrary [4], behaviors are compared on a level-by-level
basis and the hierarchy is traversed until a single behavioris
encountered. Thus, for each time step in the simulations, the
utility values associated with the behaviorsB1, B2, andB3

are compared first. In caseB3 has the highest utility, another
comparison is made betweenB3.1 and B3.2, resulting in the
selection of one of them. If the utility values associated with
B3.1 and B3.2 happen to be equal in magnitude, the first
behavior in the hierarchy (in this caseB3.1) is selected for
activation.

Based on earlier work [5], a polynomial degree of three
was chosen for the five utility functions, which were given
the following functional form

U1 = U1(s1, s2, s3, s4, s5, p1)
U2 = U2(s1, s2, s3, s4, s5, p1, x1)
U3 = U3(x2, p1)
U3.1 = U3.1(s6)
U3.2 = U3.2(x3, p1)

(3)

wheres1–s5 are the readings from the five IR sensors,p1 is
the amount of energy in the robot’s battery,x1 and x2 are
internal abstract variables corresponding tofear, andhunger,
respectively.s6 is the beacon detector signal, andx3 is an
internal abstract variable corresponding toinverse satiation.
Internal abstract variables (xi) were used in a simplified,
binary manner where the value of eachxi was set to1 during
the active period of the associated behavior and0 otherwise.

The beacon detector (on the robot) was given an opening
angle of 0.08 radians and the magnitude of the generated
signal (s6 ∈ [0, 1]) was calculated asmin(d−2 cosα, 1), where
d is the distance from the robot to the beacon, andα is the
relative angle (a detection occurred only if|α| < 0.04).

A total of four beacons were present in the arena, each
positioned at a charging station (see Fig. 3). Also, a beacon
could only be detected if there was an unobstructed line of
sight between the beacon and the detector.

Since the task of the robot was to cover as much ground
as possible, the designatedtask behavior (see Sect. II) was
B1, during which the motor signals were set to equal values,
causing the robot to move forward in an asymptotically
straight line. The fitness for a given simulation was taken
proportional to the time spent inB1 and upon exit from that
behavior, a fitness increase ofmax(0, t1 − 1), wheret1 is the
time spent inB1, was given. By only rewarding active periods
longer than one second, behavior dithering [6], was effectively
removed.

In B2, the robot’s heading is changed until the IR sensors
indicate that there are no obstacles in front of the robot
and the robot then stops.B3 simply delegates control over
the robot either toB3.1, in which the robot tries to locate

Fig. 2. Behavioral hierarchy used in the behavior selectionsystem.

a battery charging station by detecting a beacon signal and
then approaching it, or toB3.2, in which the robot stops in
order to charge its battery. AlthoughB3.2 may be selected for
activation by the behavior selection system at any time, actual
charging of the battery only occurs if the robot is positioned
at one of the charging stations.

B. Evaluation setup

In order to investigate how different fitness measures,
simulation times, and size of the training set affected the
robot’s ability to generalize, a number of evaluation setups
were defined (see Table II). Each evaluation setup consists of
several simulations (see Sect. III-A), which, in turn, belong
either to a training set or to a validation set. For the training
set, combined fitness values were calculated in one of three
ways as

Fa =
1

NT

NT
∑

i=1

fi, (4)

Fb = min(f1, f2, . . . , fNT
), (5)

Fc = Fb + εFa (6)

where NT is the size of the training set (the number of
simulations),fi is the fitness achieved in theith training
simulation, andε is a small positive constant. The first fitness
measure,Fa, considers the average performance of the robot
during its training simulations, whereas the second measureFb

only counts theworst performance. The use ofFb is intended
to lead the EA away from solutions that only work on average.
However, whenFb is used, it may be difficult for the EA to find
a way forward, since a great deal of information concerning
the performance of the robot is removed in the forming of the
fitness value. The third fitness measure,Fc, aims to combine
Fa andFb, by focusing on the worst result while also consider-
ing the average: The second term in the equation forFc makes
it possible for the EA to distinguish between evaluations with
identical worst simulations but different averages.

In each of theNT training simulations, the robot was placed
at a given, fixed position, and the initial direction of the robot
was also specified deterministically, see Sect. IV below. The
initial energy was set to 1.0 in all training simulations1.

In order to test the ability of the behavior selection systemto
generalize and to make comparisons possible, a validation set
consisting of10 different simulations (each with a maximum

1The battery level is given as a dimensionless value with1.0 meaning a
fully charged battery.

2

1

3

8

6
7

9

10

4

5

Fig. 3. Circles mark the initial position of the robot in eachof the 10
validation setups. Lines emanating from the circles indicate the initial heading
of the robot. Note that some validation simulations (e.g. 5 and 8) use the same
initial position, but different headings. Crosshatched areas mark the locations
of the four charging stations.

length of 100 s) was also defined. None of the validation
simulations were used in the computation of the fitness value.
Instead, the10 validation simulations were executed every
time a new best individual was found, i.e. one with a higher
fitness value (over the training simulations), as defined by
the combined fitness measure (Fa, Fb, or Fc), than the
previous best individual. The resultsfval

i , i = 1, . . . , 10 over
the validation simulations were recorded but, as mentioned
above, werenot used to guide the EA in its search. The
initial positions and headings of the robot in the validation
simulations are shown in Fig. 3. The initial battery level was
set to 1.0, 0.2, 0.5, 0.3, 1.0, 0.6, 0.8, 0.8, and 0.1, in validation
simulations one to 10, respectively.

C. Evolutionary algorithm

The EA used for the optimization of the behavior selection
systems was a genetic algorithm (GA), with a single, fixed-
size population and employing generational replacement, i.e.
the formation of new individuals was performed in such a way
that all evaluated individuals were replaced by new individuals
in a single step. New individuals were formed through a
sequence of tournament selection, single-point crossover, and
parameter mutation. Elitism was used, i.e. an exact copy of
the current best individual was transferred, unchanged, tothe
next generation.

The parameter values (common to all runs) for the utility
functions and the EA are shown in Table I.nc refers to
the number of coefficients in the utility function polynomials
which, using the functional form defined in Eq. (3), was equal
to 228 [5].

IV. RESULTS

In each run of the EA, a total of10, 000 individuals were
evaluated. The population size was set to100, and the number
of generations was therefore also equal to100. Due to the
stochastic nature of EAs, i.e. the fact that the initial population
is generated randomly, and the fact that the formation of new

TABLE I

PARAMETER SETTINGS COMMON TO ALL RUNS(B AND E1-E9). NOTE

THAT THE TOTAL SIMULATION TIME REFERS TO THE TRAINING

SIMULATIONS. IN THE 10 VALIDATION SIMULATIONS , EACH SIMULATION

LASTED A MAXIMUM OF 100S, SEESUBSECT. III-B.

Time step length 0.01 s
Maximum total simulation time 100 s
Polynomial degree 3
Number of validation simulations 10
Tournament selection probability 0.75
Crossover probability 0.5
Mutation probability 4/nc

TABLE II

SPECIFICATION OF THE BENCHMARK SETUP(B) AND THE ADDITIONAL

SETUPSE1 - E9. NT DENOTES THE NUMBER OF SIMULATIONS USED PER

EVALUATION , AND Tmax IS THE MAXIMUM TIME FOR EACH SIMULATION .

THE FOURTH COLUMN SPECIFIES THE FITNESS MEASURE USED. IN CASES

WHEREFc WAS USED, THE PARAMETERε WAS SET TO0.001.

Setup Tmax(s) NT Fitness measure
B 100.00 1 Fa

E1 50.00 2 Fa

E2 50.00 2 Fb

E3 50.00 2 Fc

E4 33.33 3 Fa

E5 33.33 3 Fb

E6 33.33 3 Fc

E7 10.00 10 Fa

E8 10.00 10 Fb

E9 10.00 10 Fc

individuals involves stochastic computations as well, a total of
5 runs were made for each evaluation setup.

First, a set of benchmark runs were carried out, using a
single training simulation of maximum lengthT = 100 s, and
an initial position (of the robot) close to the lower left corner
in Fig. 3.

The specification of the benchmark runs (B) and of the other
runs (E1 - E9), which used different evaluation setups, are
shown in Table II. In runs E1 - E9, several training simulations
were used in the evaluation of individuals, and one of the
combined fitness measuresFa, Fb, or Fc was applied. In order
to make a fair comparison between runs, the total maximum
evaluation time (for training) was kept fixed at100 s. Thus,
in runs with, say, three training simulations per evaluation,
each simulation lasted a maximum of33.33 s. However, note
that, in case of collisions between the robot and an obstacle,
the simulation was terminated immediately. Thus, the actual
simulation time was often shorter than the stipulated upper
limit.

In all runs, the starting positions of the robot in thetraining
simulations were the same as in the benchmark run, but
different directions were chosen for theNT simulations. Thus,
for example, two initial directions were selected for E1, and
were then used forall individuals in the E1 runs (and the
same two directions were also used in runs E2 and E3). For
E4 - E6, three different directions were chosen etc. The results
are presented in Tables III and IV. In Table III, the detailed
results from each of the10×5 = 50 runs are shown. Whereas
the fitness measures differed between runs, the validation
simulations were, as indicated above, identical in all runs, and

TABLE III

DETAILED RESULTS OBTAINED FOR THE BENCHMARK RUNS(B) AND FOR THE RUNS USING EVALUATION SETUPSE1 - E9 . THE SYMBOLS USED IN THE

TABLE ARE DESCRIBED IN DETAIL IN CONNECTION WITHEQ. (7) IN THE MAIN TEXT .

Run fval(10) fval(30) fval(100) f
max

val jmax

val
Run fval(10) fval(30) fval(100) f

max

val jmax

val

B1 7.826 6.567 8.310 11.973 2385 E5,1 8.608 10.792 12.148 14.797 738
B2 5.459 8.221 6.589 13.200 5490 E5,2 8.452 6.516 7.342 13.654 2048
B3 8.679 6.674 8.975 12.674 4556 E5,3 17.335 12.273 18.992 19.008 4579
B4 8.394 8.967 7.516 10.005 1533 E5,4 10.373 10.847 15.860 15.910 8973
B5 7.844 14.466 10.664 16.602 3578 E5,5 4.913 14.011 12.464 21.164 4333
E1,1 6.180 14.059 14.722 19.149 1924 E6,1 9.687 12.236 15.727 15.727 9500
E1,2 5.609 6.579 6.256 12.179 7378 E6,2 7.064 11.275 11.531 11.531 7308
E1,3 6.364 19.301 15.548 20.974 3115 E6,3 14.568 10.187 7.340 17.224 740
E1,4 4.747 15.684 17.007 18.739 3212 E6,4 10.652 8.352 10.980 13.212 5427
E1,5 17.005 17.067 15.825 20.375 1765 E6,5 6.304 5.668 8.821 15.267 3543
E2,1 7.754 10.721 7.628 13.106 5320 E7,1 13.667 9.633 9.897 19.436 4911
E2,2 7.679 7.173 6.779 8.649 1486 E7,2 2.878 2.476 3.184 10.247 240
E2,3 8.219 7.075 7.206 13.447 202 E7,3 8.983 16.760 12.091 22.700 5829
E2,4 4.707 18.567 18.619 19.799 5607 E7,4 3.470 4.966 6.947 7.048 4941
E2,5 5.978 14.240 16.409 19.385 8551 E7,5 7.704 9.828 6.793 11.656 1430
E3,1 11.761 13.556 11.365 20.725 7210 E8,1 2.495 3.687 2.737 5.238 1948
E3,2 12.446 5.911 9.239 14.106 9107 E8,2 3.660 4.943 3.997 5.962 1305
E3,3 12.991 13.111 17.889 20.705 7460 E8,3 7.716 6.748 10.422 15.948 3602
E3,4 7.854 16.011 16.006 22.729 7150 E8,4 8.480 7.571 8.569 11.384 7236
E3,5 9.503 13.997 9.449 16.663 3225 E8,5 9.412 13.761 9.504 15.405 2254
E4,1 18.257 15.145 12.664 18.257 816 E9,1 7.704 9.828 6.793 11.656 1430
E4,2 13.511 10.947 17.025 17.268 5603 E9,2 9.001 12.178 8.386 14.792 1994
E4,3 5.582 10.607 11.705 20.578 5772 E9,3 10.363 8.510 7.330 11.460 1163
E4,4 10.478 10.045 8.440 12.377 5472 E9,4 8.826 10.191 5.458 13.934 1757
E4,5 11.000 9.612 14.524 18.435 8226 E9,5 13.935 6.228 7.998 17.956 1293

the results of those simulations can therefore be compared
directly. The average validation performance of an individual
was defined as

f
val

=
1

10

10
∑

i=1

fval

i , (7)

with fval
i defined as discussed in Subsect. III-A. In Table III,

the symbolf
val

(k) indicates the average validation perfor-
mance of the best individual in generationk, i.e. the individual
with the highest fitness over thetraining simulations, as
defined by the combined fitness measure, see Table II.f

max

val

signifies the best average validation performance found in the
run, andjmax

val
indicates which individual (among the10, 000

evaluated individuals) achieved this result.
In Table IV, the results are summarized in abbreviated

form. Here, averages have been taken also over the five runs
carried out for each evaluation setup.f

val
(k) thus denotes the

arithmetic average, over five runs, offval(k), and f
max

val is
defined analogously.

V. D ISCUSSION AND CONCLUSION

The results (e.g.f
max

val
) presented in the previous section,

and particularly in Table IV, indicate that the naive way of
carrying out the simulations (i.e. using the benchmark setup,
with a single training simulation) gives worse results thanruns
employing several, shorter training simulations, regardless of
the type of combined fitness measure (Fa, Fb, or Fc) used.
This conclusion applies to evaluation setups E1 - E6, in which
either two simulations of length 50.00 s or three simulations
of length 33.33 s were used in the evaluation of individuals.
Thus, it appears that subjecting the robot to multiple fitness
calculations indeed forces the EA to find behavior selection
systems that operate in a more general way than those obtained

TABLE IV

SUMMARY OF THE RESULTS OBTAINED FOR THE BENCHMARK RUNS(B)

AND FOR EVALUATION SETUPSE1 - E9. FOR EACH EVALUATION SETUP,

THE SECOND, THIRD, AND FOURTH COLUMNS SHOW THE AVERAGE(OVER

THE FIVE RUNS) OF THE AVERAGE(OVER THE 10 VALIDATION

SIMULATIONS) VALIDATION PERFORMANCE FOR THE BEST INDIVIDUAL IN

GENERATIONS10, 30, AND 100, RESPECTIVELY. THE FIFTH COLUMN

SHOWS THE AVERAGE(OVER THE FIVE RUNS) OF THE BEST VALIDATION

PERFORMANCE OBTAINED.

Setup fval(10) fval(30) fval(100) f
max

val

B 7.640 8.979 8.411 12.891
E1 7.981 14.538 13.872 18.283
E2 6.867 11.555 11.328 14.877
E3 10.911 12.517 12.790 18.980
E4 11.766 11.271 12.872 17.383
E5 9.936 10.888 13.361 16.907
E6 9.655 9.544 10.880 14.592
E7 7.340 8.733 7.782 14.217
E8 6.353 7.342 7.046 10.787
E9 9.966 9.387 7.193 13.960

in the benchmark runs, where the robot can do well by finding
a single path, from one initial condition.

As is also evident from Table IV, however, the opposite
occurs in cases where the number of training simulations is
increased to 10 (evaluation setups E7 - E9). Here, the results
are similar to those from the benchmark runs. Presumably, the
reason for this is that the maximum simulation time (10.00 s)
used in these runs is simplytoo short in order for the robot to
encounter all relevant situations. For example, in such short
simulations, there is little need for the robot to discover how to
activate the energy maintenance behavior since, in most cases,
its battery energy will be sufficient to survive for the duration
of the simulation, without re-charging.

Thus, the main conclusion from the investigation is that
results do improve if multiple training simulations are used,
but also that improvements are only seen if the simulations
are kept sufficiently long so that all relevant switches between
behaviors can be tested. This conclusion can be strengthened
by considering the performance of the robot on one of the
most difficult validation simulations, namely the 10th one, in
which the robot starts with very low energy (0.10). For this
simulation, rather mediocre results were found in all bench-
mark runs, where the robot would simply avoid activatingB3

and thus run out of energy quite fast, reaching fitness values
of around 2 (with one exception, in which a fitness value of 8
was reached). By contrast, in evaluation setups E1 - E6 several
cases were found in which the robot obtained fitness values
of up to 19.8 for the 10th validation simulation, even though,
in fairness, such good results were quite rare even for these
evaluation setups.

As mentioned in Subsect. III-B, in all training runs in setups
B and E1 - E9 the initial energy of the robot was set to
1.0, i.e. to the largest possible value. This, in turn, may have
further reduced the incentive for the robot to charge its battery.
However, the validation results obtained in a few additional
runs (e.g.Ẽ3 in which the initial energy was set to 0.30)
were, in fact, worse than those of the original runs. This also
indicates, perhaps, that even though there is a greater incentive
for the robot to activate energy maintenance in, say,Ẽ3 than
in E3, it is quite difficult for the EA to find such solutions
capable of doing so, possibly due to the choice of variables
for the utility functions (see below).

Somewhat surprisingly, it can also be concluded from
Table IV that the choice of combined fitness measure (Fa,
Fb, or Fc) had very little effect on the results. In particular,
the expected improvement forFc (over Fa and Fb) did not
materialize.

It should be noted that the number of runs (i.e. five) carried
out for each evaluation setup is a little too small to allow
a reliable, formal statistical analysis; since each run took
around100, 000 s to complete (on a 3 GHz computer), it
was necessary to limit the number of runs to five for each
setup. This is also the main reason why the runs were kept
deterministic2, in the sense that (1) the initial position and
direction of the robot werenot randomized, i.e. for a given
evaluation setup, the starting position of the robot was fixed,
as were the starting direction(s) used in theNT simulations,
and (2) no noise was applied, neither to sensor signals nor to
motor signals.

While the absence of noise represents a considerable de-
viation from the case of real robots in which, for example,
sensors are invariably noisy and the actual kinematics and
dynamics do not correspond perfectly to the idealized models
used here, the simplification is motivated by the fact that
the aim of the paper has been tocompare different ways of
setting up evolutionary simulations rather than attempting to
make as exact a representation of reality as possible. Assuming
that the simulated sensors and the simulated kinematics and
dynamics do not containsystematic deviations from what

2However, the EA did, of course, employ stochastic operators, as mentioned
above.

would be obtained with a real robot, one may consider the
results of each simulation as representing an average of the
results that would be found over many runs using a real
robot. However, even if systematic deviations were present,
the comparative analysis (i.e. the comparison of validation
performance between different evaluation setups) would still
be valid, even though the absolute fitness values obtained from
any given simulated robot would differ, perhaps significantly,
from those obtained with a real robot.

It is possible that the conclusions may have been slightly
different had the initial position and heading of the robot been
randomized. However, if, in addition to the stochasticity intro-
duced by the EA, the initial conditions had been randomized,
and noise had been introduced, an even larger number of runs
would have been needed to draw any conclusions. Such an
analysis is the topic of an investigation currently underway.

An additional difficulty concerns the specification of the
structure of the robot brain, see Fig. 2, and the definition
of the utility functions, both of which can, of course, be
done in different ways; this investigation was limited to one
configuration. It is possible, however, that the commonly seen
failure of the robot to activate the energy maintenance behavior
in e.g. the 10th validation simulation was, in part, a result
of the choice of state variables in the utility functions. More
specifically, the utility functionU3 (which is directly compared
to U1 andU2 in the selection of behaviors on the highest level
in the hierarchy) depended only on two variables, rather than
six or seven as forU1 andU2, respectively. This state of affairs
may have made it more difficult for the robot to activateB3

and the failure to do so would then not only be a result of
the choice of evaluation setup. An investigation of this issue
is also underway and, to conclude this paper, it should thus be
noted that the form of comparison (i.e. of evaluation setups)
attempted here is, in fact, more difficult to carry out than one
would suppose at a first glance, due to the complexity of the
problem.

VI. A CKNOWLEDGMENTS

The authors would like to acknowledge financial support
for this project from the Carl Trygger foundation.

REFERENCES

[1] P. Pirjanian, “Behavior-coordination mechanisms – state-of-the-art,” In-
stitute for Robotics and Intelligent Systems, University of Southern
California, Technical report IRIS-99-375, October 1999.

[2] M. Wahde, “A method for behavioural organization for autonomous
robots based on evolutionary optimization of utility functions,” Journal
of Systems and Control Engineering, vol. 217, no. 4, pp. 249–258,
September 2003.

[3] ——, “Evolutionary robotics,” Tutorial, 2005, http://www.me.chalmers.
se/∼mwahde/AdaptiveSystems/Tutorials.html.

[4] http://www.me.chalmers.se/∼mwahde/robotics/UFMethod/UFLibrary.
[5] M. Wahde, J. Pettersson, H. Sandholt, and K. Wolff, “Behavioral selection

using the utility function method: A case study involving a simple guard
robot,” in Proc. of the 3rd Int. Symp. on Autonomous Minirobots for
Research and Edutainment (AMiRE 2005), 2005, pp. 261–266.

[6] B. M. Blumberg, “Action-selection in Hamsterdam: Lessons from ethol-
ogy,” in From Animals to Animats 3: Proceedings of the 3rd International
Conference on Simulation of Adaptive Behaviour (SAB94). MIT Press,
1994.

Paper IX

A General-purpose Transportation Robot:

An Outline of Work in Progress

in

The 15th IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN 06), Hatfield, United Kingdom, 2006, pp. 722–726

A General-purpose Transportation Robot
An Outline of Work in Progress

Mattias Wahde and Jimmy Pettersson

Abstract— An outline of a current joint project between
Chalmers University of Technology (in Sweden) and several
Japanese universities (Waseda University, Future University,
and the University of Tsukuba) is presented. The aim of the
project is to build a general-purpose transportation robot for
use in hospitals, industries, and similar facilities. The project
will provide a thorough test of the recently developed utility
function method for behavior selection, which will be used for
generating the decision-making system in the transportation
robot.

In this paper, an outline of the proposed transportation
robot is given, along with a brief description of some of the
challenges arising from this project. Furthermore, the utility
function method is presented. Finally, the results obtained thus
far are briefly discussed, and some directions for further work
are provided.

I. I NTRODUCTION

The combination of reduced hardware prices and the
development of behavior-based (and related) techniques [2]
has led to a rapid development of autonomous robots during
the last two decades. Some of the tasks carried out by such
robots include vacuum cleaning [16], entertainment [1] or
general assistance to people, either at their place of work [7]
or in their home [13], [15].

Another task that could potentially be carried out by
robots is internal transportation (or delivery), i.e. the task
of reliably moving objects from an arbitrary point A to
another arbitrary point B in some (indoor) environment,
without human supervision. Robots equipped with the means
of carrying out such a task would be useful for internal
transportation of various objects in hospitals, offices, or
factories.

The development of a transportation robot is the main goal
of a current joint project involving researchers at Chalmers
University of Technology, in Göteborg, Sweden, Waseda
University in Tokyo, University of Tsukuba, and Future
University in Hakodate. Similar robotic platforms are being
developed within the framework of other projects as well,
e.g. the TUG robot [19], the Xavier robot [17], and the
MB385 mobile transportation system [10].

While the definition of the problem may appear to be
quite simple, the problem poses several difficult challenges
that will be described in Sect. II below. The challenges
pertain to hardware and software alike. On the hardware
side, the construction of the robot and, in particular, the
choice of an adequate set of sensory modalities must be

Both authors are with the Dept. of Applied Mechanics, Chalmers Univ.
of Technology, Goteborg, Sweden. Corresponding author: Mattias Wahde,
mattias.wahde@chalmers.se

Fig. 1. A schematic illustration of the transportation robot. The laser range
finder is located at the top of the pole.

considered carefully. On the software side, the problem of
behavior selection is the main challenge. In Sect. III, a
brief description of the utility function method for behavior
selection will be given, and in Sect. IV, a brief discussion
of the results obtained so far will be presented, along with
a brief outline of future work.

II. PROJECT OUTLINE

As mentioned above, the main goal of this project is to
generate an autonomous robot capable of reliable internal
transportation in indoor settings. An additional goal, how-
ever, is to test (and further develop) the utility function
method for behavior selection. The transportation robot will
constitute one of the first stringent tests of this method
outside a laboratory setting.

A schematic drawing of the (differentially steered) robot
is shown in Fig. 1. It is assumed that the brain of the
robot1 has been equipped with a map of the stationary parts

1The first prototype of the transportation robot will use a laptop computer.
In later versions, a set of microcontrollers might be used.

Fig. 2. An example of a typical environment for the transportation robot.
The robot is shown as a filled circle, and the open circles indicate moving
obstacles (e.g. people).

(e.g. the walls and doorways) of the arena. The sensory
modalities involve (1) an array of IR sensors (or, possibly,
a sonar array) for proximity detection, (2) a (2D) laser
range finder, to be used for localization, in conjunction
with digital optical encoders (one for each wheel), (3) a
battery sensor, measuring the amount of energy available in
the onboard battery, and (4) bumper sensors for detecting
collisions. However, the robot willnot be equipped with a
GPS localization system2. Furthermore, it is assumed that
the compartment of the robot used for transporting objects
(hereafter: the transportation compartment) is equipped with
scales, so that it can determine whether or not it is carrying
an object3.

An example of a typical arena for the transportation robot
is shown in Fig. 2. The arena can represent, for example, a
hospital ward, an office floor, or a factory. In this (schematic)
figure, the robot is represented as a filled circle, and moving
obstacles (e.g. people) as open circles. A brief description of
a typical task for this robot will now be given.

A. Basic functionality

In a typical situation, the robot will start at (an arbitrary)
point A, as indicated in the upper left panel of Fig. 3. A
user will open the door to the transportation compartment,
and place an object there. The robot will measure the weight
of the object, giving a warning should the object be too
massive. Next, the user will enter (via an, as yet unspecified,
user interface) the intended navigation goal (point B) of the
robot. The position of the navigation goal can possibly be
given in the form of coordinates(x, y) or, more simply,

2In general, the GPS signal is too weak to penetrate the walls of buildings.
This problem can be solved, see e.g. [9], but here it will, nevertheless, be
assumed that neither GPS nor any similar system for indoor applications is
used.

3The maximum weight for objects transported by the robot willbe around
20 kg.

chosen from a list of allowed positions, supplied to the
robot in connection with the map. Possibly, for calibration,
the robot may request information concerning its current
position. Next, the robot will activate itsnavigationbehavior
(B1), generating a path towards its target location (point B),
and begin moving. The path will be generated using the A*
algorithm [6], which has been integrated with the UFLibrary
software package, see Sect. III below. During the motion, the
robot will constantly update its measured position through
integration of the kinematic equations using the information
supplied by the digital optical encoders. In addition, the
robot will check continuously its immediate surroundings
for obstacles. Should such an obstacle be detected in the
direction of motion, the robot will suspend B1 and instead
activate anobstacle avoidancebehavior (B2). In B2, the
robot will first stop moving in order to make sure that it
does not collide e.g. with a person. Next, the robot will
wait for a moment to see if the obstacle disappears. If it
does not, the robot will then attempt to circumnavigate the
obstacle, as indicated in the upper right panel of Fig. 3, again
keeping track of its position, using the odometric readings.
Once free of the (stationary or moving) obstacle, the robot
will again activate B1, generating a new path towards point
B, and resume its navigation.

Clearly, at some stage, the drift in the odometry will begin
to pose problems. This is indicated in the lower left panel
of Fig. 3, where the dashed circle indicates the position as
perceived by the robot which, at this stage, differs from
the actual position (indicated by the filled circle). Now, the
robot should re-calibrate its odometric readings, and will
thus activate anodometry calibrationbehavior (B3). The
re-calibration will be carried out by matching the current
readings of its laser range finder to the readings obtained at
a given snapshot. Thus, a further assumption will be that a
number of such laser range finder snapshots have been stored
in advance, for example in connection with the storage of
the map. The snapshots can either be in the form of a finite
number of actual laser range finder readings, or in the form
of estimates, for any point in the arena, based on the map.
The former case is illustrated in the lower right panel of
Fig. 3, where the snapshot points are indicated as small filled
squares. Some of the rays of the laser finder are shown as
well, as the robot attempts to match its current readings to
those obtained at a nearby snapshotp.

Provided that the robot carries out the calibration with
sufficient frequency (see Subsect. II-B below), it will only
need to try to match its current location to the nearest
snapshot. Once the (far from trivial) matching has been
completed, the robot can again resume operation of its
navigationbehavior (B1).

Upon reaching the target location (point B), the robot will
activate awaiting behavior (B4), in which it simply remains
at standstill until a user removes the object it is carrying,and
possibly gives the robot a new task.

Additionally, the robot will be equipped with anemer-
gencybehavior (B5) which can be activated if, despite its
efforts to find point B, it finds itself stuck or lost.

A

B

A

B

A

B

A

B

p

Fig. 3. A schematic illustration of a sequence of typical situations encountered by the transportation robot. See the main text for a more detailed description
of the four panels in this figure.

The battery of the robot should be such as to allow
continuous operation for several hours, and preferably fora
full working day. This might be difficult to achieve and the
robot should therefore be equipped with abattery charging
behavior (B6), allowing it to locate a charging station and
charge its batteries when needed. However, for simplicity,
the first prototype of the robot will not be equipped with
such a behavior. Thus, the problem of battery charging will
not be considered further in this paper. Even in the absence
of battery charging, the development of a robot capable of
carrying out the task outlined above will be a challenging
task. Here, a few details concerning some of the challenges
will be given.

B. Challenges

1) Safety:First and foremost, the robot must operate in a
safe way, i.e. it must never collide with people or obstacles.
Note that, even though the robot is equipped with a map,

it may still encounter stationary obstacles. An example is
the case of a hospital environment, where many different
stationary (but movable) objects may be present in certain
situations, and absent in others.

In an encounter with a single person, avoiding collisions
is not so difficult. However, in a congested environment, the
problem becomes more difficult. For example, if the robot
moves backwards quickly in order to avoid a collision, it may
bump into a person behind the robot. The robot’s first action,
therefore, will always be to stop if an obstacle is detected in
the direction of motion. This will have the additional benefit
of making the robot’s behavior predictable from the point-
of-view of the people working in the same environment.

Another possibility will be for the robot to choose a
different way, in case its current path (as obtained from the
A* algorithm) is blocked. Here, however, the robot must
be careful not to change its path too frequently, as this
may result in a considerable delay in the delivery of the

transported object.
2) Snapshot matching:As is well known, reliable self-

localization is a common difficulty encountered in navigation
problems involving autonomous robots [18], [5].

In order to recalibrate its odometry, the robot developed in
this project must find and match its current location against
stored snapshots. Clearly, other options exist for localization,
such as e.g. the NorthStar system [12]. However, this project
is aimed at achieving navigation without any adaptation of
the environment, such as installation of beacons, transmitters,
or other hardware [9]. In addition, the snapshot matching
method has a biological equivalent in the procedure used
by some species of ants [8], [3], [4], and is interesting in
its own right, particularly in the light of the biologically
inspired approach to behavior selection defined by the utility
function method. The snapshot matching could, of course,
also be based on vision using two video cameras, and the
use of binocular vision is certainly retained as a possibility.
However, the simulations carried out so far have indicated
that the 2D laser range finder ought to be sufficient for the
snapshot matching, provided that it is carried out frequently.

3) Sensory integration:In order for the robot to operate
robustly, it should preferably be able to navigate even if
some sensory modality fails. For example, if the IR proximity
sensors suddenly break, the robot should be able to switch
to alternative proximity detection methods, e.g. based on the
laser range finder readings. This would not be optimal, since
the range finder will be located at a different height than the
proximity sensors, and may therefore miss certain obstacles
that would have been detected by the IR sensors. A possible
solution, in case of IR sensor failure, is to navigate more
slowly, using a combination of the readings from the laser
range finder and the bumper sensors. An alternative approach
is to provide the robot with sensor redundancy, using e.g. two
sets of IR proximity detectors, or a sonar. The problem of
sensor failure can thus be solved either mainly as a software
problem (dynamically switching from IR sensors to the laser
range finder in case the former break down) or mainly as
a hardware problem (providing the robot with redundant
sensors).

4) Behavior selection:From a software point of view, one
of the main challenges is behavior selection. The problem is
made more difficult by the fact that the robot will operate
in an unstructured, rapidly changing environment. Clearly,
the robot must always avoid collisions with people (see
Subsect. II-B.1 above) or stationary obstacles, but it will
nevertheless operate under conditions that require a certain
trade-off: If the robot is madetoo careful, it will most likely
move too slowly to be useful. A similar problem will occur
if, for example, the robot misjudges the amount of congestion
along a certain path and unnecessarily selects a much longer
path. Thus, finding the right balance between efficiency on
the one hand, and safety and self-preservation on the other,
is likely to be one of the main challenges encountered during
the evolution of the behavior selection system.

Another, related, challenge is to evolve a behavior selec-
tion system that is sufficiently general, so that it can cope

with any situation (within reasonable limits) that may occur.
In view of the rather long time taken to evaluate robots in
simulations, this problem will be far from trivial.

III. T HE UTILITY FUNCTION METHOD

Behavior selection (also called behavioral organization
or action selection), i.e. the problem of activating (in any
situation) the correct behavior among the behaviors available
in a robot’s behavioral repertoire, is a challenging task that
has been approached in many different ways (see e.g. [14]
for a review).

The utility function (UF) method [22], [23], [21] is a
method for behavior selection based on evolutionary op-
timization of utility functions. It is described in detail by
Wahde [22] and therefore only a brief introduction will be
given here.

A. Brief description

The UF method is an arbitration method, i.e. a behavior
selection method in which a single behavior is active at any
given time. The method deals with theselectionof behaviors
that are already present. Thus, in order to apply the method,
one must first generate a set of basic behaviors (e.g. by hand,
in simple cases, or using evolutionary optimization in more
complex cases). Some examples of behaviors are described
in the project outline above.

In the UF method, a set of state variables is defined.
These can be of three kinds: (1) External variables (denoted
s) based e.g. on the readings of IR proximity sensors or a
laser range finder, (2) internal physical variables (denoted p)
measuring e.g. the energy level in the robot’s batteries and
(3) internal abstract variables (denotedx), whose variation
may be either hand-coded or evolved, and which roughly
correspond to (the action of) hormones in biological systems.
For example, an internal abstract variable can be used to
model fear. In that case, its value would rise e.g. in cases
where a collision or battery depletion is imminent.

Each behaviorBi contained in the brain of the robot is
associated with a utility functionUi that depends on (a subset
of) the state variables, i.e.

Ui = Ui(s,p,x), i = 1, . . . , n, (1)

wheren is the number of behaviors available.
Once the utility functions have been generated, behavior

selection is straightforward: At any given time, the robot
simply activates the behavior corresponding to the largest
utility value, i.e.

iactive = argmax (Ui) , (2)

where iactive denotes the index of the currently active be-
havior. Thus, in this method, the utility values are used as a
common currency [22], [11] allowing the robot to assess,
on a dynamical basis, the relative merit of the different
behaviors.

The problem, of course, is to generate the utility functions.
In the UF method [22], the utility functions are optimized by
means of an evolutionary algorithm. This procedure is carried

Fig. 4. A snapshot from a simulation based on the UFLib simulation
package.

out in simulations, based on the UFLib software package,
which will now be described briefly.

B. Software

The application of the UF method requires that many
different behavior selection systems (i.e. sets of utilityfunc-
tions) should be evaluated. In order for this to be possible,
simulations must normally be used. The UF method has been
implemented in the UFLib software package [20]. Written in
Delphi (object-oriented Pascal) the UFlib package contains
software for 3D simulation of wheeled robots in arbitrary
arenas, using the UF method for behavior selection. The
package also implements an evolutionary algorithm allowing
evolution of the utility functions that determine the behavior
selection. UFLib supports multiple evaluations, so that each
behavior selection system can be tested in a variety of
situations. Furthermore, the software package supports the
use of behavioral hierarchies, i.e. layers of sub-behaviors
within each behavior. However, these concepts will not be
described further in this paper. Note that the current version
of UFLib can be downloaded for academic use [20].

IV. PRELIMINARY RESULTS

Until the present time (June 2006), the main work in the
project has been the development of the necessary software.
A significant amount of time has been spent on completing
the UFLib [20], and testing it in various circumstances [21],
[23]. Furthermore, all of the required behaviors (B1 - B5 as
listed above), except B3, have been completed. In particular,
thenavigationbehavior B1 has been finalized and thoroughly
tested in simulation. A snapshot from such a test is shown
in Fig. 4.

Recently, a specification of the hardware requirements has
been made, and the initial design phase has been started.

A. Future work

The next step is to complete the hardware design, and then
to begin hardware construction. Obviously, this will be an
iterative process, involving both system identification aimed
at making the simulator as accurate as possible, and repeated
modification of both hardware and software.

The aim is to have a working prototype completed in the
spring of 2007.

ACKNOWLEDGEMENTS

The authors would like thank Mr. Krister Wolff (Chalmers
Univ. of Technology), Drs. Pitoyo Hartono (Future Univ.,
Hakodate) Kenji Suzuki (Tsukuba Univ.), Ryo Saegusa
(Waseda Univ.), and Prof. Shuji Hashimoto (Waseda Univ.)
for helpful discussions during the preparation of this paper.
Also, the project participants wish to thank the Carl Trygger
foundation for its financial support for this project.

REFERENCES

[1] AIBO, (Sony, www.sony.net/Products/aibo).
[2] R. Arkin, Behavior-based robotics. MIT Press, 1998.
[3] T. S. Collett and M. Collett, “Memory use in insect navigation,” Nature

Reviews Neuroscience, vol. 3, pp. 542–552, 2002.
[4] M. O. Franz, B. Schöllkopf, H. A. Mallot, and H. H. Bülthoff, “Where

did i take that snapshot? scene-based homing by image matching,”
Biological Cybernetics, vol. 79, pp. 191–202, 1998.

[5] U. Frese, “A discussion of simultaneous localization and mapping,”
Autonomous Robots, vol. 20, no. 1, pp. 25–42, 2006.

[6] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths in graphs,”IEEE
Transactions on Systems Science and Cybernetics, vol. SSC-4, no. 2,
pp. 100–107, July 1968.

[7] HRP 2, (Kawada Industries www.kawada.co.jp/global/ams).
[8] S. P. D. Judd and T. S. Collett, “Multiple stored views andlandmark

guidance in ants,”Nature, vol. 392, pp. 710–714, 1998.
[9] C. Kee et al., “Development of indoor navigation system using

asynchronous pseudolites,” inProceedings of ION GPS-2000, 2000,
pp. 1038–1045.

[10] MB385, (BlueBotics, www.bluebotics.com/automation/MB835/).
[11] D. McFarland and T. Bösser,Intelligent behavior in animals and

robots. Cambridge, MA, USA: MIT Press, 1993.
[12] Northstar (Evolution robotics, www.evolution.com).
[13] Papero (NEC, www.incx.nec.co.jp/robot).
[14] P. Pirjanian, “Behavior coordination mechanisms – state-of-the-art,”

Institute of Robotics and Intelligent Systems, USC, Los Angeles, Tech.
Rep., 1999.

[15] M. E. Pollacket al., “Pearl: A mobile robotic assistant for the elderly,”
in AAAI Workshop on Automation as Caregiver, August 2002.

[16] Roomba (iRobot, www.irobot.com).
[17] R. Simmons, R. Goodwin, K. Z. Haigh, S. Koenig, and J. O’Sullivan,

“A layered architecture for office delivery robots,” inProceedings of
the first international conference on Autonomous agents, 1997, pp.
245–252.

[18] S. Thrun, W. Burgard, and D. Fox,Probabilistic robotics. The MIT
Press, 2005.

[19] TUG (University of Maryland, www.umm.edu/news/releases/robot.html).
[20] www.me.chalmers.se/˜mwahde/robotics/UFMethod/UFLibrary.
[21] M. Wahde, J. Pettersson, H. Sandholt, and K. Wolff, “Behavioral

selection using the utility function method: A case study involving
a simple guard robot,” inProc. of the3

rd Int. Symp. on Autonomous
Minirobots for Research and Edutainment (AMiRE 2005), 2005, pp.
261–266.

[22] M. Wahde, “A method for behavioural organization for autonomous
robots based on evolutionary optimization of utility functions,” Journal
of Systems and Control Engineering, vol. 217, pp. 249–258, 2003.

[23] M. Wahde and J. Pettersson, “Application of the utilityfunction
method for behavioral organization in a locomotion task,”IEEE Trans.
Evol. Comp., vol. 9, no. 5, pp. 506–521, 2005.

Paper X

Behavior selection for localization and navigation in

a transportation robot, using evolvable internal state

variables

manuscript to be submitted to

Autonomous Robots

Behavior selection for localization and navigation in a transportation

robot, using evolvable internal state variables

Jimmy Pettersson and Mattias Wahde

Chalmers University of Technology
Department of Applied Mechanics
412 96 Göteborg, Sweden
E-mail: {jimmy.pettersson, mattias.wahde}@chalmers.se

Abstract The utility function (UF) method for be-
havior selection has been applied to the problem of pro-
viding a (simulated) robot with the means to navigate
accurately between two arbitrarily chosen points A and
B in a given arena, while avoiding collisions and keeping
track of its location.

The UF method is an arbitration method based on
evolutionary optimization of utility functions, and one of
its strengths is that it reduces (compared to most meth-
ods of behavior selection) the number of parameters that
must be hand-tuned by the user. However, in earlier work
on the UF method some hand-tuning has remained, no-
tably in the dynamics of the internal abstract variables
of the robotic brain (also referred to as hormone vari-
ables). Here, the UF method has been extended so that
both the utility functions and the dynamics of the hor-
mone variables now are obtained through evolutionary
optimization.

Key words Behavior-based robotics, behavioral orga-
nization, utility functions, localization

1 Introduction and motivation

One of the main difficulties in the behavior-based ap-
proach to robotics is behavioral organization (behavior
selection), i.e. the problem of activating an appropriate
behavior at all times [1,2]. Several methods have been
proposed for solving this problem, but most methods are
either intended for a particular application or rely heav-
ily on the ability of the experimenter to set the values of
numerous parameters by hand [3–7].

The behavior-based approach has its origin in etho-
logical considerations and, recently, methods for behav-
ior selection inspired by their biological counterparts have
been considered [8,9]. One such approach is the utility
function (UF) method [9], where the concept of utility

[10–12] is used as a common currency in robotic decision-
making. In the UF method, the number of parameters
that must be set by hand is greatly reduced, since the
utility functions (that determine the selection of behav-
iors) are obtained by means of an evolutionary algorithm
(EA).

However, in addition to the utility functions, the UF
method also relies on so called internal abstract variables
(also called hormone variables) that roughly correspond
to signalling molecules (such as hormones) in biological
systems and the variation of these variables have, until
now, been specified by hand. Indeed, in the studies con-
cerning the UF method reported in several recent papers
[13–15] it has been quite easy to do so, since those stud-
ies were aimed at investigating the basic properties of
the method, and the problems were thus kept quite sim-
ple. In this paper, the UF method will be applied to a
considerably more complex problem (see below) in which
the variation of the hormone variables is much more dif-
ficult to set by hand. Thus, in order to retain the claim
of reducing the amount of parameter hand-tuning, the
UF method should be extended to allow for evolutionary
optimization of the variation of such variables.

An additional aim of this paper is to make full use
of the UF method in a more complex and realistic ap-
plication, namely the first steps of the development of
a general-purpose robot for transportation and deliv-
ery. Among other things, such a robot must be capable
of reliable and collision-free navigation in unpredictable
indoor environments (where GPS cannot easily be used
[16]), without modification of the environment. The goal
of this research project, which involves researchers at
several universities in Sweden and Japan, is to gener-
ate a delivery robot using the UF method for behavior
selection. The project is also described in [17].

2 Problem description

The intended operation of the transportation robot is
best described through an example. Consider the envi-

2 Jimmy Pettersson and Mattias Wahde

A

B

Fig. 1 A schematic illustration of the transportation robot
in a typical arena. The task of the robot, shown as a disk near
the lower left corner of the arena, is to transport objects from
point A to point B (arbitrarily chosen).

ronment (also referred to as the arena) shown in Fig. 1.
The robot starts at some arbitrary point A. The user
will place an object to be transported on the robot and
instruct it via a user interface (e.g. a voice command) to
go to a specific point B (the location of which may, of
course, vary from case to case). The robot is assumed to
be equipped with a map of the arena. Based on the map,
the robot will plot a path to B (details will be given be-
low), and begin executing the motion. In order to keep
track of its position, the differentially steered robot will
be equipped with two sensory modalities, namely odom-
etry based on encoder readings from each wheel and po-
sitioning (localization) based on the readings of a laser
range finder (LRF) mounted on the robot.

As the robot moves, the position estimates obtained
from the odometry will drift and, as navigation depends
on accurate positioning, calibration will therefore be nec-
essary at regular intervals. For calibration, the robot will
use a compass to adjust its heading, and then carry out
a procedure during with the current readings of its LRF
are matched to those obtained using a simulated range
finder taking virtual measurements based on the map.
Once a sufficiently close match has been found, the ro-
bot can localize itself, i.e. calibrate its estimated position
and heading, and then resume its motion. When point B
is reached, the robot will stop and await further orders.

Of course, in an office environment, the robot is likely
to encounter moving obstacles (i.e. people) along the
path from point A to point B. Thus, the robot should
also be equipped with the ability to avoid obstacles. Ob-
stacle avoidance can be triggered e.g. by the readings of
IR proximity detectors placed around the body of the

robot. However, in the first step of this project, pre-
sented in this paper, moving obstacles will not be con-
sidered. Nevertheless, obstacle avoidance will be needed
even in a completely static environment; this is so, since
the drift in the odometry and the possibility of slightly
incorrect position estimates generated during localiza-
tion, may sometimes lead to collisions with the walls
of the arena (or with other stationary objects). In such
cases, touch sensors protruding from the body of the ro-
bot can be used for indicating whether or not the robot
touches an obstacle.

The robot will thus need (at least) three behaviors:
path navigation1, localization, and obstacle avoidance.
These behaviors will be described in detail in Sect. 5.

While the task described above may sound simple,
the construction of a robot capable of reaching the stated
objectives involves numerous difficulties. First of all, ac-
curate localization, which has been considered by many
authors (see e.g. [18–21]) is a notoriously difficult prob-
lem. With the sensory modalities used in the robot de-
scribed above, some of the difficulties are (1) rapidly and
accurately matching current readings to virtual readings
during navigation, (2) deciding when to recalibrate the
odometric readings during navigation, (3) making sure
to avoid collisions with obstacles, moving or stationary,
and (4) keeping the odometry reasonably accurate dur-
ing (possibly rapid) swerving while avoiding obstacles.
Furthermore, in a commercially viable robot, the time
wasted on obstacle avoidance and localization should be
kept to a minimum. Thus, the robot must wait as long
as possible (but not longer!) before activating either of
these two behaviors. On the other hand, the robot must,
of course, actually reach the intended goal to be useful
at all.

Put in a different way, the problem of behavioral se-
lection (behavioral organization) is of paramount impor-
tance for this robot and the procedure of generating the
brain of the robot can be formulated as an optimiza-
tion problem: For any points {A,B}, minimize the time
taken for the motion from A to B, subject to the con-
straint that the robot should not collide with any ob-
stacles (and the implicit constraint that it should, at all
times, know its current location and heading). In this
paper, the behavior selection system will be generated
by means of the utility function (UF) method [9], which
will now be described.

3 The utility function method

The UF method and its basic properties have been thor-
oughly studied and described in previous papers [13–15]
and therefore only a brief description of the method will
be given here. However, the new feature added to the
UF method, namely the evolution of the dynamics of
hormone variables, will be described in detail.

1 Names of behaviors are typeset in italics.

Behavior selection for localization and navigation in a transportation robot, using evolvable internal state variables 3

xin

11
τ11 Γ11 xout

11 xin

1N
τ1N Γ1N xout

1N xin

21
τ21 Γ21 xout

21 xin

2N
τ2N Γ2N

xout

2N

B1B1 BNBN

Hormone 1 (x1) Hormone 2 (x2)

Fig. 2 A schematic illustration of the chromosome determining the dynamics of the hormone variables. For each of the M
hormones (M = 2 in the figure), the chromosome contains one gene (encoding the parameters xin, τ , Γ , and xout) for each
of the N behaviors. Thus, the total number of genes used for specifying the 4N × M parameters of the hormone dynamics
equals N ×M . The four parameters in each gene determine the modification (if any) of the hormone level upon entry to the
behavior in question, the variation of the hormone level as long as the behavior remains active, and the modification (if any)
of the hormone level upon exit from the behavior; see the main text for a detailed description.

3.1 Basic description

The UF method is an arbitration method, i.e. a method
in which only one behavior is active at any given time.
In the UF method, each behavior is associated with a
utility function, whose value depends on the state of
the robot, which, in turn, is given by the state vari-
ables z = {s,p,x}, where s are external variables (e.g.
the readings of IR sensors), p internal physical variables
(such as e.g. the energy level in the robot’s battery) and
x are internal abstract (hormone) variables. The inter-
nal variables (physical and abstract) determine the in-
ternal state of the robot. However, whereas the physical
variables are, as their name implies, obtained through
measurements of physical quantities, the abstract vari-
ables (roughly) represent signalling molecules in biolog-
ical systems, and it is these variables that introduce a
non-reactive component in the robotic brain, i.e. they
provide it with what one might call a rudimentary arti-
ficial endocrine system2. This system, in turn, acts essen-
tially as a short-term memory. For example, an increase
in a hormone variable x in a given situation will alter
the state of the robot and, depending on the dynamics
of the variable (e.g. its decay rate), the robot might take
a different action should it (shortly thereafter) find itself
in the same situation again.

Mathematically, the utility function for behavior Bi

is specified as Ui = Ui(s,p,x) and, commonly, a polyno-
mial ansatz (with a given polynomial degree d) is used
for each utility function. As an example, the ansatz for a
utility function Ui = Ui(s, p) of two variables, and with
polynomial degree d = 2, will take the form

Ui(s, p) = a
(i)
00 +a

(i)
10 s+a

(i)
01 p+a

(i)
20 s2+a

(i)
11 sp+a

(i)
02 p2, (1)

where the a
(i)
ij are constants to be determined (see be-

low). Note that not all utility functions must depend on
all state variables; in many cases, the utility functions
depend only on a subset of the available state variables.

Behavior selection is simple in the UF method: At
any given time, the behavior with the highest utility (as

2 Note, however, that the dynamics of the hormone vari-
ables might, in some cases, be much faster than the dynamics
of hormones in biological systems.

obtained from its utility function) is active. The prob-
lem, of course, is to determine the utility functions, i.e.
to determine the constants in all utility function poly-
nomials. In the UF method these functions are obtained
through evolutionary optimization. Thus, application of
the UF method (normally) requires the use of simula-
tions. A software library (UFLib) implementing the UF
method (including also robot dynamics and 3D visual-
ization) has been described in earlier work [22–24], and
will also be used in the simulations carried out in this
paper.

3.2 Dynamics of internal abstract (hormone) variables

As mentioned in the introduction, in earlier work, the dy-
namics of the hormone variables was specified by hand.
In this paper, the first steps will be taken towards al-
lowing evolutionary optimization not only of the utility
functions but also of the hormone dynamics.

The variation of each hormone variable xi in a given
behavior j is determined by the four parameters xin

ij ,
Γij , τij , and xout

ij , which are encoded in the genome, as
illustrated in Fig 2. The parameters are used as follows:
Upon entry to behavior j, xi is set according to

xi = xin
ij . (2)

Similarly, upon exit from the behavior, xi is set as

xi = xout
ij . (3)

Thus, the value of xi normally varies discontinuously
when a behavior switch occurs. During the active period
of behavior j, i.e. after entry but before exit, xi varies
according to

dxi

dt
=

Γijx
max
i − xi

τij

, (4)

where xmax
i is the maximum allowed level of xi (usually

set to 1). Γij is an integer parameter taking the value 0
or 1. Thus xi rises exponentially towards the maximum
level if Γij = 1, and falls off exponentially towards the
minimum level (=0) if Γij = 0.

Note that the implementation described above is just
one among many possible options for the xi, in which the
variation only depends on time (except for the discon-
tinuous jumps at entry and exit). In principle, xi could,

4 Jimmy Pettersson and Mattias Wahde

of course, depend also on e.g. sensor readings and on
the values of the other hormone variables. However, the
present implementation has the advantage of low com-
plexity (only 4 parameters per behavior, for each xi)
and certainly represents a great improvement in flexibil-
ity over the procedure used earlier, in which the xi were
normally set (by hand) only at entry and exit. Note,
however, that this particular type of variation remains
as an asymptotic special case, obtained if the EA chooses
to set the τij to very large values.

3.3 Parameters of the behavior selection system

With the addition of the hormone dynamics just de-
scribed, the behavior selection system in the UF method
will depend on (1) the coefficients of the utility function
polynomials and (2) the parameters determining the hor-
mone dynamics. It can be shown that the number of
terms Nt, and therefore the number of coefficients, in a
polynomial of n variables and degree d equals

Nt =

(

n + d

n

)

≡

(

n + d

d

)

. (5)

Thus, in a behavior selection problem involving M hor-
mones and N behaviors, each associated with a utility
function polynomial of ni state variables (i = 1, . . . , N)
and degree d, the total number of parameters that must
be specified equals

Np = 4N ×M +

N
∑

i=1

(

ni + d

d

)

. (6)

Thus, the number of parameters will depend on the num-
ber of behaviors, the number of hormones, the number
of state variables in each behavior, and the polynomial
degree.

4 Simulation setup

In order to evolve the behavior selection system, i.e. to
set the values of its Np parameters, simulations were car-
ried out. Before simulations can be started, however, it is
necessary to specify (1) the arena, i.e. the placement of
walls and stationary objects such as bookshelves, desks
etc., (2) the body of the robot, i.e. its size and shape, the
position of its sensors etc., and (3) the behavioral reper-
toire of the robotic brain. Once the arena, the robot
body, and the behavioral repertoire have been specified,
simulations aimed at optimizing the behavior selection
system (including the hormone dynamics) can begin. For
a detailed description of the procedure needed for setting
up a simulation based on UFLib, see [22].

This section begins with a description of the arena
and the robot (body and brain) used in the simulations.
Next, the evolutionary procedure for optimizing the be-
havior selection system is described.

Fig. 3 A three-dimensional representation of a part of the
arena, generated by the visualization routines contained in
UFLib. In the snapshot shown here, the robot is seen navi-
gating along a corridor.

4.1 Arena

The simulations were carried out in an arena correspond-
ing to a typical office environment, shown from above in
Fig. 1 and in 3D in Fig. 3. The center of the arena con-
tains a staircase and elevators. These two regions were
off-limits for the robot. Thus, the robot was constrained
to move in the corridors and offices.

4.2 Robot body

A differentially steered robot with cylindrical cross sec-
tion was used. The weight of the robot was 10.0 kg,
its radius and height were 0.20 m and 1.0 m, respec-
tively, and the wheel radius was 0.10 m. The robot was
equipped with a laser range finder (LRF), mounted on a
pole attached to the cylindrical body of the robot. The
simulation model of the LRF was based on the Hokuyo
URG-04LX range finder. The robot was also fitted with
two encoders (one for each wheel) for odometry, a com-
pass, and three touch sensors protruding from the front
of the robot in the directions -60◦, 0◦, and 60◦ relative to
the forward direction. Since moving obstacles were not
considered, there was no need to equip the robot with IR
proximity detectors (see also Sect. 2 above), even though
such sensors could easily have been added. An illustra-
tion of the robot is shown in Fig. 4.

All real sensors are, of course, noisy, and UFLib there-
fore supports the addition of noise at all relevant levels.
Thus, during simulations based on UFLib, noise is added
both to motor torques and sensor readings. The noise
level used for the simulated LRF was based on actual

Behavior selection for localization and navigation in a transportation robot, using evolvable internal state variables 5

U1 U2

Hormone 1 (x1) Hormone M (xM)

B1 BN B1 BN

C1

C2

Fig. 5 A schematic illustration of the two chromosomes determining the utility functions and the hormone dynamics. The
upper chromsome (C1) encodes the utility functions. Each box in C1 represents the coefficient for one polynomial term; see also
Eq. (1). The lower chromosome (C2) encodes the hormone dynamics. Here, each set of four boxes represents the parameters
xin, τ , Γ , and xout that determine the variation of one hormone variable during periods of activity of one particular behavior,
as illustrated in Fig. 2.

Sensor Readings Accuracy

Laser range finder 682 rays, 240◦ sector, range 0.0-4.0m ±0.001 m
Compass 0-360◦ ± ∼ 3◦

Wheel encoder 1024 pulses/revolution ± ∼ 2 pulses per time step
Touch sensor 0 or 1 –

Table 1 Ranges of measurement and noise levels for the sensors used in the simulated robot.

Fig. 4 The transportation robot used in the simulations.
The laser range finder is mounted at the top of the pole.

readings from an Hokuyo URG-04LX laser range finder.
The noise levels for the other sensors were estimates,
based on typical values from manufacturers’ data sheets.

A description of the various sensors is given in Table 1.
Note that with 1024 pulses per revolution of the wheels
(radius: 0.10 m), and a typical robot speed of around
0.7 m/s, an average of around 11 pulses are detected,
per time step3, by the wheel encoders. The error in the
detection is up to ± 2 pulses per time step. Thus, the
odometric drift can be quite significant.

4.3 Robot brain

The specification of a robotic brain in the UF method
requires (1) a behavioral repertoire, (2) the utility func-
tions used for selecting between behaviors, and (3) equa-
tions determining the dynamics of the hormone vari-
ables.

In the experiments considered here, three behaviors
were included in the behavioral repertoire, namely path
navigation (B1), and localization (B2), and obstacle avoid-
ance (B3). The behaviors are described in detail in Sect. 5
below.

While the user must provide the behavioral reper-
toire, the UF method itself generates the behavior selec-
tion system (the utility functions) and the parameters
for the dynamics of the hormone variables. However, the
user must, of course, specify which state variables are
to be used in each behavior. In this investigation, two
hormone variables x1 and x2 were introduced, and these

3 The length of the time step was 0.01 s.

6 Jimmy Pettersson and Mattias Wahde

were the only state variables used for B1 and B2. For
B3, the readings of the three touch sensors were used as
state variables (s1, s2, and s3), together with the two
hormone variables. Thus, the utility function polynomi-
als were specified as

U1 = U1(x1, x2) = a
(1)
00 + a

(1)
10 x1 + . . . , (7)

U2 = U2(x1, x2) = a
(2)
00 + a

(2)
10 x1 + . . . , (8)

and

U3 = U3(x1, x2, s1, s2, s3) = a
(3)
00000 +a

(3)
10000x1 + . . . , (9)

for B1, B2, and B3, respectively. Following the results
obtained in earlier studies [13], the polynomial degree
was set to 3. Thus, with N = 3, M = 2, n1 = 2, n2 = 2,
n3 = 5, and d = 3, the total number of parameters,
obtained from Eq. (6), was 100.

4.4 Optimization procedure

As mentioned above, the simulation program was based
on the UFLib software library, which was expanded to
include evolutionary optimization of the hormone dy-
namics. Each individual in the EA contained a behavior
selection system encoded in two chromosomes, determin-
ing the Np parameters, as illustrated in Fig. 5. Thus, in
the decoding step, the two chromosomes of an individual
generated a complete behavior selection system, which
was then evaluated by letting the corresponding robot
move in the arena shown in Fig. 1. A more complete
description of the evaluations is given in Sect. 6. The
fitness measure, which is described in Subsect. 6.2 was
based on the navigation performance of the robot.

A fairly standard EA (implemented in UFLib) was
used, with generational replacement (after the evalua-
tion of all individuals), based on tournament selection,
crossover, and parametric mutation. Note that the cross-
over operator may only cut chromosomes between genes.
In UFLib, the utility functions encoded in the first type
of chromosome (C1) in Fig. 5, are each represented by
one gene. Thus, for N behaviors, there are N − 1 pos-
sible crossover points available when crossing two chro-
mosomes of that type. Similarly, in the second type of
chromosome (C2, in Fig. 5), each set of four parameters
xin, τ , Γ , and xout is represented by one gene, and the
number of crossover points therefore equals N ×M − 1
(see also Fig. 2). In the formation of two new individu-
als, genetic material is exchanged between the two par-
ent individuals on a chromosome-by-chromosome basis,
i.e. by first crossing the C1 chromosomes of each parent,
and then the C2 chromosomes.

Mutations are carried out parameter by parameter in
UFlib. Since the total number of parameters was equal
to 100 (see Subsect. 4.3), the mutation rate was set to
pmut = 0.03, following the suggestion of using pmut ≈
3/Np given in [25]. The population size was set to 30, and

the crossover probability pcross to 0.50. The tournament
selection parameter, i.e. the probability of selecting the
better of the two individuals in a tournament was equal
to 0.70.

5 Behaviors

5.1 Path navigation

In this behavior the robot navigates through a sequence
of waypoints, generated through the combined use of
a grid-based map and an A∗ search algorithm [26,27],
which is capable of quickly generating the shortest path
between two locations in the map. Once a path has been
generated, the operation of the path navigation is as fol-
lows: The first waypoint from the sequence of generated
waypoints is retrieved and the robot starts to navigate
towards the location of the waypoint. The navigation is
performed by setting the motor commands in such a way
that the robot travels in one of three ways: (1) turning
left, (2) turning right, or (3) going forward. If the dis-
tance to the current waypoint is below a certain thresh-
old (set by the user), the next waypoint is retrieved from
the list. Each waypoint is processed in a similar fashion
until the last one is retrieved. The last waypoint coin-
cides with the target location at which the robot reaches
a standstill by setting the motor signals to zero.

Whenever the robot reaches a target, a new target
location is generated (and thus a new sequence of way-
points). Depending on the particular settings used, the
new target location is either taken from a list specified by
the user, or generated randomly in such a way that the
distance from the robot’s position to the new target lo-
cation is uniformly distributed in the range [dmin, dmax].
In this way, the average length of the paths is kept close
to constant between different simulations, thus making
possible a fair comparison of solution candidates.

If the behavior selection mechanism temporarily ac-
tivates a different behavior (e.g. obstacle avoidance), the
path towards the current target is regenerated upon re-
entry to the path navigation behavior, and a new se-
quence of waypoints is obtained.

It should be noted that the path navigation behavior
relies solely on odometry. Consequently, in order to nav-
igate successfully to a designated target, the estimated
position of the robot must be sufficiently accurate in or-
der to avoid large deviations from the intended path,
which may lead to collisions with obstacles.

5.2 Localization

The localization behavior used here is based on the read-
ings of the LRF which is mounted on a pole extending
vertically from the top surface of the robot, to avoid in-
cluding moving objects (if any) in the scan. The basic
idea is to match the current readings of the actual LRF

Behavior selection for localization and navigation in a transportation robot, using evolvable internal state variables 7

to the readings of a virtual LRF placed (virtually) in var-
ious locations in the map, in the vicinity of the estimated
position of the robot4. The localization behavior works
as follows: (1) Upon activation of the behavior, the robot
first checks (using the wheel encoders) whether or not it
is moving. If it is, it begins by braking until it reaches a
complete standstill, a process that usually takes around
Ts = 0.10 − 0.40 s (10-40 time steps in the simulation)
to complete. Next, (2) the robot scans the environment
using its laser range finder (LRF). Obtaining the reading
of a Hokuyo LRF takes around TLRF = 0.10 s (10 time
steps), and this is accounted for in the simulation, in or-
der to make it as realistic as possible. In this 0.10 s inter-
val, the LRF is able to measure the distance to the near-
est obstacle along at total of 682 directions (henceforth
referred to as rays) distributed evenly in a 240 degree
sector. Since the readings of any sensor always contain
some noise, an average of three readings is taken. Next,
(3) the robot begins matching the stored readings from
the actual LRF to virtual readings generated using the
onboard map of the environment. During this part of the
localization behavior, the robot begins by calibrating its
direction to the readings of the onboard compass5. The
robot then places a virtual LRF in various locations in
the map (stored in its brain), generates (based on the
map) three virtual LRF readings (using the same noise
level as in the actual LRF), stores the results in a vector
and, finally, compares the virtual readings to the actual
readings obtained in step 2. The virtual LRF is an artifi-
cial construct contained in the brain of the robot (i.e. it
does not correspond to a hardware component), and it
can therefore be read much faster than the actual simu-
lated LRF used in step 2. Thus, in a single time step of
the simulation (0.01 s), the robot completes the three vir-
tual readings for one given position of the virtual LRF,
as well as the matching of the reading thus obtained to
the stored reading of the actual LRF.

The procedure for placing the virtual LRF in a se-
quence of positions in the map can be chosen in many
different ways. Here, it is done as follows: First, a vir-
tual reading is taken at the robot’s estimated position
x̂. In the absence of odometric drift (and sensory noise)
this reading would be identical to the reading from the
actual LRF, and the estimated position would be iden-
tical to the actual position x. However, due to the odo-
metric drift and noise, the two readings will of course
differ. Thus, additional virtual readings are taken (one
per time step) along concentric circles (see Fig. 6), cen-
tered on the robot’s estimated position. The sequence
of positions pk is parametrized by ∆r, measuring the

4 Thus, the localization behavior assumes implicitly that
the odometry has not drifted too much. Note, however, that
it is up to the behavioral organizer to activate the localization
behavior at the correct time.

5 Note that, even though the compass has limited accuracy
it does not, of course, suffer from a systematic drift (increas-
ing errors) like the odometry.

p1

p2

p3

p9

p10

p15

Fig. 6 A sequence of positions pk for the placement of the
virtual LRF carried out by the localization behavior, illus-
trated for the case ∆φ = π/4. At each point pk, the virtual
LRF generates an average over three readings (based on the
map), and compares them to the reading obtained from the
real LRF to form a deviation δk. The first point p1 coincides
with the estimated position x̂ at the moment of activation of
the localization behavior.

radial steps (i.e. the distance between the concentric cir-
cles) and ∆φ, measuring the angle between successive
positions on a given circle. Thus, the number of tested
positions per circle equals

Nc = 2π/∆φ, (10)

assuming that ∆φ has been set so that Nc is an inte-
ger. When a particular circle has been completed, i.e.
when all the Nc positions have been tested, the radius is
increased by ∆r.

Note that, in each position pk, the robot could, in
principle, rotate the virtual LRF to generate virtual read-
ings also for different directions. However, as mentioned
above, the direction is instead obtained from the robot’s
compass, and the matching procedure in step 3 of the
localization behavior thus only concerns the position of
the robot.

Thus, in step 3, for each time step, a new position pk

of the virtual LRF is tested, and the deviation between
the virtual and actual readings is computed as

δk =

√

∑nr

j=1 (sj − σj)
2

nr

, (11)

where sj is the average value (over three readings, as
mentioned above) along ray j of the actual LRF, and
σj is the average reading along the same ray for the
virtual LRF. nr denotes the number of (used) rays for
the LRF. In principle all Nr = 682 rays could have been
used. However, if all rays were to be used, the simulation
would run rather slowly. Thus, a smaller number of rays
(see Subsect. 6.1) was used. Of course, this implies no

8 Jimmy Pettersson and Mattias Wahde

A

B

Fig. 7 Path between the initial position (A) and the naviga-
tion target used during the optimization of the localization
behavior (see Sect. 6.1).

restriction; on the contrary, if the behavior can be made
to function well even when only a small fraction of the
available rays are used, it would perform even better (or,
at least, equally well) if a larger number of rays were to
be used in the implementation of the behavior in a real
robot.

It should be noted that the localization procedure
can be interrupted at any time, if the utility of the lo-
calization behavior should drop below that of any other
behavior. Thus, the procedure just described may not
always result even in a modified position estimate, let
alone a better estimate than what was available before
activation of localization. If the behavior is active for Tloc

s, the number of virtual LRF positions (K) tested can
be obtained from the equation

Tloc = Ts + 3TLRF + Kdt, (12)

where dt is the length of the time step in the simulation.
Note that the value of Ts depends on the speed of the
robot upon activation of localization and may thus vary
between activations of this behavior. Note also that if the
behavior is only active for a time shorter than Ts+3TLRF

s, no odometric recalibration will occur at all.

During step 3 of the matching procedure, the robot
will thus generate a sequence of deviations δk for the
various tested positions, starting from δ1, i.e. the devia-
tion obtained at the current estimated position x̂. If, for
some k, a smaller deviation δk than δ1 is found, the robot
recalibrates its estimated position, by setting x̂ = pk. If
no virtual position pk leads to a smaller deviation than
δ1, the robot does not update its estimated position.

5.3 Obstacle avoidance

In contrast to the two behaviors just described, the ob-
stacle avoidance behavior is very simple: When activated
by the behavior selection system, this behavior simply
sets the speed of the motors to equal, negative values, so
that the robot will move backwards in a straight line.
Note that it is the job of the behavior selection sys-
tem both to activate the behavior, by raising the cor-
responding utility value as a result of, for example, a
non-zero reading of one or several touch sensors, and to
de-activate it by lowering its utility as soon as the touch
sensors no longer are in contact with an obstacle.

6 Results

Behavior selection systems were evaluated in simulations
carried out using a simulator based on the UFLib simu-
lation library. In each simulation, the robot was allowed
to move for T = 150 s. The time step length was set
to dt = 0.01 s, and simulations were terminated if the
body of the robot collided with an object (e.g. a wall),
but not, of course, in cases where only the touch sen-
sors were in contact with the object. In each time step,
the values of the five state variables x1, x2, s1, s2, and
s3 were obtained, and the utility values U1, U2, and U3

were calculated. The robot then activated (or kept ac-
tive) the behavior with the highest utility value. Note
that the variation of the hormone variables x1 and x2,
as well as the parameters of the utility functions, were
obtained from the two chromosomes illustrated in Fig. 5,
and thus varied from individual to individual.

However, before the evolution of a complete behav-
ioral organizer was attempted, it was necessary to inves-
tigate the performance of the individual behaviors. B1

(path navigation) and B3 (obstacle avoidance) could be
tested quite easily. However, for B2 (localization), a more
thorough study, aimed at finding appropriate values for
the parameters ∆r, ∆φ, and nr, was needed. A descrip-
tion of those tests is given in Subsect. 6.1. Next, in Sub-
sect. 6.2, a description is given of the results obtained
from runs aimed at generating a behavior selection sys-
tem.

6.1 Optimization of the localization behavior

The localization behavior described in Subsect. 5.2 above
depends on three parameters, namely ∆r, ∆φ, and nr.
In order to test the behavior, and to optimize the val-
ues of these parameters, simulations were made in which
only the two behaviors path navigation and localization
were used, and where the switch between behaviors was
hard-coded such that, in each 12 s period, the path nav-
igation behavior was executed for the first 10 s, and the
localization behavior for the final 2 s. Thus, the robotic
brain was fixed, and (for given values of ∆r, ∆φ, and

Behavior selection for localization and navigation in a transportation robot, using evolvable internal state variables 9

∆r ∆φ nr p̂

0.025 π/2 34 0.82

0.025 π/4 34 0.86

0.025 π/2 68 0.77

0.025 π/4 68 0.85

0.015 π/2 34 0.82

0.015 π/4 34 0.88

Table 2 The table shows the estimated probability p̂ of an
improvement in the position estimate, as a result of running
localization for 2 s, after a 10 s navigation period. Quantita-
tive measures of the improvements are given in Table 3.

nr) the only difference between successive simulations
was caused by the noise in the motors and sensors. Each
simulation lasted 120 s, i.e. 10 complete cycles of navi-
gation and localization. Thus, in this case, there was no
need to use an EA, and evolutionary optimization was
therefore temporarily disabled here.

The initial position, and the navigation target, are
illustrated in Fig. 7. For each setting of the parameters
∆r, ∆φ, and nr, many simulations were carried out, in
order to obtain reliable estimates of the average improve-
ment (if any) in the estimated position obtained from the
localization behavior. Note that, with Ts ≈ 0.10− 0.40s
and TLRF = 0.10s, the robot will, according to Eq. (12)
have time to check around K = 130 − 170 different po-
sitions during each 2 s activation period of localization.

The results obtained for various values of ∆r, ∆φ,
and nr are shown in Tables 2 and 3. The number of rays
used (nr) was set either to 34 (5 % of the total number of
available rays) or to 68 (10 % of the total). Table 2 shows
the probability p̂ of an improvement of the position esti-
mate as a result of running the localization behavior. In
each case, the value of p̂ is based on at least 100 naviga-
tion and localization cycles. As is evident from the table,
the localization behavior does quite well, improving the
estimate of the robot’s current position in 77−88% of all
attempts. It should also be noted that failed attempts,
i.e. those that lead to a larger position error than before
localization was executed, often occured when the initial
estimate was quite good, and the absolute magnitude
of the position error, both before and after localization,
turned out to be quite small in those cases.

Table 3 shows some more detailed results concerning
the improvement of the position estimates. In this ta-
ble, the average position estimate (after localization) is
shown, as a function of the position estimate before lo-
calization. The numerical entries in the table are based
on averages of at least five measurements and, in some
cases, up to 20 measurements. However, the typical drift
of the odometry (with the noise settings used here, see
Table 1) over a 10 s activation of path navigation was
around 0.10-0.30 m. Thus, for some cases the ∼ 100 nav-
igation and localization cycles did not generate a suffi-

A

B

Fig. 8 A typical path followed by a robot in Run 1. The
dots indicate the positions at which the robot activated its
localization behavior, temporarily suspending its navigation
along the intended path (solid line).

cient number of measurements6 (i.e. at least five) to form
a reliable average for certain values of the position error
|xe|.

From the table it can be seen that the localization be-
havior generally improves the position estimate. In ad-
dition to the values shown in the table, a few measure-
ments were obtained also for |xe| = 0.50 ± 0.05 m. In
all such cases (16 in all, distributed over the six different
parameter settings), the position estimate was improved.

Furthermore, Table 3 shows that the best results were
obtained for ∆φ = π/4, i.e. in cases where 8 (rather than
4) positions are checked on each circle (see Fig. 6), a
result which is also evident from Table 2.

6.2 Optimization of the behavior selection system

Once appropriate settings had been obtained for the lo-
calization behavior, namely ∆r = 0.025, ∆φ = π/4, and
nr = 32, simulations aimed at generating a behavior se-
lection system was carried out. A large number of runs
were completed and, in most cases, the EA was able
quickly to optimize the utility functions, and the vari-
ation of the hormone variables, so that the robot man-
aged to navigate accurately and rather efficiently in the
arena. Each behavior selection system (i.e. each indi-
vidual in the EA) was evaluated for 10,000 time steps,
corresponding to 100 seconds.

The fitness measure was taken simply as the number
of waypoints (see Subsect. 5.1) reached by the robot dur-

6 This does not, of course, indicate a failure of the localiza-
tion behavior; instead, it merely indicates the magnitude of
the typical odometric drift during 10 s of navigation.

10 Jimmy Pettersson and Mattias Wahde

∆r ∆φ nr |xe| = 0.05± 0.005 |xe| = 0.10± 0.01 |xe| = 0.20± 0.02 |xe| = 0.30± 0.03

0.025 π/2 34 N/A 0.078 0.116 0.176

0.025 π/4 34 0.024 0.071 0.063 0.084

0.025 π/2 68 0.043 0.079 0.128 0.161

0.025 π/4 68 0.046 0.069 0.075 N/A

0.015 π/2 34 0.048 0.077 0.128 0.152

0.015 π/4 34 N/A 0.055 0.124 0.114

Table 3 Columns 4-7 show the average position error (unit: meters) after re-calibration (i.e. after executing localization) as
a function of the magnitude of the position error |xe| = |x− x̂| before re-calibration. The value of ∆r is given in meters, and
the value of ∆φ in radians.

ing its evaluation. The starting point and the navigation
target were the same as in the test of the localization
behavior above, i.e. the points shown in Fig. 7. Note,
however, that the presence of noise, both in sensors and
motors, made sure that no two evaluations were exactly
identical.

The performance of the best robots obtained from
the EA was investigated by means of re-evaluations, in
which the robot was placed in a random position in the
arena, and was then required to reach a randomly cho-
sen target point. If the target point was reached, a new
target point was generated randomly, etc.

A typical path, followed by the best individual in a
representative run (hereafter called Run 1), is shown in
Fig. 8. The solid line shows the intended path, obtained
by the path navigation behavior. The dots show some of
the actual locations reached by the robot during the first
100 s of its motion, namely those locations at which the
robot chose to activate its localization behavior. As can
be seen from the figure, the robot prioritized navigation
accuracy over speed, and carried out a total of 15 local-
izations during this time interval. The average duration
of the localization episodes was 1.8 s. Thus, the robot
spent a total of 27 s (27%) on localization.

The variation (with time) of the utility functions dur-
ing the first 20 s of this simulation are shown in Fig. 9,
and the variation of the hormone levels during the same
time interval are shown in Fig. 10. The time constants
for the hormone variables ranged from around 7 s to
around 27 s.

Note that the obstacle avoidance behavior was never
activated in this simulation. In fact, the combination of
path navigation and localization turned out to work very
well, and the obstacle avoidance behavior was therefore
only needed very rarely. However, the EA still managed
to optimize the behavior selection system in such a way
that obstacle avoidance could be activated on those rare
occasions when it actually was needed. An example of
the variation in the utility functions from a re-evaluation
of the best individual in Run 1 is shown in Fig. 11; as
can be seen in the figure, the obstacle avoidance behavior
(dotted line) was activated for a brief instant around
t = 39.5 s, when the robot slightly touched the wall.

0 5 10 15 20
Time

-1

0

1

2

U
t
i
l
i
t
y

Fig. 9 Variation in the utility values during the first 20 s
of a re-evaluation of the best individual found in Run 1. U1,
U2, and U3 are shown as solid, dashed, and dotted lines,
respectively.

0 5 10 15 20 25 30
Time

0.2

0.4

0.6

0.8

H
o
r
m
o
n
e

l
e
v
e
l

Fig. 10 Variation in the hormone values during the first 20
s of a re-evaluation of the best individual found in Run 1.
The solid line shows x1, and the dotted line shows x2.

7 Discussion

An interesting, and somewhat surprising, observation
is that, despite its simplicity, the localization behavior
worked quite well. The detailed performance of the be-
havior was also rather insensitive to the particular pa-
rameters chosen (see Table 3). Furthermore, due to the
noise in the odometry, the robot could not always deter-
mine accurately whether or not it was moving; in fact,
in many, if not most, activations of the localization be-
havior, the robot was moving slowly forward after the
initialization of the scan matching procedure (step 3 in

Behavior selection for localization and navigation in a transportation robot, using evolvable internal state variables 11

36 38 40 42 44 46 48 50
Time

-1

0

1

2

U
t
i
l
i
t
y

Fig. 11 Variation in the utility values between t = 35 and
t = 50 for a re-evaluation of the best individual found in Run
1. U1, U2, and U3 are shown as solid, dashed, and dotted lines,
respectively.

the description of the behavior, see Subsect. 5.2), making
the performance of the localization behavior even more
impressive.

As for the scan matching, one may wonder what
processor speed would be needed in order to carry out
one complete virtual LRF reading, and the associated
scan matching, in one time step (0.01 s). The reading of
the virtual LRF requires that, for each of the nr rays,
the intersection between a ray and the nearest object
should be determined. The whole process should then
be repeated three times (to form an average reading,
as described in Subsect. 5.2). Finally, the deviation δk

should be computed. It turns out that a 2.5 GHz com-
puter can execute around 200 such steps (three readings
and a matching, using nr = 34) in one second. Thus, in
order to carry out one step in 0.01 s, a clock frequency
of around 1.25 GHz would be needed, i.e. well within the
limits of what is possible, at least if the robotic brain is
implemented in a PC (e.g. a laptop) placed on the robot.

For the behavior selection problem, it is interesting to
note that the activation of localization involves a trade-
off: if the behavior is activated very infrequently, the
robot suffers the risk of deviating from its path and,
possibly, colliding. Also, if the deviation between the ac-
tual and the estimated position becomes too large, the
localization behavior may be unable to correct the error.
On the other hand, if localization is activated very often,
the robot will navigate quite slowly, spending too much
time just determining its position. As for the duration of
the localization behavior, it must be set long enough so
that the behavior has time to search out to a sufficiently
large radius (see Fig. 6).

In the UF method, the frequency of activation, as
well as the duration, of the behaviors, including local-
ization is determined, of course, by the utility functions
and the hormone variables. One of the main advantages
with the method is its ability to handle trade-offs of the
kind just described. In the particular case considered
here, the EA was able to find, quite quickly, appropriate

utility functions and hormone variations so as to acti-
vate the localization behavior at the right moments, and
to keep the behavior active for just the right amount of
time. Similarly, the behavior selection system was able
to activate (albeit very briefly) the obstacle avoidance
behavior, when needed.

As for the number of hormones, the choice of M = 2
was quite arbitrary. The main idea was to allow the be-
havior selection system to use one hormone for represent-
ing fear (i.e. in order to activate obstacle avoidance), and
one for representing confusion (i.e. in order to activate
localization). However, the EA was in no way required
to use the hormone variables in this way. It should also
be noted that any number of hormones could have been
added; the EA can always choose to ignore hormones
that are not needed, simply by setting xin, xout, and Γ
to 0.

8 Conclusion and further work

In this paper, it has been shown that the (modified)
UF method, incorporating evolutionary optimization of
both utility functions and hormone variables, is able
to generate a successful behavior selection system for
a real-world task (albeit somewhat simplified, in this
study). The evolved behavior selection systems are able
to switch between a path navigation behavior and a local-
ization behavior at appropriate times in order to achieve
an overall goal of navigating between two arbitrary points
in a given arena. Furthermore, it has been shown that a
rather simple localization behavior, based on laser range
finder scan matching works quite well, despite its sim-
plicity.

In future work, the localization behavior will be opti-
mized further, possibly by using an EA to search through
the space of parameters. Furthermore, the simple dy-
namics of the hormone variables may be extended to
involve feedback, rather than the simple temporal vari-
ation that has been used in this paper. The duration
of the active periods for the obstacle avoidance behavior
can perhaps be extended if the touch sensor readings are
given an artificial, non-zero decay time, rather than the
instantaneous drop from 1 to 0 used here. Such a de-
cay time would be easy to implement both in simulation
and in a real robot. Furthermore, moving objects (e.g.
people) will be added in the simulations, to increase the
degree of realism.

Finally, and most importantly, the results obtained
here will be transferred to a real robot. A simple, scale
1:3 prototype has already been built and the construc-
tion of a full-scale prototype will begin in the spring of
2007.

12 Jimmy Pettersson and Mattias Wahde

Acknowledgments

The study presented in this paper is part of a cooperative
research project, aimed at constructing a transporta-
tion robot. The project involves researchers from Waseda
University (Tokyo, Japan), Tsukuba University (Tsu-
kuba, Japan), Future University (Hakodate, Japan), and
Chalmers University of Technology (Göteborg, Sweden).
The authors wish to thank Prof. Shuji Hashimoto, Drs.
Ryo Saegusa, Pitoyo Hartono, and Kenji Suzuki, and Mr.
Krister Wolff, for helpful discussions during the prepa-
ration of this paper. Finally, the authors wish to thank
the Carl Trygger foundation for financial support.

References

1. R. C. Arkin, Behavior-based robotics. Cambridge, MA:
The MIT Press, 1998.

2. M. Wahde, An introduction to adaptive algorithms and
intelligent machines, 5th ed. Göteborg: Chalmers Re-
proservice, 2006.

3. R. Brooks, “A robust layered control system for a mobile
robot,” IEEE Journal of Robotics and Automation, vol.
RA-2, no. 1, pp. 14–23, 1986.

4. P. Maes, “How to do the right thing,” AI-Laboratory,
Massachusetts Institute of Technoglogy, Cambridge, MA,
Technical Report NE 43-836, 1989.

5. B. Blumberg, “Action-selection in Hamsterdam: Lessons
from ethology,” in Proceedings of the Third Interna-
tional Conference on the Simulation of Adaptive Behav-
ior, Brighton, England, August 1994, pp. 108–117.

6. J. Rosenblatt, “Damn: A distributed architecture for mo-
bile navigation,” in AAAI 1995 Spring Symposium on
lessons learned for implemented software architectures
for physical agents, March 1995, pp. 167–178.

7. P. Pirjanian, “Behavior-coordination mechanisms —
State-of-the-art,” Institute for Robotics and Intelligent
Systems, University of Southern California, Technical re-
port IRIS-99-375, October 1999.

8. D. McFarland and E. Spier, “Basic cycles, utility, and
opportunism in self-sufficient robots,” Robotics and Au-
tonomous Systems, vol. 20, pp. 179–190, 1997.

9. M. Wahde, “A method for behavioural organization for
autonomous robots based on evolutionary optimization
of utility functions,” Journal of Systems and Control En-
gineering, vol. 217, no. 4, pp. 249–258, September 2003.

10. J. von Neumann and O. Morgenstern, Theory of Games
and Economic Behavior, 3rd ed. Princeton, N. J.:
Princeton University Press, 1953.

11. H. Chernoff and L. Moses, Elementary decision theory.
New York, NY, USA: Dover Publications, Inc., 1986.

12. D. McFarland and T. Bösser, Intelligent behavior in an-
imals and robots. The MIT Press, 1993.

13. M. Wahde, J. Pettersson, H. Sandholt, and K. Wolff,
“Behavioral selection using the utility function method:
A case study involving a simple guard robot,” in Proc.
of the 3rd Int. Symp. on Autonomous Minirobots for Re-
search and Edutainment (AMiRE 2005), 2005, pp. 261–
266.

14. J. Pettersson, D. Sandberg, K. Wolff, and M. Wahde,
“Behavioral selection in domestic assistance robots: A
comparison of different methods for optimization of util-
ity functions,” in Proceedings of the 2006 IEEE Inter-
national Conference on Systems, Man, and Cybernetics
(SMC 2006), Taipei, Taiwan, October 2006, (To appear).

15. J. Pettersson and M. Wahde, “Improving generalization
in a behavioral selection problem using multiple simu-
lations,” in Proceedings of the Joint 3rd International
Conference on Soft Computing and Intelligent Systems
and 7th International Symposium on advanced Intelligent
Systems (SCIS & ISIS 2006), Tokyo, Japan, September
2006, pp. 989–994, (To appear).

16. C. Kee et al., “Development of indoor navigation system
using asynchronous pseudolites,” in Proceedings of ION
GPS-2000, 2000, pp. 1038–1045.

17. M. Wahde and J. Pettersson, “A general-purpose trans-
portation robot: An outline of work in progress,” in
Proceedings of the 15th IEEE International Symposium
on Robot and Human Interactive Communication (RO-
MAN 06), Hatfield, United Kingdom, 2006, pp. 722–726,
(To appear).

18. S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics.
The MIT Press, September 2005.

19. U. Frese, “A discussion of simultaneous localization and
mapping,” Autonomous Robots, vol. 20, no. 1, pp. 25–42,
2006.

20. C. F. Olson, “Probabilistic self-localization for mobile ro-
bots,” IEEE Transactions on Robotics and Automation,
vol. 16, no. 1, pp. 55–66, February 2000.

21. M. O. Franz, B. Schöllkopf, H. A. Mallot, and H. H.
Bülthoff, “Where did i take that snapshot? scene-based
homing by image matching,” Biological Cybernetics,
vol. 79, pp. 191–202, 1998.

22. M. Wahde and J. Pettersson, “UFLibrary tutorial,”
available at: http://www.me.chalmers.se/∼mwahde/
robotics/UFMethod/UFLibrary/.

23. ——, “UFLibrary demo,” available at: http:
//www.me.chalmers.se/∼mwahde/robotics/UFMethod/
UFLibrary/Demo.html%.

24. J. Pettersson and M. Wahde, “Uflibrary: A simulation
library implementing the utility function method for be-
havioral organization in autonomous robots,” Int. J. on
Artificial Intelligence Tools, 2005, (Submitted).

25. ——, “Application of the utility function method for be-
havioral organization in a locomotion task,” IEEE Trans.
Evol. Comp., vol. 9, no. 5, pp. 506–521, 2005.

26. P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis
for the heuristic determination of minimum cost paths
in graphs,” IEEE Transactions on Systems Science and
Cybernetics, vol. SSC-4, no. 2, pp. 100–107, July 1968.

27. S. J. Russell and P. Norvig, Artificial Intelligence: A
Modern Approach, 2nd ed. Prentice Hall, 2002.

