
INTRODUCTION TO AUTONOMOUS
ROBOTS

MATTIAS WAHDE

Department of Applied Mechanics
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2016

Introduction to Autonomous Robots
MATTIAS WAHDE

© MATTIAS WAHDE, 2016.

All rights reserved. No part of these lecture notes may be reproduced or trans-
mitted in any form or by any means, electronic och mechanical, without per-
mission in writing from the author.

Department of Applied Mechanics
Chalmers University of Technology
SE–412 96 Göteborg
Sweden
Telephone: +46 (0)31–772 1000

Contents

1 Autonomous robots 1
1.1 Robot types . 2
1.2 Robotic hardware . 5

1.2.1 Construction material . 5
1.2.2 Sensors . 5
1.2.3 Actuators . 11
1.2.4 Processors . 16

2 Kinematics and dynamics 21
2.1 Kinematics . 21

2.1.1 The differential drive . 21
2.2 Dynamics . 24

3 Simulation of autonomous robots 29
3.1 Simulators . 29
3.2 General simulation issues . 30

3.2.1 Timing of events . 30
3.2.2 Noise . 33
3.2.3 Sensing . 34
3.2.4 Actuators . 39
3.2.5 Collision checking . 40
3.2.6 Motion . 41
3.2.7 Robotic brain . 41

3.3 Brief introduction to ARSim . 42

4 Animal behavior 45
4.1 Introduction and motivation . 45
4.2 Bottom-up approaches vs. top-down approaches 46
4.3 Nervous systems of animals . 46
4.4 Ethology . 47

i

ii CONTENTS

4.4.1 Reflexes . 48
4.4.2 Kineses and taxes . 48
4.4.3 Fixed action patterns . 50
4.4.4 Complex behaviors . 52

5 Approaches to machine intelligence 55
5.1 Classical artificial intelligence . 55
5.2 Behavior-based robotics . 57
5.3 Generating behaviors . 58

5.3.1 Basic motor behaviors in ARSim 59
5.3.2 Wandering . 60

5.4 Navigation . 63

6 Exploration, navigation, and localization 67
6.1 Exploration . 67
6.2 Navigation . 74

6.2.1 Grid-based navigation methods 74
6.2.2 Potential field navigation 79

6.3 Localization . 85
6.3.1 Laser localization . 86

7 Utility and rational decision-making 93
7.1 Utility . 94
7.2 Rational decision-making . 98

7.2.1 Decision-making in animals 99
7.2.2 Decision-making in robots 103

8 Decision-making 105
8.1 Introduction and motivation . 105

8.1.1 Taxonomy for decision-making methods 105
8.2 The utility function method . 106

8.2.1 State variables . 107
8.2.2 Utility functions . 109
8.2.3 Activation of brain processes 110

Appendix A: Matlab functions in ARSim 113

Chapter 1
Autonomous robots

Both animals and robots manipulate objects in their environment in order to
achieve certain goals. Animals use their senses (e.g. vision, touch, smell) to
probe the environment. The resulting information, in many cases also en-
hanced by the information available from internal states (based on short-term
or long-term memory), is processed in the brain, often resulting in an action
carried out by the animal, with the use of its limbs.

Similary, robots gain information of the surroundings, using their sensors.
The information is processed in the robot’s brain1, consisting of one or several
processors, resulting in motor signals that are sent to the actuators (e.g. motors)
of the robot.

In this course, the problem of providing robots with the ability of making
rational, intelligent decisions will be central. Thus, the development of robotic
brains is the main theme of the course. However, a robotic brain cannot op-
erate in isolation: It needs sensory inputs, and it must produce motor output
in order to influence objects in the environment. Thus, while it is the author’s
view that the main challenge in contemporary robotics lies with the devel-
opment of robotic brains, consideration of the actual hardware, i.e. sensors,
processors, motors etc., is certainly very important as well.

This chapter gives a brief overview of robotic hardware, i.e. the actual
frame (body) of a robot, as well as its sensors, actuators, processors etc. The

1The term control system is commonly used (instead of the term robotic brain). However,
this term is misleading, as it leads the reader to think of classical control theory. Concepts from
classical control theory are relevant in robots; For example, the low-level control of the motors
of robots is often taken care of by PI- or PID-regulators. However, autonomous robots, i.e.
freely moving robots that operate without direct human supervision, are expected to function
in complex, unstructured environments, and to make their own decisions concerning which
action to take in any given situation. In such cases, systems based only on classical control
theory are simply insufficient. Thus, hereafter, the term robotic brain (or, simply, brain) will
be used when referring to the system that provides an autonomous robot, however simple,
with the ability to process information and decide upon which actions to take.

1

2 CHAPTER 1. AUTONOMOUS ROBOTS

Figure 1.1: Left panel: A Boe-bot. Right panel: A wheeled robot currently under construction
in the Adaptive systems research group at Chalmers.

various hardware-related issues will be studied in greater detail in the second
half of the course, which will involve the construction of an actual robot of the
kind shown in the left panel of Fig. 1.1.

1.1 Robot types

The are many different types of robots, and the taxonomy of such machines can
be constructed in various ways. For example, one may classify different kinds
of robots based on their complexity, their likeness to humans (or animals), their
way of moving etc. In this course we shall limit ourselves to mobile robots,
that is, robots that are able to move freely using, for example, wheels. The
other main category of robots are stationary robotic arms, also referred to as
robotic manipulators. Of course, as with any taxonomy, there are always ex-
amples that do not fit neatly into any of the available categories. For example,
a smart home equipped with a central computer and, perhaps, some form of
manipulation capabilities, can also be considered a robot, albeit of a different
kind.

Robotic manipulators constitute a very important class of robots and they
are used extensively in many industries, for example in assembly lines in the
vehicle industry. However, such robots normally follow a predefined move-
ment sequence and are not equipped with behaviors (such as collision avoid-
ance) designed to avoid harming people. While there is nothing preventing the
use of, for instance, sonar proximity sensors on a robotic manipulator, such op-
tions are rarely used. Instead, manipulators are confined to robotic work cells,

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 1. AUTONOMOUS ROBOTS 3

Figure 1.2: A Kondo humanoid robot. Left panel: Front view. Right panel: Rear view.

in which people are forbidden to enter while the manipulator is active.
By contrast, in this course, we shall consider autonomous robots, i.e. robots

that are capable of making their own decisions (depending on the situation at
hand) rather than merely executing a pre-defined sequence of motions. In fact,
since most robots equipped with such decision-making capabilities are mo-
bile, one may define an autonomous robot as a mobile robot with the ability
to make decisions. Two examples of mobile robots can be seen in Fig. 1.1. The
left panel shows a Boe-bot, which will be assembled and used in the second
half of the course. Some of its main advantages are its small size (its length
is around 0.14 m and its width 0.11 m) and its simplicity. Needless to say, the
robot also has several limitations; for example, its onboard processor (micro-
controller) is quite slow. However, on balance, the Boe-bot provides a good
introduction to the field of mobile robots. The right panel of Fig. 1.1 shows a
two-wheeled differentially steered robot which, although still under construc-
tion at the Adaptive systems research group at Chalmers, is already being used
in several research projects. This robot has a diameter of 0.40 m and a height
of around 1.00 m.

Robotic manipulators have long dominated the market for robots, but with
the advent of low-cost mobile robots the situation is changing: In 2007, the
number of mobile robots surpassed the number of manipulators for the first
time, and the gap is expected to widen over the next decades.

The class of mobile robots can be further divided into subclasses, the most

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

4 CHAPTER 1. AUTONOMOUS ROBOTS

Figure 1.3: The aluminium frame of a Boe-bot.

important being legged robots and wheeled robots. Other kinds, such as fly-
ing robots, exist as well, but will not be considered in this course. The class
of legged robots can be subdivided based on the number of legs, the most
common types being bipedal robots (with two legs) and quadrupedal robots
(with four legs). Most bipedal robots resemble humans, at least to some extent;
such robots are referred to as humanoid robots. An example of a humanoid
robot is shown in Fig. 1.2. Humanoid robots that (unlike the robot shown in
Fig. 1.2) not only have the approximate shape of a human, but have also been
equipped with more detailed human-like features, e.g. artificial skin, artificial
hair etc., are called androids. It should be noted that the term humanoid refers
to the shape of the robot, not its size; in fact, many humanoid robots are quite
small. For example, the Kondo robot shown in Fig. 1.2 is approximately 0.35
m tall.

Some robots are partly humanoid. For example, the wheeled robot shown
in the right panel of Fig. 1.1 is currently being equipped with a humanoid up-
per body. Unlike a fully humanoid robot, this robot need not be actively bal-
anced, but will still exhibit many desirable features of humanoid robots, such
as two arms for grasping and lifting objects, gesturing etc., as well as a head
that will be equipped with two cameras for stereo vision and microphones
providing capabilities for listening and speaking.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 1. AUTONOMOUS ROBOTS 5

Figure 1.4: Left panel: Aluminium parts used in the construction of a rotating base for a
humanoid upper body. The servo motor used for rotating the base is also shown, as well as the
screws, washers and nuts. Right panel: The assembled base.

1.2 Robotic hardware

1.2.1 Construction material

Regarding the material used in the actual frame of the robot, several options
are available, such as e.g. aluminium, steel, various forms of plastic etc. The
frame of a robot should, of course, preferably be constructed using a material
that is both sturdy and light and, for that reason, aluminium is often chosen.
Albeit somewhat expensive, aluminium combines toughness with low weight
in a near-optimal way, at least for small mobile robots. Steel is typically too
heavy to be practical in a small robot, whereas many forms of plastic eas-
ily break. The frame of the robot used in this course (the Boe-bot) is made
in aluminium, and is shown in Fig. 1.3. The left panel of Fig 1.4 shows the
aluminium parts used in a rotating base for a humanoid upper body. The as-
sembled base, which can rotate around the vertical axis, is shown in the right
panel.

1.2.2 Sensors

The purpose of robotic sensors is to measure either some physical characteris-
tic of the robot (for example, its acceleration) or some aspect of its environment
(for example, the detected intensity of a light source). The raw data thus ob-
tained must then, in most cases, be processed further before being used in the
brain of the robot. For example, an infrared (IR) proximity sensor may pro-
vide a voltage (depending on the distance to the detected object) as its read-
ing, which can then be converted to a distance, using the characteristics of the
sensor available from its data sheet.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

6 CHAPTER 1. AUTONOMOUS ROBOTS

Figure 1.5: Left panel: A Khepera II robot. Note the IR proximity sensors (small black
rectangles around the periphery of the robot), consisting of an emitter and a detector. Right
panel: A Sharp GP2D12 infrared sensor.

Needless to say, there exists a great variety of sensors for mobile robots.
Here, only a brief introduction will be given, focusing on a few fundamental
sensor types.

Infrared proximity sensors

An infrared proximity sensor (or IR sensor, for short), consists of an emitter
and a detector. The emitter, a light-emitting diode (LED), sends out infrared
light, which bounces off nearby objects, and the reflected light is then mea-
sured by the detector (e.g. a phototransistor). Some IR sensors can also be used
for measuring the ambient light level, i.e. the light observed by the detector
when the emitter is switched off. As an example, consider the Khepera robot
(manufactured by K-Team, www.k-team.com), shown in the left panel Fig. 1.5.
This robot is equipped with eight IR sensors, capable of measuring both am-
bient and reflected light. The range of IR sensors is quite short, though. In
the Khepera robot, reflected light measurements are only useful to a distance
of around 0.050 m from the robot, i.e. approximately one robot diameter, even
though other IR sensors have longer range. Another example is the Sharp
GP2D12 IR sensor, shown in the right panel of Fig. 1.5. This sensor detects ob-
jects in the range [0.10, 0.80] m. It operates using a form of triangulation: Light
is emitted from the sensor and, if an object is detected, the reflected light is re-
ceived at an angle that depends on the distance to the detected object. The raw
signal from the sensor consists of a voltage that can be mapped to a distance.
The mapping is non-linear, and for very short distances, the sensor cannot give

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 1. AUTONOMOUS ROBOTS 7

A A

B

Figure 1.6: The left panel shows a simple encoder, with a single detector (A), that measures
the interruptions of a light beam, producing the curve shown below the encoder. In the right
panel, two detectors are used, making it possible to determine also the direction of rotation.

reliable readings (hence the lower limit of 0.10 m).

Digital optical encoders

In many applications, accurate position information is essential for a robot,
and there are many different methods for positioning, e.g. inertial navigation,
GPS navigation, landmark detection etc., some of which will be considered in a
later chapter. One of the simplest forms of positioning, however, is dead reck-
oning, in which the position of a robot is determined based on measurements
of the distance travelled by each wheel of the robot. This information, when
combined with knowledge of the robot’s physical properties (i.e. its kinemat-
ics, see Chapter 2) allows one to deduce the current position and heading. The
process of measuring the rotation of the wheel of a robot is an example of
odometry, and a sensor capable of such measurements is the digital optical
encoder or, simply, encoder. Essentially, an encoder is a disc made of glass or
plastic, with shaded regions that regularly interrupt a light beam. By count-
ing the number of interruptions, the rotation of the wheel can be deduced, as
shown in the left panel of Fig. 1.6. However, in order to determine also the di-
rection of rotation, a second detector, placed at a quarter of a cycle out of phase

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

8 CHAPTER 1. AUTONOMOUS ROBOTS

Figure 1.7: A Ping ultrasonic distance sensor.

with the first detector, is needed (such an arrangement is called quadrature
encoding, and is shown in the right panel of Fig. 1.6).

Ultrasound (sonar) sensors

Ultrasound sensors, also known as sonar sensors or simply sonars, are based
on time-of-flight measurement. Thus, in order to detect the distance to an ob-
ject, a sonar emits a brief pulse of ultrasonic sound, typically in the frequency
range 40-50 kHz2. The sensor then awaits the echo. Once the echo has been
detected, the distance to the object can be obtained using the fact that sound
travels at a speed of around 340 m/s. As in the case of IR sensors, there is
both a lower and an upper limit for the detection range of a sonar sensor. If
the distance to an object is too small, the sensor simply does not have enough
time to switch from emission to listening, and the signal is lost. Similarly, if
the distance is too large, the echo may be too weak to be detected.

Fig. 1.7 shows a Ping ultrasonic distance sensor, which is commonly used
in connection with the Boe-bot. This sensor can detect distances to objects in
the range [0.02, 3.00] m.

Laser range finders

Laser range finders (LRFs) commonly rely, like sonar sensors, on time-of-flight
measurements, but involve the speed of light rather than the speed of sound.
Thus, a laser range finder emits pulses of laser light (in the form of thin beams),

2For comparison, a human ear can detect sounds in the range 20 hz to 20 kHz. Thus, the
sound pulse emitted by a sonar sensor is not audible.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 1. AUTONOMOUS ROBOTS 9

Figure 1.8: Left panel: A Hokuyo URL-04LX laser range finder. Right panel: A typical
reading, showing the distance to the nearest object in various directions. The pink rays indicate
directions in which no detection is made. The maximum range of the sensor is 4 m.

and measures the time it takes for the pulse to bounce off a target and return to
the range finder. An LRF carries out a sweep over many directions3 resulting
in an accurate local map of distances to objects along the line-of-sight of each
ray. LRFs are generally very accurate sensors, but they are also much more
expensive than sonars sensors and IR sensors.

A Hokuyo URG-04LX LRF is shown in the left panel of Fig. 1.8. This sensor
has a range of around four meters, with an accuracy of around 1 mm. It can
generate readings in 683 different directions, with a frequency of around 10
Hz. As of the time of writing (Jan. 2010), a Hokuyo URG-04LX costs around
2,000 USD. The right panel of Fig. 1.8 shows a typical reading, obtained from
the software delivered with the LRF.

Cameras

Cameras are used as the eyes of a robot. In many cases, two cameras are used,
in order to provide the robot with binocular vision, allowing it to estimate the
range to detected objects. There are many cameras available for robots, for
example the CMUCam series which has been developed especially for use in
mobile robots; The processor connected to the CMUCam is capable of basic
image processing. At the time of writing (Jan. 2010), a CMUCam costs on the
order of 150 USD. A low-cost alternative is to use ordinary webcams, for which
prices start around 15 USD. Fig. 1.9 shows a simple robotic head consisting of
two servo motors (see below) and a single webcam.

However, while the actual cameras may not be very costly, the use of cam-
eras is computationally a very expensive procedure. Even at a low resolution,

3A typical angular interval for an LRF is around 180-240 degrees.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

10 CHAPTER 1. AUTONOMOUS ROBOTS

Figure 1.9: A simple robotic head, consisting of two servo motors and a webcam.

say 320× 240 pixels, a webcam will deliver a flow of around 1.5 Mb/s, assum-
ing a frame rate of 20 Hz and a single byte of data per pixel. The actual data
transfer is easily handled by a Universal serial bus (USB), but the data must
not only be transferred but also analyzed, something which is far from trivial.
An introduction to image processing for robots will be given in a later chapter.

Other sensors

In addition to odometry based on digital optical encoders, robot positioning
can be based on inertial sensors, i.e. sensors that measure the time derivatives
of the position or heading angle of the robot. Examples of inertial sensors are
accelerometers, measuring linear acceleration, and gyroscopes, measuring an-
gular acceleration. Essentially, an accelerometer consists of a small object, with
mass m, attached to a spring and damper, as shown in Fig. 1.10. As the system
accelerates, the displacement z of the small object can be used to deduce the
acceleration ẍ of the robot. Given continuous measurements of the accelera-
tion, as a function of time, the position (relative to the starting position) can be

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 1. AUTONOMOUS ROBOTS 11

m

x

z

Figure 1.10: An accelerometer. The motion of the small object (mass m) resulting from the
acceleration of the larger object to which the accelerometer is attached can be used for deducing
the acceleration.

deduced. For robots operating in outdoor environments, positioning based on
the global positioning system (GPS) is often a good alternative. The GPS re-
lies on 24 satellites that transmit radio frequency signals which can be picked
up by objects on Earth. Given the exact position of (at least) three satellites, rel-
ative to the position of e.g. a robot, the absolute position (latitude, longitude,
and altitude) of the robot can be deduced.

Other sensors include strain gauge sensors (measuring deformation), tac-
tile (touch) sensors measuring physical contact between a robot and objects in
its environment, and compasses, measuring the direction of movement.

1.2.3 Actuators

An actuator is a device that allows a robot to take action, i.e. to move or manip-
ulate the surroundings in some other way. Motors, of course, are very common
types of actuators. Other kinds of actuation include, for example, the use of
microphones (for human-robot interaction).

Movements can be generated in various ways, using e.g. electrical motors,
pneumatic or hydraulic systems etc. In this course, we shall only consider
electrical, direct-current (DC) motors and, in particular, servo motors. Thus,
when referring to actuation in this course, the use of such motors is implied.

Note that actuation normally requires the use of a motor controller in con-
nection with the actual motor. This is so, since the microcontroller (see below)
responsible for sending commands to the motor cannot, in general, provide
sufficient current to drive the motor. The issue of motor control will be consid-
ered briefly in connection with the discussion of servo motors below.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

12 CHAPTER 1. AUTONOMOUS ROBOTS

I
B

N S

F

Figure 1.11: A conducting wire in a magnetic field. B denotes the magnetic field strength
and I the current through the wire. The Lorentz force F acting on the wire is given by F =
I×B.

F

F

I

Figure 1.12: A conducting loop of wire placed in a magnetic field. Due to the forces acting
on the loop, it will begin to turn. The loop is shown from above in the right panel, and from
the side in the left panel.

DC motors

Electrical direct current (DC) motors are based on the principle that a force
acts on a wire in a magnetic field if a current is passed through the wire, as
illustrated in Fig. 1.11. If instead a current is passed through a closed loop of
wire, as illustrated in Fig. 1.12, the forces acting on the two sides of the loop
will point in opposite directions, making the loop turn. A standard DC motor
consists of an outer stationary cylinder (the stator), providing the magnetic
field, and an inner, rotating part (the rotor). From Fig. 1.12 it is clear that the
loop will reverse its direction of rotation after a half-turn, unless the direction
of the current is reversed. The role of the commutator, connected to the rotor
of a DC motor, is to reverse the current through the motor every half-turn, thus
allowing continuous rotation. Finally, carbon brushes, attached to the stator,
complete the electric circuit of the DC motor. There are types of DC motors

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 1. AUTONOMOUS ROBOTS 13

+

-

V

L

R

V
EMF

+

Figure 1.13: The equivalent electrical circuit for a DC motor.

that use electromagnets rather than a permanent magnet, and also types that
are brushless. However, a detailed description of such motors are beyond the
scope of this text.

DC motors are controlled by varying the applied voltage. The equations
for DC motors can be divided into an electrical and a mechanical part. The
motor can be modelled electrically by the equivalent circuit shown in Fig. 1.13.
Letting V denote the applied voltage, and ω the angular speed of the motor
shaft, the electrical equation takes the form

V = L
di

dt
+Ri+ VEMF, (1.1)

where i is the current flowing through the circuit, L is the inductance of the
motor, R its resistance, and VEMF the voltage (the back EMF) counteracting V .
The back EMF depends on the angular velocity, and can be written as

VEMF = ceω, (1.2)

where ce is the electrical constant of the motor. For a DC motor, the generated
torque τg is directly proportional to the current, i.e.

τg = cti, (1.3)

where ct is the torque constant of the motor. Turning now to the mechanical
equation, Newton’s second law gives

I
dω

dt
=
∑

τ, (1.4)

where I is the combined moment of inertia of the motor and its load, and
∑
τ

is the total torque acting on the motor. For the DC motor, the equation takes
the form

I
dω

dt
= τg − τf − τ, (1.5)

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

14 CHAPTER 1. AUTONOMOUS ROBOTS

Figure 1.14: Left panel: A HiTec 645MG servo. The suffix MG indicates that the servo
is equipped with a metal gear train. Right panel: A Parallax servo, which has been modified
for continuous rotation. Servos of this kind are used on the Boe-bot. The circular (left) and
star-shaped (right) white plastic objects are the servo horns.

where τf is the frictional torque opposing the motion and τ is the (output)
torque acting on the load. The frictional torque can be divided into two parts,
the Coulomb friction (cCsgn(ω)) and the viscous friction (cvω). Thus, the
equations for the DC motor can now be summarized as

τg =
ct
R
V − ctL

R

di

dt
− cect

R
ω, (1.6)

I
dω

dt
= τg − cCsgn(ω)− cvω − τ, (1.7)

In many cases, the time constant of the electrical circuit is much shorter than
that of the physical motion, so the inductance term can be neglected. Further-
more, for simplicity, the dynamics of the mechanical part can also be neglected
under certain circumstances (e.g. if the moment of inertia of the motor and
load is small). Thus, setting di/dt and dω/dt to zero, the steady-state DC mo-
tor equations, determining the torque τ on the load for a given applied voltage
V and a given angular velocity ω

τg =
ct
R
V − cect

R
ω, (1.8)

τ = τg − cCsgn(ω)− cvω, (1.9)

are obtained. In many cases, the axis of a DC motor rotates too fast and gener-
ates a torque that is too weak for driving a robot. Thus, a gear box is commonly
used, which reduces the rotation speed taken out from the motor (on the sec-
ondary drive shaft) while, at the same time, increasing the torque. For an ideal
(loss-free) gear box, the output torque and rotation speed are given by

τout = Gτ,

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 1. AUTONOMOUS ROBOTS 15

Figure 1.15: Pulse width modulation control of a servo motor. The lengths of the pulses
determine the requested position angle of the motor output shaft. The interval betwwn pulses
(typically around 20 ms) is denoted T .

ωout =
1

G
ω, (1.10)

where G is the gear ratio.

Servo motors

A servo motor is essentially a DC motor equipped with control electronics and
a gear train (whose purpose is to increase the torque to the required level for
moving the robot, as described above). The actual motor, the gear train, and
the control electronics, are housed in a plastic container. A servo horn (either
plastic or metal) makes it possible to connect the servo motor to a wheel or
some other structure. Fig. 1.14 shows two examples of servo motors.

The angular position of a servo motor’s output shaft is determined using a
potentiometer. In a standard servo, the angle is constrained to a given range
[−αmax, αmax], and the role of the control electronics is to make sure that the
servo rotates to a set position α (given by the user). A servo is fitted with a
three-wire cable. One wire connects the servo to a power source (for exam-
ple, a motor controller or, in some cases, a microcontroller board) and another
wire connects it to ground. The third wire is responsible for sending signals to
the servo motor. In servo motors, a technique called pulse width modulation

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

16 CHAPTER 1. AUTONOMOUS ROBOTS

Figure 1.16: An arm of a humanoid robot. The allowed rotation range of the elbow is around
100 degrees.

(PWM) is used: Signals in the form of pulses are sent (e.g. from a microcon-
troller) to the control electronics of the servo motor. The duration of the pulses
determine the required position, to which the servo will (attempt to) rotate, as
shown in Fig. 1.15. For a walking robot (or for a humanoid upper body), the
limitation to a given angular range poses no problem: The allowed rotation
range of a servo is normally sufficient for, say, an elbow or a shoulder joint. As
an example, an arm of a humanoid robot is shown in Fig. 1.16. For this particu-
lar robot, the rotation range for the elbow joint is around 100 degrees, i.e. easily
within the range of a standard servo (around 180 degrees). The limitation is, of
course, not very suitable for motors driving the wheels of a robot. Fortunately,
servo motors can be modified to allow continuous rotation. The Boe-bot that
will be built in the second half of the course uses Parallax continuous rotation
servos (see the right panel of Fig. 1.14), rather than standard servos.

Other motors

There are many different types of motors, in addition to standard DC motors
and servo motors. An example is the stepper motor, which is also a version
of the DC motor, namely one that moves in fixed angular increments, as the
name implies. However, in this course, only standard DC motors and servo
motors will be considered.

1.2.4 Processors

Sensors and actuators are necessary for a robot to be able to perceive its envi-
ronment and to move or manipulate the environment in various ways. How-

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 1. AUTONOMOUS ROBOTS 17

Figure 1.17: A Board of Education (BOE) microcontroller board, with a Basic Stamp II
(BS2) microcontroller attached. In addition to the microcontroller, the BOE has a serial port
for communication with a PC (used, for example, when uploading a program onto the BS2),
as well as sockets for attaching sensors and electronic circuits. In this case, a simple circuit
involving a single LED, has been built on the BOE. The two black sockets in the upper right
corner are used for connecting up to four servo motors.

ever, in addition to sensors and actuators, there must also be a system for an-
alyzing the sensory information, making decisions concerning what actions to
take, and sending the necessary signals to the actuators.

In autonomous robots, it is common to use several processors to represent
the brain of the robot. Typically, high-level tasks, such as decision-making, are
carried out on a standard PC, for example a laptop computer mounted on the
robot, whereas low-level tasks are carried out by microcontrollers, which will
now be introduced briefly.

Microcontrollers

Essentially, a microcontroller is a single-chip computer, containing a central
processing unit (CPU), read-only memory (ROM, for storing programs), random-
access memory (RAM, for temporary storage, such as program variables), and

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

18 CHAPTER 1. AUTONOMOUS ROBOTS

several input-output (I/O) ports. There exist many different microcontrollers,
with varying degrees of complexity, and different price levels, down to a few
USD for the simplest ones. An example is the Basic Stamp II4 (BS2) microcon-
troller, which costs around 50 USD.

While the BS2 is sufficient for the experimental work carried out in this
course (in the next quarter), its speed is only around 4,000 operations per sec-
ond (op/s) and it has a RAM memory (for program variables) of only 32 bytes
and a ROM (for program storage) of 2 kilobytes (Kb).

However, many alternative microcontrollers are available for more advanced
robots. Two examples, with roughly the same price as the BS2, are the BasicX
and ZBasic microcontrollers, which are both compatible with the BOE micro-
controller board used together with the BS2. The BasicX microcontroller has a
RAM memory of 400 bytes and 32 Kb for program storage, whereas ZBasic has
4 Kb of RAM and 62 Kb for program storage. BasicX executes around 83,000
op/s, whereas (some versions of) ZBasic can reach up to 2.9 million op/s.

In many cases, microcontrollers are sold together with microcontroller boards
(or microcontroller modules), containing sockets for wires connecting the mi-
crocontroller to sensors and actuators as well as control electronics, power sup-
ply etc. An example is the Board of education (BOE) microcontroller board.
The BOE, shown in Fig. 1.17, is equipped with a solderless breadboard, on
which electronic circuits can be built without any soldering, which is very use-
ful for prototyping.

Since microcontrollers do not have human-friendly interfaces such as a
keyboard and a screen, the normal operating procedure is to write and compile
programs on an ordinary computer (using, of course, a compiler adapted for
the microcontroller in question), and then upload the programs onto the mi-
crocontroller. In the case of the BS2 microcontroller, the language is a version
of Basic called PBasic.

Robotic brain architectures

An autonomous robot must be capable of both high-level and low-level pro-
cessing. The low-level processing consists, for example, of sending signals to
motor controllers (see below) which, in turn, send (for example) PWM pulses
to servo motors. Another low-level task is to retrieve raw data (e.g. a voltage
value from an IR proximity sensor). The distinction between low-level and
high-level tasks is a bit fuzzy. For example, the voltage value from an IR sen-
sor (e.g. the Sharp GP2D12 mentioned above) can be mapped to a distance
value, which of course normally is more relevant for decision-making than
the raw voltage value. The actual conversion would normally be considered a
low-level task but might as well also be carried out on the robot’s onboard PC.

4Basic Stamp is a registered trademark of Parallax, inc., see www.parallax.com.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 1. AUTONOMOUS ROBOTS 19

Laptop computer

Web
cameras

Microcontroller

Motor
controller

(motors)

Actuators

Laser range
finder

Sonars
Wheel
encoders

Figure 1.18: An example of a typical robotic brain architecture, for a differentially steered
two-wheeled robot equipped with wheel encoders, three sonar sensors, one LRF, and two web
cameras.

The hardware configuration providing a robot’s processing capability is re-
ferred to as the robotic brain architecture. An example of a typical robotic
brain architecture is shown in Fig. 1.18. The robotic brain shown in the figure
would be used in connection with a two-wheeled differentially steered robot.
As can be seen in the figure, the microcontroller would handle low-level pro-
cessing, such as measuring the pulse counts of the wheel encoders, collecting
readings from the three sonars, and sending motor signals (e.g. desired set
speeds) to the motor controller5, which, in turn, would send signals to the
motors. However, the LRF and the web cameras would be directly connected,
via USB (or, possibly, serial) ports, to the main processor (on the laptop), since
most microcontrollers would not be able to handle the massive data flow from
such sensors.

The main program (i.e. the robotic brain), running on the laptop, would
process the data from the various sensors. For example, the pulse counts from

5A separate motor controller (equipped with its own power source) is often used for
robotics applications, since the power source for the microcontroller may not be able to de-
liver sufficient current for driving the motors as well.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

20 CHAPTER 1. AUTONOMOUS ROBOTS

Microcontroller (Basic Stamp 2)

Servo
motors

Phototransistors Sonar Whiskers

Figure 1.19: An example of a robotic brain architecture for a Boe-bot.

the wheel encoders would be translated to an estimate of position and head-
ing, as described in Chapter 2. Given the processed sensory data, as well as in-
formation stored in the (long-term or short-term) memory of the robotic brain
(for example, a map of the arena in which the robot operates), the main pro-
gram would determine the next action to be carried out by the robot, compute
the appropiate motor commands and send them to the microcontroller.

Note that the figure only shows an example: Many other configurations
could be used as well. For example, there are cameras developed specifically
for robotics applications that, unlike standard web cameras, are able to carry
out much of the relevant image processing (e.g. detecting and extracting faces),
and then only sending that information (rather than the raw pixel values) to the
laptop computer.

The robotic brain architecture shown in Fig. 1.18 would be appropriate for
a rather complex (and costly!) robot. Such robots are beyond the scope of
the experimental work carried out in the second half of this course. The ex-
perimental work, which will be carried out using a Boe-bot (see the left panel
of Fig. 1.1), involves a much simpler robotic brain architecture, illustrated in
Fig. 1.19. As can be seen, in this case, the robot has a single processor, namely
the BS2 microcontroller, which thus is responsible both for the low-level (sig-
nal) processing and the high-level decision-making.

The microcontroller sends signals to the two servo motors and receives in-
put from the sensors attached to the robot, for example, two photo-resistors, a
sonar sensor, and whiskers. The whiskers are simple touch sensors that give
a reading of either 0 (if no object is touched) or 1 (if the whisker touches an
object). Of course, other sensors (such as IR sensors or simple wheel encoders)
can be added as well, but one should keep in mind that the processing capabil-
ity of the BS2 is very limited. Note that no motor controller is used: The BOE is
capable of generating sufficient current for up to four Parallax servo motors.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

Chapter 2
Kinematics and dynamics

2.1 Kinematics

Kinematics is the process of determining the range of possible movements
for a robot, without consideration of the forces acting on the robot, but tak-
ing into account the various constraints on the motion. The kinematic equa-
tions for a robot depend on the robot’s structure, i.e. the number of wheels,
the type of wheels used etc. Here, only the case of differentially steered two-
wheeled robots will be considered. For balance, a two-wheeled robot must also
have one or several supporting wheels (or some other form of ground contact,
such as a ball in a material with low friction). The influence of the supporting
wheels on the kinematics and dynamics will not be considered.

2.1.1 The differential drive

A schematic view of a differentially steered robot is shown in Fig. 2.1. The Boe-
bot that will be considered in the second half of the course (see the left panel

V
L V

R

Figure 2.1: A schematic representation of a two-wheeled, differentially steered robot.

21

22 CHAPTER 2. KINEMATICS AND DYNAMICS

v

v

w

r

Figure 2.2: Left panel: Kinematical constraints force a differentially steered robot to move in
a direction perpendicular to a line through the wheel axes. Right panel: For a wheel that rolls
without slipping, the equation v = ωr holds.

of Fig. 1.1) is an example of such a robot.
A differentially steered robot is equipped with two independently steered

wheels. The position of the robot is given by the two coordinates x and y, and
its direction of motion is denoted ϕ.

It will be assumed that the wheels are only capable of moving in the direc-
tion perpendicular to the wheel axis (see the left panel of Fig. 2.2). Furthermore,
it will be assumed that the wheels roll without slipping, as illustrated in the
right panel of Fig. 2.2. For such motion, the forward speed v of the wheel is
related to the angular velocity ω through the equation

v = ωr, (2.1)

where r is the radius of the wheel.
The forward kinematics of the robot, i.e. the variation of x, y and ϕ, given

the speeds vL and vR of the left and right wheel, respectively, can be obtained
by using the constraints on the motion imposed by the fact that the frame of
the robot is a rigid body. For any values of the wheel speeds, the motion of the
robot can be seen as a pure rotation, with angular velocity ω = ϕ̇ around the
instantaneous center of rotation (ICR). Letting L denote the distance from the
ICR to the center of the robot, the speeds of the left and right wheels can be
written

vL = ω(L−R), (2.2)

and
vR = ω(L+R), (2.3)

where R is the radius of the robot’s body (which is assumed to be circular and
with a circularly symmetric mass distribution). The speed V of the center-of-

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 2. KINEMATICS AND DYNAMICS 23

mass of the robot is given by
V = ωL. (2.4)

Inserting Eq. (2.4) into Eqs. (2.2) and (2.3), L can be eliminated. V and ω can
then be obtained in terms of vL and vR as

V =
vL + vR

2
, (2.5)

ω = −vL − vR
2R

. (2.6)

Denoting the speed components of the robot Vx and Vy, and noting that Vx =
V cosϕ, Vy = V sinϕ, the position of the robot at time t1 is given by

X(t1)−X0 =
∫ t1

t0
Vx(t)dt =

∫ t1

t0

vL(t) + vR(t)

2
cosϕ(t)dt, (2.7)

Y (t1)− Y0 =
∫ t1

t0
Vy(t)dt =

∫ t1

t0

vL(t) + vR(t)

2
sinϕ(t)dt, (2.8)

ϕ(t1)− ϕ0 =
∫ t1

t0
ω(t)dt = −

∫ t1

t0

vL(t)− vR(t)

2R
dt, (2.9)

where (X0, Y0) is the starting position of the robot (at time t = t0), and ϕ0 is its
initial direction of motion. The position and heading together form the pose
of the robot. Thus, if vL(t) and vR(t) are known, the position and orientation of
the robot can be determined for any time t. Numerical integration is normally
required, since the equations for X and Y can only be integrated analytically
if ϕ has a rather simple form. Two special cases, for which the three equa-
tions can all be integrated analytically, are (check!) (vL(t), vR(t)) = (v1, v2) and
(vL(t), vR(t)) = (v0(t/t1), v0(t/t2)), where v1, v2, v0, t1 and t2 are constants. In
these cases, one can first find ϕ(t) (for arbitrary t), and then obtain X(t) and
Y (t).

Of course, in a real robot, the wheel speeds can never be determined with
perfect accuracy. Instead, the integration must be based on estimates v̂L(t) and
v̂R(t), which, in turn, are computed based on the pulse counts of the wheel
encoders. There are many factors limiting the accuracy of the speed estimates.
One such limitation concerns the number of pulses per revolution: For exam-
ple, the wheel encoders supplied by Parallax (for the Boe-bot) use the eight
holes in the robot’s wheel for generating pulse counts, so that a complete revo-
lution of a wheel corresponds to only eight pulses. Evidently, a speed estimate
(which requires two different pulse readings, at different times, as well as an
estimate of the time elapsed between the two readings) for such a robot would
not be very accurate. By contrast, in more advanced robots, the encoders may
be mounted before the gear box (in the case of a DC motor), and may also pro-
vide much more than eight pulses per revolution (of the motor shaft), so that
a rather accurate wheel speed estimate can be obtained.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

24 CHAPTER 2. KINEMATICS AND DYNAMICS

However, even if the speed estimates are very accurate, there are other
sources of error as well. For example, the robot’s wheels may slip occasionally.
Furthermore, the kinematic model may not provide a completely accurate es-
timate of the robot’s true kinematics (for example, no wheel is ever perfectly
circular).

Once wheel speed estimates are available, the pose can be estimated, us-
ing a kinematic model as described above. The process of estimating a robot’s
position and heading based on wheel encoder data is called odometry. Due
to the limited accuracy of velocity estimates, the estimated pose of the robot
will be subject to an error, which grows with time. Thus, in order to maintain
a sufficiently accurate pose estimate for navigation over long distances, an in-
dependent method of odometric recalibration must be used. This issue will
be considered in a later chapter.

Normally, the wheel speeds are not given a priori. Instead, the signals sent
to the motors by the robotic brain (perhaps in response to external events, such
as detection of obstacles) will determine the torques applied to the motor axes.
In order to determine the motion of the robot one must then consider not only
its kinematics but also its dynamcs. This will be the topic of the next section.

2.2 Dynamics

The kinematics considered in the previous section determines the range of pos-
sible motions for a robot, given the constraints which, in the case of the two-
wheeled differential robot, enforce motion in the direction perpendicular to
the wheel axes. However, kinematics says nothing about the way in which a
particular motion is achieved. Dynamics, by contrast, considers the motion of
the robot in response to the forces (and torques) acting on it. In the case of the
two-wheeled, differentially steered robot, the two motors generate torques (as
described above) that propel the wheels forward, as shown in Fig. 2.3. The fric-
tional force at the contact point with the ground will try to move the ground
backwards. By Newton’s third law, a reaction force of the same magnitude
will attempt to move the wheel forward. In addition to the torque τ from the
motor (assumed to be known) and the reaction force F from the ground, a re-
action force ρ from the main body of the robot will act on the wheel, mediated
by the wheel axis (the length of which is neglected in this derivation). Using
Newton’s second law, the equations of motion for the wheels take the form

mv̇L = FL − ρL, (2.10)

mv̇R = FR − ρR, (2.11)

Iwφ̈L = τL − FLr, (2.12)

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 2. KINEMATICS AND DYNAMICS 25

f F

r

t j

R

rR

rR

FR

rLrL

FL

x

y

Figure 2.3: Left panel: Free-body diagram showing one of the two wheels of the robot. Right
panel: Free-body diagram for the body of the robot and for the two wheels. Only the forces
acting in the horizontal plane are shown.

and
Iwφ̈R = τR − FRr, (2.13)

where m is the mass of the wheel, Iw is its moment of inertia, and r its radius.
It is assumed that the two wheels have identical properties. The right panel of
Fig. 2.3 shows free-body diagrams of the robot and the two wheels, seen from
above. Newton’s equations for the main body of the robot (mass M) take the
form

MV̇ = ρL + ρR (2.14)

and
Iϕ̈ = (−ρL + ρR)R, (2.15)

where I is its moment of inertia.
In the six equations above there are 10 unknown variables, namely vL, vR,

FL, FR, ρL, ρR, φL, φR, V , and ϕ. Four additional equations can be obtained
from kinematical considerations. As noted above, the requirement that the
wheels should roll without slipping leads to the equations

vL = rφ̇L (2.16)

and
vR = rφ̇R. (2.17)

Furthermore, the two kinematic equations (see Sect. 2.1)

V =
vL + vR

2
, (2.18)

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

26 CHAPTER 2. KINEMATICS AND DYNAMICS

and
ϕ̇ = −vL − vR

2R
. (2.19)

complete the set of equations for the dynamics of the differentially steered
robot. Combining Eq. (2.10) with Eq. (2.12) and Eq. (2.11) with Eq. (2.13), the
equations

mv̇L =
τL − Iwφ̈L

r
− ρL, (2.20)

mv̇R =
τR − Iwφ̈R

r
− ρR (2.21)

are obtained. Inserting the kinematic conditions from Eqs. (2.16) and (2.17), ρL
and ρR can be expressed as

ρL =
τL
r
−
(
Iw

r2
+m

)
v̇L, (2.22)

and

ρR =
τR
r
−
(
Iw

r2
+m

)
v̇R. (2.23)

Inserting Eqs. (2.22) and (2.23) in Eq. (2.14), one obtains the acceleration of the
center-of-mass of the robot body as

MV̇ = ρL + ρR =
(τL + τR)

r
−
(
Iw

r2
+m

)
(v̇L + v̇R) = (2.24)

=
(τL + τR)

r
− 2

(
Iw

r2
+m

)
V̇ ,

where, in the last step, the derivative with respect to time of Eq. (2.18) has been
used. Rearranging terms, one can write Eq. (2.24) as

MV̇ = A (τL + τR) , (2.25)

where
A =

1

r
(
1 + 2

(
Iw
Mr2

+ m
M

)) . (2.26)

For the angular motion, using Eqs. (2.22) and (2.23), Eq. (2.15) can be expressed
as

Iϕ̈ = (−ρL + ρR)R = (−τL + τR)
R

r
+R

(
Iw

r2
+m

)
(v̇L − v̇R) , (2.27)

Differentiating Eq. (2.19) with respect to time, and inserting the resulting ex-
pression for v̇R − v̇L in Eq. (2.27), one obtains the equation for the angular
motion as

Iϕ̈ = (−τL + τR)
R

r
− 2R2

(
Iw

r2
+m

)
ϕ̈. (2.28)

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 2. KINEMATICS AND DYNAMICS 27

Rearranging terms, this equation can be expressed in the form

Iϕ̈ = B (−τL + τR) , (2.29)

where
B =

1
r
R

+ 2
(
IwR
Ir

+ mRr
I

) . (2.30)

Due to the limited strength of the motors and to friction, as well as other losses
(for instance in the transmission), there are of course limits on the speed and
rotational velocity of the robot. Thus, the differential equations for V and ϕ
should also include damping terms. In practice, for any given robot, the exact
form of these terms must be determined through experiments (i.e. through sys-
tem identification). A simple approximation is to use linear damping terms,
so that the equations of motion for the robot become

MV̇ + αV = A (τL + τR) , (2.31)

and
Iϕ̈+ βϕ̇ = B (−τL + τR) , (2.32)

where α and β are constants. Note that, if the mass m and moment of inertia
Iw of the wheels are small compared to the mass M and moment of inertia I
of the robot, respectively, the expression for A can be simplified to

A =
1

r
. (2.33)

Similarly, the expression for B can be simplified to

B =
R

r
. (2.34)

Given the torques τL and τR generated by the two motors in response to the
signals sent from the robotic brain, the motion of the robot can thus be obtained
by integration of Eqs. (2.31) and (2.32).

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

28 CHAPTER 2. KINEMATICS AND DYNAMICS

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

Chapter 3
Simulation of autonomous robots

Simulations play an important role in research on (and development of) auto-
nomous robots, for several reasons. First of all, testing a robot in a simulated
environment can make it possible to detect whether or not the robot is prone to
catastrophic failure in certain situations, so that the behavior of the robot can
be altered before it is unleashed in the real world. Second, building a robot
is often costly (for example, most laser range finders cost several thousand
USD). Thus, through simulations, it is possible to test several designs before
constructing an actual robot. Furthermore, it is common to use stochastic opti-
mization methods, such as evolutionary algorithms, in connection with the de-
velopment of autonomous robots. Such methods require that many different
robotic brains be evaluated, which is very time-consuming if the work must be
carried out in an actual robot. Thus, in such cases, simulations are often used,
even though the resulting robotic brains must, of course, be thoroughly tested
in real robots, a procedure which often requires several iterations involving
simulated and actual robots. In this chapter, an introduction to some of the
general issues pertaining to robotic simulations will be given, along with a
brief description of (some of) the features of two particular simulators for mo-
bile robots, namely GPRSim and ARSim. GPRSim is an advanced 3D simulator
for automomous robots, which is used in certain research projects within the
Adaptive systems group. ARSim is a simplified (2D) Matlab simulator used in
this course.

3.1 Simulators

Over the years, several different simulators for mobile robots have appeared,
with varying degrees of complexity. One of the most ambitious simulators
to date is Robotics studio from Microsoft, which allows the user to simulate
many of the commercially available mobile robots, or even to assemble a (vir-

29

30 CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS

tual) robot using generic parts.
Some simulators include not only general simulation of the kinematic and

dynamics of robots, but also procedures for stochastic optimization. Some ex-
amples of such simulators are Webots, which is manufactured by Cyberbotics
(www.cyberbotics.com) and the open source package Darwin2K, which
can be found at darwin2k.sourceforge.net.

The Adaptive systems research group at Chalmers has developed a simu-
lator called the General-purpose robotic simulator (GPRSim), which is exten-
sively used in our research projects. Unlike the other simulators mentioned
above, GPRSim features, as an integral part of the simulator, an implementa-
tion of the general-purpose robotic brain structure (GPRBS) (also developed
in the Adaptive systems research group). The GPRBS, in turn, consists of a
standardized representation of a robotic brain, consisting of a set of so called
brain processes as well as a decision-making system. This structure allows re-
searchers to build complex robotic brains involving many different behavioral
aspects and also to export the resulting robotic brain for use in real (physical)
robots. The existence of a standardized representation for robotic brains also
makes it possible, for example, to reuse parts of a previously developed robotic
brain in other applications than the original one.

However, GPRSim is primarily a research tool and, as such, it is not very
user-friendly. Moreover, the underlying code is quite complex. Thus, in this
course, a different simulator will be used, namely the Autonomous robot sim-
ulator (ARSim), which is a 2D simulator written in Matlab. This simulator is
generally too slow to be useful in research projects, but it is perfectly suited to
most of the tasks considered in this course. Note also that, even though ARSim
is greatly simplified, many parts of the code (for example the simulation of DC
motors, IR sensors etc.) are essentially the same in GPRSim and ARSim

3.2 General simulation issues

In Fig. 3.1, the general flow of a single-robot simulation is shown. Basically,
after initialization, the simulation proceeds in a stepwise fashion. In each step,
the simulator reads the sensors of the robot, and the resulting signals are sent
to the robotic brain, which computes appropriate motor signals that, finally,
are sent to the motors. Given the motor signals, the acceleration of the robot
can be updated, and new velocities and positions can be computed. Changes
to the arena (if any) are then made, and the termination criteria are checked.

3.2.1 Timing of events

As mentioned earlier, simulation results in robotics must be validated in an
actual robot. However, in order for this to be possible, some care must be

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 31

Initialize 1. Obtain sensor readings

2. Process information

3. Compute motor signals

4. Move robot

6. Check termination criteria

5. Update arena

Figure 3.1: The flow of a single-robot simulation. Steps 1 through 6 are carried out in each
time step of the simulation.

taken, particularly regarding steps 1-3. To be specific, one must make sure that
these steps can be executed (on the real robot) in a time which does not exceed
the time step length in the simulation. Here, it is important to distinguish
between two different types of events, namely (1) those events that take a long
time to complete in simulation, but would take a very short time in a real robot,
and (2) those events that are carried out rapidly in simulation, but would take
a long time to complete in a real robot.

An example of an event of type (1) is collision-checking. If performed
in a straight-forward, brute-force way, the possibility of a collision between
the (circular, say) body of the robot and an object must be checked by going
through all lines in a 2D-projection of the arena. A better way (used, for ex-
ample, in GPRSim) is to introduce an invisible grid, and only check for colli-
sions between the robot and those objects that (partially) cover the grid cells
that are also covered by the robot. However, even when such a procedure is
used, collision-checking may nevertheless be very time-consuming in simula-
tion whereas, in a real robot, it amounts simply to reading a bumper sensor (or,
as on the Boe-bot, a whisker), and transferring the signal (which, in this case, is
binary, i.e. a single bit of information) from the sensor to the brain of the robot.
Events of this type cause no (timing) problems at the stage of transferring the
results to a real robot, even though they may slow down the simulation con-
siderably.

An example of an event of type (2) is the reading of sensors. For exam-
ple, an IR sensor can be modelled using simple ray-tracing (see below) and,
provided that the number of rays used is not too large, the update can be car-

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

32 CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS

Dt

Read first
IR sensor

Read second
IR sensor

Process information,
compute motor output

Transfer motor
signals

Figure 3.2: A timing diagram. The boxes indicate the time required to complete the corre-
sponding event in hardware, i.e. a real robot. In order for the simulation to be realistic, the
time step ∆t used in the simulation must be longer than the total duration (in hardware) of all
events taking place within a time step.

ried out in a matter of microseconds in a simulator. However, in a real robot
it might take longer time. While the reading of an IR sensor involves a very
limited signal flow compared to the reading of a camera with, say, 640 × 480
pixels, the transfer of the reading from the sensor to the robotic brain is a po-
tential bottleneck. A common setup is to have a microcontroller (see Chapter
1) handling the low-level communication, i.e. obtaining sensor readings and
sending signals to actuators, and a PC (for example, a laptop placed on the
robot) handling high-level issues, such as decision-making, motion planning
etc. Very often, the communication between the laptop and the microcontroller
takes place through a serial port, operating with a speed of, say, 9600 or 38400
bits/s. If the onboard PC must read, for example, four proximity sensors (as-
suming one byte per reading) and send signals to two motors (again assuming
that each signal requires one byte), a total of 6 × 8 = 48 bits is needed, lim-
iting the number of interactions between the PC and the microcontroller to
9600/48 = 200 per second in the case of a serial port speed of 9600 bits/s.
As another, more specific, example, consider the small mobile robot Khepera,
shown in the left panel of Fig. 1.5. In its standard configuration, it is equipped
with eight IR sensors, which are read in a sequential way every 2.5 ms, so that
the processor of the robot receives an update of a given IR sensor’s reading
every 20 ms. The updating frequency of the sensors is therefore limited to 50
Hz. Thus, a simulation of a Khepera robot in which the simulated sensors are
updated with a frequency of, say, 100 Hz would be unrealistic.

In practice, the problem of limited updating frequency in sensors can be
solved by introducing a Boolean readability state for each (simulated) sensor.
Thus, in the case of a Khepera simulation with a time step of 0.01s, the sensor
values would be updated only every other time step. Step 2, i.e. the processing
of information by the brain of the robot, must also, in a realistic simulation, be
of limited complexity so that the three steps (1, 2, and 3) together can be carried

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 33

out within the duration ∆t (the simulation time step) when transferred to the
real robot. An example of a timing diagram for a generic robot (not Khepera)
is shown in Fig. 3.2. In the case shown in the figure, two IR proximity sensors
are read, the information is processed (for example, by being passed through
an artificial neural network), and the motor signals (voltages, in the case of
standard DC motors) are then transferred to the motors. The figure shows a
case which could be realistically simulated, with the given time step length
∆t. However, if two additional IR sensors were to be added, the simulation
would become unrealistic: The real robot would not be able to complete all
steps during the time ∆t.

For the simple robotic brains considered in this course, step 2 would gener-
ally be carried out almost instantaneously (compared to step 1) in a real robot.
Similarly, the transfer of motor signals to a DC motor is normally very rapid
(note, however, that the dynamics of the motors may be such that it is pointless
to send commands with a frequency exceeding a certain threshold).

To summarize, a sequence of events that takes, say, several seconds per
time step to complete in simulation (e.g. the case of collision-checking in a very
complex arena) may be perfectly simple to transfer to a real robot, whereas a
sequence of events (such as the reading of a large set of IR sensors) that can
be completed almost instantaneously in a simulated robot, may simply not be
transferable to a real robot, unless a dedicated processor for signal processing
and signal transfer is used.

3.2.2 Noise

Another aspect that should be considered in simulations is noise. Real sensors
and actuators are invariably noisy, on several levels. Furthermore, even sen-
sors that are supposed to be identical often show very different characteristics
in practice. In addition, regardless of the noise level of a particular sensor, the
frequency with which readings can be updated is limited, thus introducing
another source of noise, in certain cases. For example, the limited sampling
frequency of wheel encoders implies that, even in the (unrealistic) case where
the kinematic model is perfect and there are no other sources of noise, the in-
tegrals in the kinematic equations (Eqs. (2.7)-(2.9)) can only be approximately
computed.

Thus, in any realistic robot simulation, noise must be added, at all relevant
levels. Noise can be added in several different ways. A common method (used
in GPRSim and ARSim) is to take the original reading S of a sensor and add
noise to form the actual reading Ŝ as

Ŝ = SN(1, σ), (3.1)

where N(1, σ) denotes the normal (Gaussian) distribution with mean 1 and

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

34 CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS

standard deviation σ. Of course, other distributions (e.g. a uniform distribu-
tion) can be used as well.

An alternative method is to take some measurements of a real sensor and
store the readings in a lookup table, which is then used by the simulated robot.
For example, in the case of an IR sensor with a range of, say, 0.5 m, one may,
for example, take 10 readings each at distances of 0.05, 0.10, . . . , 0.50 m, and
store those readings in a matrix. In the simulator, when the IR sensor is used,
the distance L to the nearest obstacle is determined, and the reading is then
obtained by interpolating linearly between two samples from the lookup table.
For example, if L = 0.23 m, a randomly chosen sample ŝ20 is taken from the
10 readings stored for L = 0.20 m, and another randomly chosen sample ŝ25 is
taken from the readings stored for L = 0.25 m. The reading of the simulated
sensor is then taken as

Ŝ = ŝ20 +
0.23− 0.20

0.25− 0.20
(ŝ25 − ŝ20) (3.2)

This method has the advantage of forming simulated readings from actual
sensor readings, rather than introducing a model for the noise. Furthermore,
using lookup tables, it is straightforward to account for the individual nature
of supposedly identical sensors. However, a clear disadvantage is the need for
generating the lookup tables, which often must contain a very large number of
samples taken not only at various distances, but also, perhaps, at various angles
between the forward direction of the sensor and the surface of the obstacle.
Thus, the first method, using a specific noise distribution, is normally used
instead.

3.2.3 Sensing

In addition to correct timing of events and the addition of noise in sensors and
actuators, it is necessary to make sure that the sensory signals received by the
simulated robot do not contain more information than could be provided by
the sensors of the corresponding real robot. For example, in the simulation of
a robot equipped only with wheel encoders (for odometry), it is not allowed
to provide the simulated robot with continuously updated and error-free po-
sition measurements. Instead, the simulated wheel encoders, including noise
and other inaccuracies, should be the only source of information regarding the
position of the simulated robot.

In both GPRSim and ARSim, several different sensors have been imple-
mented, namely (1) wheel encoders, (2) IR proximity sensors, and (3) com-
passes. In addition, GPRSim (but not ARSim) also features (4) sonar sensors
and (5) laser range finders (LRFs). An important subclass of (simulated) sen-
sors are ray-based sensors, which use a simple form of ray tracing in order to

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 35

form their reading(s). Examples of ray-based sensors are IR proximity sensors,
sonar sensors, and laser range finders.

Now, the different natures of, say, an IR sensor, which gives a fuzzy read-
ing based on infrared light, and an LRF, which gives very accurate readings (in
many directions) based on laser light, imply that slightly different procedures
must be used when forming the (simulated) sensor readings of those two sen-
sor types. However, in both cases, the simulation of the sensor requires ray
tracing, which will now be considered.

Ray-based sensors In ray-based sensors, the formation of sensor readings
is based on the concept of sensor rays. Basically, a number of rays are sent
out from a sensor, in various directions (depending on the opening angle of
the sensor), and the distance to the nearest obstacle is determined. If no ob-
stacle is available within the range of the sensor, the ray in question provides
no reading. Of course, in order to obtain any ray reading, not only the robot
must be available, but also the objects (e.g. walls and furniture) located in the
arena in which the robot is operating. In GPRSim, objects are built from boxes
and cylinders. Boxes are represented as a sequence of six planes, whereas
(the mantle surface of) cylinders are represented by a sufficient number of
planes (usually around 10-20) to approximate the circular cross section of the
cylinder. The ray readings are thus obtained using general equations for line-
plane intersections1. Here, however, we shall only consider the simpler two-
dimensional case, in which all surfaces are vertical and where the sensors are
oriented such that all emitted rays are parallel to the ground. In such cases, the
arena objects can be represented simply as a sequence of lines in two dimen-
sions. Indeed, this is how objects are represented in ARSim.

An example of such a configuration is shown in Fig. 3.3. The left panel
shows a screenshot from GPRSim, in which an LRF mounted on top of a robot
takes a reading in an arena containing only walls. The right panel shows a two-
dimensional representation of the arena and the LRF (the body of the robot is
not shown). Given the exact position of a ray’s starting point, as well as the
range of the corresponding sensor, it is possible to determine the distance be-
tween the ray and the nearest obstacle using general equations for line-line
intersection, which will be described next. However, it should first be noted
that, even though the simulator of course uses the exact position of the robot
and its sensors in order to compute sensor readings, the robot (or, more specif-
ically, its brain) is only provided with information regarding the actual sensor
readings.

Consider now a single sensor ray. Given the start and end points of the

1In order to speed up the simulator, a grid (also used in collision checking) is used, such
that only those obstacles that are (partially) located in the grid cells currently covered by the
sensor are considered.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

36 CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS

Figure 3.3: Left panel: A screenshot from GPRSim, showing an LRF taking a reading in
an arena containing only walls. Right panel: A two-dimensional representation of the sensor
reading. The dotted ray points in the forward direction of the robot which, in this case, coincides
with the forward direction of the LRF.

ray, its equation can be determined. Let (xa, ya) denote the start point for the
ray (which will be equal to the position of the sensor, if the size of the latter
can be neglected). Once the absolute direction (βi) of the sensor ray has been
determined, the end point (xb, yb) of an unobstructed ray (i.e. one that does
not hit any obstacle) can be obtained as

(xb, yb) = (xa +D cos βi, ya +D sin βi), (3.3)

where D denotes the sensor range. Similarly, any line corresponding to the
side of an arena object can be defined using the coordinates of its start and
end points. Note that, in Fig. 3.3, all lines defining arena objects coincide with
coordinate axes, but this is, of course, not always the case. Now, in the case of
two lines of infinite length, defined by the equations yk = ck + dkx, k = 1, 2,
it is trivial to find the intersection point (if any) simply by setting y1 = y2.
However, here we are dealing with line segments of finite length. In this case,
the intersection point can be determined as follows: Letting Pa

i = (xa
i , y

a
i) and

Pb
i = (xb

i , y
b
i) , denote the start and end points, respectively, of line i, i = 1, 2,

the equations for an arbitrary point Pi along the two line segments can be
written

P1 = Pa
1 + t

(
Pb

1 −Pa
1

)
, (3.4)

and
P2 = Pa

2 + u
(
Pb

2 −Pa
2

)
, (3.5)

where (t, u) ∈ [0, 1]. Solving the equation P1 = P2 for t and u gives, after some

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 37

algebra,

t =
(xb

2 − xa
2)(ya

1 − ya
2)− (yb

2 − ya
2)(xa

1 − xa
2)

(yb
2 − ya

2)(xb
1 − xa

1)− (xb
2 − xa

2)(yb
1 − ya

1)
(3.6)

and

u =
(xb

1 − xa
1)(ya

1 − ya
2)− (yb

1 − ya
1)(xa

1 − xa
2)

(yb
2 − ya

2)(xb
1 − xa

1)− (xb
2 − xa

2)(yb
1 − ya

1)
(3.7)

An intersection occurs if both t and u are in the range [0, 1]. Assuming that the
first line (with points given by P1) is the sensor ray, the distance d between the
sensor and the obstacle, along the ray in question, can then easily be formed
by simply determining P1 using the t value found, and computing

d = |P1 −Pa
1| = |t(Pb

1 −Pa
1)|. (3.8)

If the two lines happen to be parallel, the denominator becomes equal to zero2.
Thus, this case must be handled separately.

In simulations, for any time step during which the readings of a particular
sensor are to be obtained, the first step is to determine the origin of the sensor
rays (i.e. the position of the sensor), as well as their directions. An example is
shown in Fig. 3.4. Here, a sensor is placed at a point ps, relative to the center
of the robot. The absolute position Ps (relative to an external, fixed coordinate
system) is given by

Ps = X + ps, (3.9)

where X = (X, Y) is the position of the (center of mass of the) robot. Assuming
that the front direction of the sensor is at an angle α relative to the direction of
heading (ϕ) of the robot, and that the sensor readings are to be formed using
N equally spaced rays over an opening angle of γ, the absolute direction βi of
the ith ray equals

βi = ϕ+ α− γ

2
+ (i− 1)δγ, (3.10)

where δγ is given by
δγ =

γ

N − 1
. (3.11)

Now, the use of the ray readings differs between different simulated sensors.
Let us first consider a simulated IR sensor. Here, the set of sensor rays is used
only as an artificial construct needed when forming the rather fuzzy reading of
such a sensor. In this case, the rays themselves are merely a convenient com-
putational tool. Thus, for IR sensors, the robotic brain is not given information
regarding the individual rays. Instead, only the complete reading S is pro-
vided, and it is given by

S =
1

N

N∑
i=1

ρi, (3.12)

2In case the two lines are not only parallel but also coincident, both the numerators and the
denominators are equal to zero in the equations for t and u.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

38 CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS

j

a

g
b1

Figure 3.4: The right panel shows a robot equipped with two IR sensors, and the left panel
shows a blow-up of the left sensor. In this case, the number of rays (N) was equal to 5. The
leftmost and rightmost rays, which also indicate the opening angle γ of the IR sensor are shown
as solid lines, whereas the three intermediate rays are shown as dotted lines.

where ρi is the ray reading of ray i. Ideally, the value ofN should be very large
for the simulated sensor to represent accurately a real IR sensor. However, in
practice, rather small values of N (3-5, say) is used in simulation, so that the
reading can be obtained quickly. The loss of accuracy is rarely important, since
the (fuzzy) reading of an IR sensor is normally used only for proximity detec-
tion (rather than, say, mapping or localization). An illustration of a simulated
IR sensor is given in Fig. 3.4.

A common phenomenological model for IR sensor readings (used in GPRSim
and ARSim) defines ρi as

ρi = min

((
c1

d2
i

+ c2

)
cosκi, 1

)
, (3.13)

where c1 and c2 are non-negative constants, di > 0 is the distance to the nearest
object along ray i, and

κi = −γ
2

+ (i− 1)δγ, (3.14)

is the relative ray angle of ray i. If di > D (the range of the sensor), ρi = 0.
Note that it is assumed that κi ∈ [−π/2, π/2], i.e. the opening angle cannot
exceed π radians. Typical opening angles are π/2 or less. It should also be
noted that this IR sensor model has limitations; for example, the model does
not take into account the orientation of the obstacle’s surface (relative to the
direction of the sensor rays) and neither does it account for the different IR
reflectivity of different materials.

For simulated sonar sensors (which are included in GPRSim but not in AR-
Sim), the rays are also only used as a convenient computational tool, but the

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 39

final reading S is formed in a different way. Typically, sonar sensors give rather
accurate distance measurements in the range [Dmin, Dmax], but sometimes fail
to give a reading at all. Thus, in GPRSim, the reading of a sonar sensor is
formed as S = minidi with probability p and Dmax (no detection) with proba-
bility 1− p. Also, if S < Dmin the reading is set to Dmin. Typically, the value of
p is very close to 1. The number of rays (N) is usually around 3 for simulated
sonars.

A simulated LRF, by contrast, gives a vector-valued reading, S, where each
component Si is obtained simply as the distance di to the nearest obstacle along
the ray. Thus, for LRFs, the sensor rays have a specific physical interpretation,
made possible by the fact that the laser beam emitted by an LRF is very narrow.
In GPRSim, if di > D, the corresponding laser ray reading is set to -1, to indi-
cate the absence of any obstacle within range of the ray in question. Note that
LRFs are only implemented in GPRSim. It would not be difficult to add such a
sensor to ARSim, but since an LRF typically takes readings in 1,000 different
directions (thus requiring the same number of rays), such sensors would make
ARSim run very slowly.

As a final remark regarding ray-based sensors, it should be noted that a
given sensor ray i may intersect several arena object lines (see, for example,
Fig. 3.3) In such cases, di is taken as the shortest distance obtained for the ray.

3.2.4 Actuators

A commonly used actuator in mobile robots is the DC motor. The equations
describing such motors are given in Chapter 1.

In both GPRSim and ARSim, a standard DC motor has been implemented.
In this motor, the input signal is the applied voltage. Both the electrical and
mechanical dynamics of the motors are neglected. Thus the torque acting
on the motor shaft axis is given by Eqs. (1.8) and (1.9). Gears are imple-
mented in both simulators, so that the torques acting on the wheels are given
by Eqs. (1.10). However, the simulators also include the possibility of setting
a maximum torque τmax which cannot be exceeded, regardless of the output
torque τout obtained from Eqs. (1.10).

In addition, GPRSim (but not ARSim) also allows simulation of velocity-
regulated motors. Unlike the voltage signal used in the standard DC motor, a
velocity-regulated motor takes as input a desired reference speed vref for the
wheel attached to the motor axis. The robot then tries to reach this speed value,
using proportional control. The actual output torque of a velocity-regulated
motor is given by

τ = K (vref − v) (3.15)

In this model, a change in vref generates an immediate change in the torque. In
a real motor, the torques cannot change instantaneously. However, Eq. (3.15)

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

40 CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS

Figure 3.5: Left panel: A simulated robot (from GPRSim), consisting of more than 100
objects. Right panel: An example (in blue) of a collision geometry.

usually provides a sufficiently accurate estimate of the torque. As in the case
of the standard DC motor, there is also a maximum torque τmax for velocity-
regulated motors.

Note that, if velocity-regulated motors are to be used, the robot must be
equipped with wheel encoders to allow the computation of odometric esti-
mates of the wheel speeds.

3.2.5 Collision checking

A real robot should normally be very careful not to collide with an obstacle (or,
worse, a person). In simulations, however, one may allow collisions, for exam-
ple during simulations involving stochastic optimization, where the robotic
brains in the early stages of an optimization run may be unable to avoid colli-
sions. In any case, collisions should, of course, be detected.

In GPRSim the concept of a collision geometry is used when checking for
collisions. The collision geometry is a set of vertical planes in which the body
of the robot should be contained. It would be possible to check collisions be-
tween the boxes and cylinders constituting the (simulated) body of the robot.
However, it is common that the robotic body consists of a very large number
of objects, making collision-checking very slow indeed. Thus, instead, a sim-
pler collision geometry is used. An example is given in Fig. 3.5. The left panel
shows a simulated robot (consisting of more than 100 separate objects), and
the right panel shows (in blue) a collision geometry for the same robot.

By contrast, in ARSim the simulated robot is always represented as a circu-
lar disc. Thus, the collision detection method simply checks for intersections

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 41

between the circular body of the robot and any line representing a side of an
arena object.

3.2.6 Motion

Once the torques acting on the wheels have been generated, the motion of
the robot is obtained through numerical integration of Eqs. (2.31) and (2.32).
In both GPRSim and ARSim, the integration is carried out using simple first-
order (Euler) integration. For each time step, V̇ and ϕ̈ are computed using
Eqs. (2.31) and (2.32), respectively. The new values V ′ and ϕ̇′ of V and ϕ̇ are
then computed as

V ′ = V + V̇∆t, (3.16)

ϕ̇′ = ϕ̇+ ϕ̈∆t, (3.17)

where ∆t is the time step length (typically set to 0.01 s). The value of ϕ is then
updated, using the equation

ϕ′ = ϕ+ ϕ̇′∆t, (3.18)

The cartesian components of the velocity are then obtained as

V ′x = V ′ cosϕ, (3.19)

V ′y = V ′ sinϕ. (3.20)

Finally, given V ′x and V ′y , the new positions X ′ and Y ′ can be computed as

X ′ = X + V ′x∆t, (3.21)

Y ′ = Y + V ′y∆t. (3.22)

In addition, if wheel encoders are used, both GPRSim and ARSim also keep
track of the rotation of each wheel, for possible use in odometry (if available).

3.2.7 Robotic brain

While the physical components of a robot, such as its sensors and motors, of-
ten remain unchanged between simulations, the robotic brain must, of course,
be adapted to the task at hand. Robotic brains can be implemented in many
different ways.

In behavior-based robotics (BBR) the brain of a robot is built from a reper-
toire (i.e. a set) of basic behaviors, as well as a decision-making procedure,
selecting which behavior(s) to activate at any given time. In the General-
purpose robotic brain structure (GPRBS), developed in the author’s research
group, the robotic brain is built from a set of brain processes, some of which

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

42 CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS

are motor behaviors (that make use of the robot’s motors) and some of which
are cognitive processes, i.e. processes that do not make use of any motors. In
addition, GPRBS features a decision-making system based on the concept of
utility. One of the main properties of GPRBS is that this structure allows sev-
eral processes to run in parallel, making it possible to build complex robotic
brains. In fact, the specific aim of the development of GPRBS is to move be-
yond the often very simple robotic brains defined within standard BBR.

In GPRBS, all brain processes are specified in a standardized format, which
simplifies the development of new brain processes, since many parts of an
already existent process often can be used when writing a new process. How-
ever, at the same time, GPRBS (as implemented in GPRSim) is a bit complex
to use, especially since it is intended for use in research, rather than as an edu-
cational tool. Thus, in this course, ARSim will be used instead. This simulator
allows the user to write simple brain processes (as well as a basic decision-
making system) in any desired format (i.e. without using GPRBS). Methods
for writing brain processes will be described further in a later chapter.

3.3 Brief introduction to ARSim

The simplest way to acquaint oneself with ARSim is to run and analyze the test
program distributed with the program. In order to do so, start Matlab, move
to the right directory and write

>> TestRunRobot

and press return. The robot appears in a quadratic arena with four walls and
two obstacles, as shown in Fig. 3.6. The robot is shown as a circle, and its di-
rection of motion is indicated by a thin line. The IR sensors (of which there are
two in the default simulation) are shown as smaller circles. The rays used for
determining the sensor readings (three per sensor, per default) are shown as
lines emanating from the sensors. In the default simulation, the robot executes
1,000 time steps of length 0.01 s, unless it is interrupted by a collision with an
obstacle or a wall.

The flow of the simulation basically follows the structure given in Fig. 3.1.
The first lines of code in the TestRunRobot.m file are devoted to adding the
various ARSim function libraries to Matlab’s search path. The arena objects are
then created and added to the arena. Next, the brain of the robot is created (by
a call to CreateBrain), and the setup is completed by creating the sensors
and motors, and adding them to the robot.

Before the actual simulation starts, the robot’s position, heading, velocity,
and angular speed are set, and the plot of the arena (including the robot) is
created. Optionally, a variable motionResults, storing information about

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 43

Figure 3.6: A typical screenshot from an ARSim simulation. The black lines emanating from
the two IR proximity sensors of the robot are the rays used for determining sensor readings.

the robot’s motion, can be created.
ARSim then executes the actual simulation. Each time step begins with the

sensors being read. First, the readings of all ray-based sensors (a category in
which only IR sensors have been implemented in ARSim, so far) are obtained.
Next, the odometer and compass readings are obtained (provided, of course,
that the robot is equipped with those sensors. Next, the robotic brain processes
the sensory information (by executing the BrainStep function), producing
motor signals, which are used by the MoveRobot function. Finally, a collision
check is carried out.

In normal usage, only a few of ARSim’s functions need be modified, namely
CreateBrain, in which the parameters of the brain are set, BrainStep,
which determines the processing carried out by the robotic brain, and, of course,
the main file (i.e. TestRunRobot in the default simulation), where the setup
of the arena and the robot are carried out. Normally, no other Matlab func-
tions should be modified unless, for example, one wants to modify the plot
procedure.

Note that, by default, the rays involved in the computation of the IR sensor
readings are not plotted. In order to plot the sensor rays, one must set the pa-
rameter ShowSensorRays to true. If the robot is equipped with an odome-
ter, one can plot also the position and heading estimated by the odometer, by
setting the parameter ShowOdometricGhost to true. A brief description of
the Matlab functions contained in ARSim is given in Appendix A.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

44 CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

Chapter 4
Animal behavior

The behavior-based approach to robotics is strongly influenced by animal be-
havior. Before studying robotics, it is therefore appropriate to learn some of
the basics of this topic. Of course, animal behavior is a vast topic, and in this
chapter we shall only study a few examples.

Two important examples are decision-making, which will be introduced
briefly in Subsect. 4.4.2 below, and navigation, which is considered in Sub-
sect. 4.4.4.

4.1 Introduction and motivation

Animal behavior is important as a source of inspiration for all work involv-
ing autonomous robots. Animals are able to function more or less perfectly
in their environment, and to adapt to changes in it. Models of animal behav-
ior, both low-level models involving individual neurons, and high-level phe-
nomenological models, can serve as an inspiration for the development of the
corresponding behavior in robots. Furthermore, animals are generally experts
in allocating time in an optimal or near-optimal fashion to the many activities
(such as eating, sleeping, drinking, foraging etc.) that they must carry out in
various circumstances, and lessons concerning behavior selection in animals
can give important clues to the solution of similar problems in robotics.

It should be noted that, in the behavior-based approach to robotics (intro-
duced in detail in Chapter 5) one uses a more generous definition of intelligent
behavior than in classical artificial intelligence, which was strongly centered
on high-level behavior (e.g. reasoning about abstract things) in humans. By
contrast, in behavior-based robotics, simple behaviors in animals, such as re-
flexes and gradient-following (taxis), play a very important role, as will be
seen during this course.

45

46 CHAPTER 4. ANIMAL BEHAVIOR

4.2 Bottom-up approaches vs. top-down approaches

As is the case with many different topics in science, animal behavior can be
studied using either a bottom-up approach or a top-down approach. The
bottom-up approach can, in principle, lead to a more complete and detailed
understanding of the objects or organisms under study. However, in suffi-
ciently complex systems, the bottom-up approach may fail to give important
insights. For example, when using a computer, it is not necessary to know ex-
actly how the computer manipulates and stores information down to the level
of individual electrons. Even without such detailed knowledge, it is certainly
possible to use the computer, if only one has information regarding how to
program it.

Similarly, in animal behavior, even very simple, top-down models can lead
to a good understanding of seemingly complex behavior, as will be shown
below in the example of the orientation of bacteria.

On the other hand, a bottom-up study (on the level of individual neurons)
can reveal many important aspects of relatively simple animals, such as e.g.
the much-studied worm C. Elegans or the sea-slug Aplysia. The neural level
is relevant also in the field of autonomous robotics, where simple behaviors
are often implemented using neural network architectures. However, in such
cases, the networks are most often used as black-box models (obtained, for
example, by means of artificial evolution).

4.3 Nervous systems of animals

In essence, the brain of vertebrates consists of three structures namely, the fore-
brain, the midbrain, and the hindbrain. The central nervous system (CNS)
consists of the brain and the spinal cord. In addition to the CNS, there is the
peripheral nervous system, which consists of sensory neurons that carry in-
formation to the CNS and motor neurons that carry motor signals from the
CNS to muscles and glands (see below). The peripheral nervous system can
be sub-divided into the somatic nervous system, that deals with the external
environment (through sensors and muscles) and the autonomic nervous sys-
tem which provides the control of internal organs such as the heart and lungs.
The autonomic nervous system is generally associated with involuntary ac-
tions, such heart beat and breathing.

It is interesting to note that the embryological development of different ver-
tebrates is quite similar: During development, a neural tube is differentiated
into a brain and a spinal cord.

Note that the presence of a nervous system is not a prerequisite for all forms
of intelligent behavior: Even single-celled organisms (which, clearly, cannot
contain a CNS: Neurons are cells), are able to exhibit rudimentary intelligent

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 4. ANIMAL BEHAVIOR 47

behavior. An example involving bacteria will be given below.
In addition to the nervous system, there is a parallel system for feedback

in the body of animals, namely the endocrine system. The glands of the en-
docrine system release hormones (into the blood stream) that influence body
and behavior. For example, elevated levels of the hormone angiotensin (whose
source is the kidney) lead to a feeling of thirst, whereas adrenaline is involved
in fight-or-flight reactions (fear, anxiety, aggression). Hormone release by the
endocrine system is controlled either directly by the brain or by (the levels of)
other hormones.

Emotions such as fear, and the resulting survival-related reactions, such as
fleeing from a predator are, of course, very important for the survival of ani-
mals and it is therefore perhaps not surprising that robotics researchers have
begun considering artificial emotions in robots. Furthermore, the use of arti-
ficial hormones in the modulation of behavior and for behavior selection in
autonomous robots has been studied as well.

4.4 Ethology

Historically, different approaches to animal behavior were considered in Eu-
rope and the USA: European scientists, such as the winners of the 1972 Nobel
prize for medicine or physiology, Lorenz, Tinbergen, and von Frisch, generally
were concerned with the study of the behavior of animals in their natural en-
vironment. Indeed, the term ethology can be defined as the study of animals in
their natural environment. By contrast, American scientists working with animal
behavior generally performed experiments in controlled environments (e.g. a
laboratory). This field of research is termed comparative psychology.

Both approaches have advantages and disadvantages: The controlled ex-
periments carried out within comparative psychology allow more rigor than
the observational activities of ethologists, but the behaviors considered in such
experiments may, on the other hand, differ strongly from the behaviors exhib-
ited by animals in their natural environment.

However, in both approaches, phenomenological models are used, i.e. mod-
els which can describe (and make predictions) concerning, for example, a cer-
tain behavior, without modelling the detailed neural activities responsible for
the behavior. Indeed, many ethological models introduce purely artificial con-
cepts (such as action-specific energy in Lorenz’ model for animal motivation),
which, nevertheless, may offer insight into the workings of a behavior.

On the following pages, the major classes of animal behavior will be intro-
duced and described.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

48 CHAPTER 4. ANIMAL BEHAVIOR

4.4.1 Reflexes

Reflexes, the simplest forms of behavior, are involuntary reactions to exter-
nal stimuli. An example is the withdrawal reflex, which is present even in
very simple animals (and, of course, in humans as well). However, even re-
flexes show a certain degree of modulation. For example, some reflexes exhibit
warm-up, meaning that they do not reach their maximum intensity instanta-
neously (an example is the scratch reflex in dogs). Also, reflexes may exhibit
fatigue, by which is meant a reduced, and ultimately disappearing, intensity
even if the stimulus remains unchanged. Two obvious reasons for fatigue may
be muscular or sensory exhaustion, i.e. either an inability to move or an inabil-
ity to sense. However, these explanations are often wrong, since the animal
may be perfectly capable of carrying out other actions, involving both muscles
and sensors, even though it fails to show the particular reflex response under
study. An alternative explanation concerns neural exhaustion, i.e. an inability
of the nervous system to transmit signals (possibly as a result of neurotrans-
mitter depletion). An example1 is the behavior of Sarcophagus (don’t ask - you
don’t want to know) larvae. These animals generally move away from light.
However, if placed in a tunnel, illuminated at the entrance, and with a dead
end (no pun intended), they move to the end of the tunnel, turn around, and
move towards the light, out of the tunnel. This is interesting, since these larvae
will (if not constrained) always move away from light. However, this is neither
a case of muscular exhaustion nor sensory exhaustion. Instead, the larvae have
simply exhausted their neural circuits responsible for the turning behavior.

4.4.2 Kineses and taxes

Another form of elementary behavior is orientation of motion, either towards
an object, substance, or other stimulus, or away from it. In taxis, the animal
follows a gradient in a stimulus such as a chemical (chemotaxis) or a light
source (phototaxis). Typical examples are pheromone trail following in (some)
ants, an example of chemotaxis, and the motion towards a light source by fly
maggots. It is easy to understand how such phototaxis occurs: the maggots
compare the light intensity on each side of their bodies, and can thus estimate
the light gradient. Motion towards a higher concentration (of food, for exam-
ple), is exhibited even by very simple organisms, such as bacteria. One may
be tempted to use the same explanation, i.e. comparison of concentrations on
different sides of the body, for this case as well. However, bacteria are simply
too small for the gradient (across their minuscule bodies) to be measurable. In
the case of the common E. Coli bacterium, concentration differences as small
as one part in 10,000 would have to be detectable in order for the organism to

1See Essentials of animal behavior, by P.J.B. Slater.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 4. ANIMAL BEHAVIOR 49

follow the gradient in the same way as the fly maggots do. Interestingly, E. Coli
bacteria are nevertheless able to move towards, and accumulate in, regions of
high food concentration, an ability which is exploited by another predatory
bacterium, M. Xanthus, which secretes a substance that attracts E. Coli in what
Shi and Zusman2 has called “fatal attraction”. The fact that the M. Xanthus
are able to feed on E. Coli is made all the more interesting by the fact that the
latter move around 200 times faster than the former. Now two questions arise:
How do the E. Coli find regions of higher food concentration, and how do the
M. Xanthus catch them?

Case study: Behavior selection in E. Coli

Interestingly, a very simple model can account for the ability of E. Coli to
move towards regions of higher concentration. Essentially, the E. Coli bac-
teria have two behaviors, straight-line movement, and random-walk tumbling. It
can be shown experimentally that, at any given absolute concentration of an
attractant substance, the bacteria generally exhibit the tumbling behavior, at
least after some time. However, if the bacteria are momentarily placed in a
region of higher concentration, they begin moving in straight lines. Now, this
cannot be due to normal gradient following, since there is no (spatial) gradi-
ent. However, there is a temporal gradient, i.e. a difference in concentration
over time, and this provides the explanation: While unable to detect a spa-
tial gradient, the E. Coli bacteria are equipped with a rudimentary short-term
memory, allowing them to detect a temporal gradient. The behavior of the
E. Coli is a simple example of chemotaxis. It is because of its slow motion that
the M. Xanthus bacterium is able to catch the E. Coli: By releasing an attractant
and staying in the same area, the M. Xanthus is able to lure the E. Coli to the
region, and to keep them tumbling there, ending up as food for the M. Xanthus
- indeed a fatal attraction.

A simple mathematical model of bacterial chemotaxis can now be formu-
lated. Consider a bacterium faced with the choice of activating its straight-line
movement behavior (hereafter: B1) or its tumbling behavior (hereafter: B2),
and introduce a variable U such that B1 is activated if U > T (where T is the
threshold), and B2 otherwise. Let X be the value of the stimulus (i.e. the con-
centration of the attractant). Consider now a leaky integrator, given by the
equation

dV (t)

dt
+ aV (t) = bX(t). (4.1)

Now, consider the difference U(t) = X(t) − V (t), and set T = 0. In case the
bacterium experiences an increase X(t) in the concentration of the attracant,
U(t) becomes positive, thus activating B1. If X remains constant, U(t) slowly

2See Shi, W. and Zusman, D.R. Fatal attraction, Nature 366, pp. 414-415 (1993).

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

50 CHAPTER 4. ANIMAL BEHAVIOR

1 2 3 4 5
time

-0.2

0

0.2

0.4

X

1 2 3 4 5
time

-0.2

0

0.2

0.4

U

Figure 4.1: An illustration of the switch between straight-line swimming and tumbling in E.
Coli bacteria, based on a model with a single leaky integrator given in Eq. (4.1). The left panel
shows the variation of the attractant concentration X(t), and the right panel shows U(t). The
straight-line swimming behavior (B1) is active between t = 1 and t = 3.

falls towards zero (and eventually becomes negative, if b > a). However, if
there is a decrease in X , i.e. if the bacterium begins to leave the region of high
attractant concentration, U(t) becomes negative, and B2 is activated, keeping
the bacterium approximately stationary. Thus, the chemotaxis of E. Coli can be
modelled with a single leaky integrator.

Finally, note the importance of taxes in simple behaviors for autonomous
robots. For example, it is easy (using, for example, two IR sensors) to equip a
robot with the ability to follow a light gradient. Thus, for example, if a light
source is placed next to, say, a battery charging station, the robot may achieve
long-term autonomy, by activating a phototactic behavior whenever the bat-
tery level drops below a certain threshold. Problems involving such behavior
selection in autonomous robots will be studied further in later chapters in con-
nection with the topic of utility. The simple chemotaxis of the E. Coli can be
considered as a case of utility-based behavior selection, in which one behavior,
B2, has a fixed utility T , and the utility of the other, B1, is given by U(t).

Kinesis is an even simpler concept, in which the level of activity (e.g. move-
ment) of an organism depends on the level of some stimulus, but is undirected.
An example is the behavior of wood lice: If the ambient humidity is high (a
condition favored by wood lice), they typically move very little. If the humid-
ity drops, they will increase their rate of movement.

4.4.3 Fixed action patterns

The concept of fixed action patterns (FAPs) was introduced to describe more
complex behaviors that are extended over time (beyond the temporal exten-
sion of the stimulus) and may involve a sequence of several actions. It should
be noted, however, that the term FAP is used less frequently today, since it has
been observed that several aspects of such behaviors are not at all fixed. Some

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 4. ANIMAL BEHAVIOR 51

Figure 4.2: The motion of simulated E. Coli bacteria based on the behavior switch defined
in the main text. 100 bacteria were simulated, and the parameters a and b were both equal to
1. The attractant had a gaussian distribution, with its peak at the center of the image. The
threshold was set to 0. The left panel shows the initial distribution of bacteria, and the right
panel shows the distribution after 10 seconds of simulation, using a time step of 0.01.

behaviors, such as courtship behaviors are, however, quite stereotyped, since
they are required to be strongly indicative of the species in question.

An example of an FAP is the egg-retrieving behavior of geese, which is
carried out to completion (i.e. the goose moves its beak all the way towards its
chest) even if the egg is removed.

Another example is the completely stereotyped attack behavior of the pray-
ing mantis (an insect). Once started, the behavior is always carried out to com-
pletion regardless of the feedback from the environment (in the case of the
praying mantis, the attack occurs with terrifying swiftness, making it essen-
tially impossible for the animal to modulate its actions as a result of sensory
feedback).

In addition to FAPs, another concept which has also fallen out of fashion,
is the innate releasing mechanism (IRM). An IRM was considered a built-in
mechanism, characteristic of the species in question, inside the animal which
caused it to perform some action based on a few salient features of a stimulus.
An example of such a sign stimulus is the red belly of male stickleback fish in
breeding condition. When competing for a female, the male stickleback must
identify and chase away other males. It has been shown in experiments in-
volving the presentation of various crude models of fish to a male stickleback,
that the detection of the red color of the belly of other males causes the fish
to assume an aggressive posture (rather than, say, the detailed shape of the
model, which seems to be more or less irrelevant). Note that several aspects

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

52 CHAPTER 4. ANIMAL BEHAVIOR

of IRMs, e.g. the question of whether they really are inborn mechanisms, have
been called into question.

4.4.4 Complex behaviors

As indicated above, many action sequences that were originally described as
FAPs have been found to have a much more complex dynamics than origi-
nally thought. Furthermore, many behaviors, such as prey tracking by various
mammals, are highly adaptive or involve many different aspects (see the case
study below), and can hardly be called FAPs.

Animals generally do not simply react to the immediate stimuli available
from the environment, but maintain also an internal state, which together with
the external (sensory) stimuli determine which action to take. Behaviors which
depend on an internal state are said to be motivated, and the study of animal
motivation is an important part of ethology. In early models of motivation, the
concept of drive was central. A simple model of motivation, based on drives,
is the so called Lorenz’ psychohydraulic model, which will not be studied in
the detail here, however. While Lorenz’ model is simple, intuitive, and ped-
agogical, alas it does not fit observations of animal behavior very well. In
the modern view of motivation, a given internal state is maintained through
a combination of several regulatory mechanisms, and rather than postulating
the concept of drives for behaviors, the tendency to express a given behavior
is considered as a combination of several factors, both internal and external.
The physiological state of the animal (e.g. its temperature, amount of water
in the body, amount of different nutrients etc.) can be represented as a point
in a multi-dimensional physiological space. In this space, lethal boundaries
can be introduced, i.e. levels which the particular variable (for example, body
temperature) may no exceed or fall below.

The motivational state of the animal is, in this view, generated by the com-
bination of the physiological state and the perceptual state (i.e. the signals
obtained through the sensory organs of the animal), and can be represented as
a point in a motivational space.

As an example of a complex animal behavior, we shall end this chapter
with a discussion of desert ant navigation.

Case study: Desert ant navigation

As mentioned above, many species of ants use pheromone trails during navi-
gation. However, for desert ants, such as Cataglyphis Fortis, pheromones would
not be very useful, due to the rapid evaporation in the desert heat. However,
when searching for food, Cataglyphis is nevertheless capable of navigating over
very large distances (many thousands of body lengths), and then to return to
(and locate) the next on an essentially straight line. Locating the nest is no

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 4. ANIMAL BEHAVIOR 53

Figure 4.3: A schematic illustration of a typical Cataglyphis trajectory. On the outbound
journey, away from the nest (shown as a filled disc) the ant moves on a rather irregular path.
However, when returning, the ant follows a more or less straight trajectory (shown as a thick
line), following the vector obtained by path integration.

small feat, keeping in mind that the entrance to the nest is a small hole in the
ground.

How does Cataglyphis achieve such accurate navigation? This issue has
been studied meticulously by Wehner and his colleagues and students3. Their
experiments have shown that Cataglyphis has the capability of computing dis-
tance travelled and also to combine the position information thus obtained
with heading information obtained using an ingenious form of compass, based
on the pattern of light polarization over the sky. Combining the odometric in-
formation with the compass information, Cataglyphis is able to carry out path
integration, i.e. to determine, at any time, the direction vector (from the nest to
its current position), regardless of any twists and turns during the outbound
section of its movement. Once a food item has been found, the ant will use the
stored direction vector in order to return to the nest on an almost straight line.

3See e.g. Wehner, R. Desert ant navigation: how miniature brains solve complex tasks, J Comp
Physiol, 189, pp. 579-588, 2003.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

54 CHAPTER 4. ANIMAL BEHAVIOR

It should be noted that the light polarization patterns varies with the move-
ment of the sun in the sky. Thus, in order to use its compass over long peri-
ods of time, the ant also needs an ephemeris function, i.e. a function that de-
scribes the position of the sun during the day. Experiments have shown that
Cataglyphis indeed has such a function.

Even with the path integration, finding the exact spot of the nest is quite
difficult: As in the case of robotics, the odometric information and the compass
angle have limited accuracy. However, the tiny brain of Cataglyphis (weighing
in at around 0.1 mg, in a body weighing around 10 mg), is equipped with
yet another amazing skill, namely pattern matching: Basically, when leaving
its nest, Cataglyphis takes (and stores) a visual snapshot (using its eyes) of the
scenery around the nest. Then, as the ant approaches the nest (as determined
by the vector obtained from path integration), the ant will match its current
view to the stored snapshot, and thus find the nest.

It is interesting to note the similarities between robot navigation (which
will be described in detail in a later chapter) and Cataglyphis navigation: In
both cases, the agent (robot or ant) combines path integration with an indepen-
dent calibration method based on landmark recognition in order to maintain
accurate estimates of its pose.

In fact, the description of Cataglyphis navigation above is greatly simplified.
For example, the interplay between path integration and landmark detection
is quite a complex case of decision-making. Furthermore, recent research4 has
shown that, in the vicinity of the nest, Cataglyphis uses not only visual but
also olfactory landmarks (that is, landmarks based on odour). This illustrates
another important principle, namely that of redundancy. If one sensory modal-
ity, or a procedure (such as pattern matching) derived from it, fails, the agent
(robot or ant) should be able to use a different sensory modality to achieve its
objective.

4See Steck, K. et al. Smells like home: Desert ants, Cataglyphis fortis, use olfactory landmarks to
pinpoint the nest, Frontiers in Zoology 6, 2009.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

Chapter 5
Approaches to machine intelligence

The quest to generate intelligent machines has now (2011) been underway for
about a half century. While much progress has been made during this period
of time, the intelligence of most mobile robots in use today reaches, at best,
the level of insects. Indeed, during the last twenty years, many of the efforts
in robotics research have been inspired by rather simple biological organisms,
with the aim of understanding and implementing basic, survival-related be-
haviors in robots, before proceeding with more advanced behaviors involv-
ing, for example, high-level reasoning. These efforts have been made mainly
within the paradigm of behavior-based robotics (BBR), an approach to ma-
chine intelligence which differs quite significantly from traditional artificial
intelligence (AI). However, researchers have not (yet) succeeded in generat-
ing truly intelligent machines using either BBR, AI or a combination thereof.

This chapter begins with a brief discussion of the paradigms introduced
above. Next, a more detailed introduction to BBR will be given. Finally, the
topic of generating basic robotic (motor) behaviors will be considered.

5.1 Classical artificial intelligence

The field of machine intelligence was founded in the mid 1950s, and is thus
a comparatively young scientific discipline. It was given the name artificial
intelligence (AI), as opposed to the natural intelligence displayed by certain
biological systems, particularly higher animals. The goal of AI was to generate
machines capable of displaying human–level intelligence. Such machines are
required to have the ability to reason, make plans for their future actions, and
also, of course, to carry out these actions.

However, as noted above, despite a half–century of activity in this area,
no machines displaying human-level intelligence are, as yet, available. True,
there are machines that display a limited amount of intelligent behavior, such

55

56 CHAPTER 5. APPROACHES TO MACHINE INTELLIGENCE

Sense

Plan

Act

Model
Avoid obstacles

Follow wall

Charge battery

Wander

Sensors

Actuators

Figure 5.1: A comparison of the information flow in classical AI (left panel) and in BBR
(right panel). For BBR, any number of behaviors may be involved, and the figure only shows
an example involving four behaviors.

as vacuum-cleaning and lawn-mowing robots, and even elevators, automatic
trains, TV sets and other electronic equipment. However, the intelligence of
these machines is very far from the human–level intelligence originally aimed
at by AI researchers. To put it mildly, the construction of artificial systems with
human–level intelligence has turned out to be difficult. Human–level intelli-
gence is, of course, extremely complex, and therefore hardly the best starting
point. The complex nature of human brains is difficult both to understand
and to implement, and one may say that the preoccupation with human–level
intelligence in AI research has probably been the most important obstacle to
progress.

In classical AI, the flow of information is as shown in the left panel of
Fig. 5.1. First, the sensors of the robot sense the environment. Next, a (usually
very complex) world model is built, and the robot reasons about the effects
of various actions within the framework of this world model, before finally de-
ciding upon an action, which is executed in the real world. Depending on the
complexity of the task at hand, the modelling and planning phases can be quite
time-consuming. Now, this procedure is very different from the distributed
form of computation found in the brains of biological organisms, and, above
all, it is generally very slow, strongly reducing its survival value. This is not
the way biological organisms function. As a good counterexample, consider
the evasive maneuvers displayed by noctuid moths, as they attempt to escape
from a pursuing predator (for instance, a bat). A possible way of achieving
evasive behavior would be to build a model of the world, considering many
different bat trajectories, and calculating the appropriate response. However,

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 5. APPROACHES TO MACHINE INTELLIGENCE 57

even if the brain of the moth were capable of such a feat (it is not), it would
most likely find itself eaten before deciding what to do. Instead, moths use a
much simpler procedure: Their evasive behavior is in fact based on only a few
neurons and an ingenious positioning of the ears on the body. This simple sys-
tem enables the moth to fly away from an approaching bat and, if it is unable
to shake off the pursuer, start to fly erratically (and finally dropping toward
the ground) to confuse the predator.

As one may infer from the left panel of Fig. 5.1, classical AI is strongly fo-
cused on high-level reasoning, i.e. an advanced cognitive procedure displayed
in humans and, perhaps, some other mammals. Attempting to emulate such
complex biological systems has proven to be too complex as a starting-point
for research in robotics: Classical AI has had great success in many of the sub-
fields it has spawned (e.g. pattern recognition, path planning etc.), but has
made little progress toward the goal of generating truly intelligent machines,
capable of autonomous operation.

5.2 Behavior-based robotics

The concept of BBR was introduced in the mid 1980s, and was championed by
Rodney Brooks1 and others. Nowadays, the behavior-based approach is used
by researchers worldwide, and it is often strongly influenced by ethology (see
Chapter 4).

BBR approaches intelligence in a way that is very different from the classi-
cal AI approach, as can be seen in Fig. 5.1. BBR, illustrated in the right panel
of Fig. 5.1 is an alternative to classical AI, in which intelligent behavior is built
from a set of basic behaviors. This set is known as the behavioral repertoire.
Many behaviors may be running simultaneously in a given robotic brain, giv-
ing suggestions concerning which actions the robot ought to take. An attempt
should be made to define the concepts of behaviors and actions, since they are
used somewhat differently by different authors. Here, a behavior will be de-
fined simply as a sequence (possibly including feedback loops) of actions per-
formed in order to achieve some goal. Thus, for example, an obstacle avoid-
ance behavior may consist of the actions of stopping, turning, and starting to
move again in a different direction.

The construction of a robotic brain (in BBR) can be considered a two-stage
process: First the individual behaviors must be generated. Next, a system for
selecting which behavior(s) to use in any given situation must be constructed
as well: In any robot intended for complex applications, the behavior selec-
tion system is just as important as the individual behaviors themselves. Be-

1See e.g. Brooks, R. A Robust Layered Control System for a Mobile Robot, IEEE Journal of
Robotics and Automation, RA–2, No. 1, pp. 14–23, 1986.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

58 CHAPTER 5. APPROACHES TO MACHINE INTELLIGENCE

havior selection or, more generally, decision-making will be considered in a
later chapter.

The example of the moth above shows that intelligent behavior does not
(always) require reasoning, and in BBR one generally uses a more generous
definition of intelligent behavior than that implicity used in AI. Thus, in BBR,
one may define intelligent behavior as the ability to survive, and to strive to reach
other goals, in an unstructured environment. This definition is more in tune with
the fact that most biological organisms are capable of highly intelligent be-
havior in the environment where they normally live, even though they may
fail quite badly in novel environments (as illustrated by the failure of, for
example, a fly caught in front of a window). An unstructured environment
changes rapidly and unexpectedly, so that it is impossible to rely completely on
static maps: Even though such maps are highly relevant during, say, naviga-
tion, they must also be complemented with appropriate behaviors for obstacle
avoidance and other tasks.

The BBR approach has been criticized for its inability to generate solutions
to anything other than simple toy problems. In BBR, one commonly ties action
directly to sensing; in other words, not much (cognitive) processing occurs.
Furthermore, BBR is a rather loosely defined paradigm, in which many dif-
ferent representations of behaviors and behavior selection systems have been
developed. The absence of a clearly defined, universal representation of be-
haviors and behavior selection makes it difficult, say, to combine (or compare)
results obtained by different authors and to transfer a robotic brain (or a part
thereof) from one robotic platform to another.

For these (and other) reasons, the Adaptive systems research group at Chal-
mers has, over the last few years, developed the General-purpose robotic brain
structure (GPRBS), which is also implemented in GPRSim, with the specific
aim of applying the strong sides of BBR (e.g. the connection to biological sys-
tems, allowing the development of robust, survival-related behaviors) as well
as the strong sides of classical AI (for implementing high-level cognitive pro-
cesses). Furthermore, GRPBS implements a standardized method for decision-
making. This structure will not be described further here, however. Instead,
the topic of generating simple behaviors will be considered.

5.3 Generating behaviors

As indicated above, a robot intended for operation in the real world should
first be equipped with the most fundamental of all behaviors, namely those
that deal with survival. In animals, survival obviously takes precedence over
any other activity: Whatever an animal is doing, it will suspend that activity if
its life is threatened. What does survival involve in the case of a robot? In order
to function, a robot must, of course, be structurally intact, and have a non-zero

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 5. APPROACHES TO MACHINE INTELLIGENCE 59

energy level in its batteries. Thus, examples of survival-related behaviors are
Collision avoidance and Homing (to find, say, a battery charging station). How-
ever, even more important, particularly for large robots, is to avoid harming
people. Thus, the purpose of collision avoidance is often to protect people in the
surroundings of the robot, rather than protecting the robot itself. Indeed, one
could imagine a situation where a robot would be required to sacrifice itself
in defense of a human (this is what robots used by bomb squads do already
today). These ideas have been summarized beautifully by the great science
fiction author Isaac Asimov in his three laws of robotics, which are stated as
follows

First law: A robot may not injure a human being, or, through inaction,
allow a human being to come to harm.

Second law: A robot must obey orders given it by human beings, except
where such orders would conflict with the first law.

Third law: A robot must protect its own existence as long as such protec-
tion does not conflict this the first or second law

While Asimov’s laws certainly can serve as an inspiration for researchers work-
ing on autonomous robots, a full implementation of those laws would be a
daunting task, requiring reasoning and deliberation by the robot on a level
way beyond the reach of the current state-of-the-art. However, in a basic sense,
BBR and GPRBS clearly deal with behaviors related to Asimov’s laws.

5.3.1 Basic motor behaviors in ARSim

Writing reliable behaviors for autonomous robots is more difficult than it might
seem at a first glance, particularly for robots operating in realistic (i.e. noisy
and unpredictable) environments. In GPRBS, as has been mentioned before,
robotic brains consist of several brain processes which together define the
overall behavior of the robot. However, there is no well-defined method for
deciding the exact composition of a brain process: For example, in some appli-
cations, navigation and obstacle avoidance may be parts of the same (motor)
behavior whereas, in other applications, navigation and obstacle avoidance
may be separate behaviors, as illustrated beautifully by the phenomenologi-
cal model for the chemotaxis of E. Coli in Chapter 4, an example that also il-
lustrates an important principle, namely that of keeping individual behaviors
simple, if possible.

A common approach to writing behaviors is to implement them in the form
of a sequence of IF-THEN-ELSE rules. Such a sequence can also be interpreted
as a finite-state machine (FSM), i.e. a structure consisting of a finite number of
states and (for each state) a set of transition conditions. In each state, the robot

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

60 CHAPTER 5. APPROACHES TO MACHINE INTELLIGENCE

can carry out some action (or a sequence of actions), for example setting its
motor signals (left and right, for a differentially steered robot) to particular
values.

In ARSim, the program flow essentially follows the diagram shown in
Fig. 3.1. Thus, in each time step of the simulation, (1) the robot probes the
state of the enviroment using its sensors. With the updated sensor readings,
the robot then (2) selects an action and (3) generates motor signals (one for each
motor), which are then sent to the motors. Next, (4) the position and velocity
are updated, as well as (5) the arena (if needed). Finally, (6) the termination
criteria (for example, collisions) are considered.

Note that, as mentioned in Chapter 3, for such a simulation to be realistic
(i.e. implementable in a real robot), the time required, in a corresponding real
robot, for the execution of steps (1) - (3) must be shorter than the simulation
time step. By default, ARSim uses an updating frequency of 100 Hz (i.e. a time
step of 0.01 s), which is attainable by the simple IR sensors used in the default
setup. Furthermore, in the simple behaviors considered here, the deliberations
in step (2) usually amount to checking a few if-then-else-clauses, a proce-
dure that a modern processor completes within a few microseconds.

The writing of basic behaviors for autonomous robots will be exemplified
(1) in the form of a wandering behavior, which allows a robot to explore its
surroundings, provided that no obstacles are present, and (2) using a simple
navigation behavior which makes the robot move a given distance (in a straight
line), using odometry. Other, more complex behaviors, will be considered in
the home problems.

5.3.2 Wandering

The task of robot navigation, in a general sense, is a very complex one, since
it normally requires that the robot should know its position at all times which,
in turn, requires accurate positioning (or localization), a procedure which will
be considered briefly in the next example. Simpler aspects of the motion of a
robot can be considered without the need to introduce localization. For exam-
ple wandering is an important behavior in, for instance, an exploration robot
or a guard robot that is required to cover an area as efficiently as possible.
In order to implement a specific behavior in ARSim, one must modify the
CreateBrain and BrainStep functions. For the wandering behavior, they
take the shape shown in code listings 5.1 and 5.2.

As can be seen in code listing 5.1, the CreateBrain function defines all the
relevant variables and parameters of the robotic brain. The parameter values
remain constant during the simulation, whereas the variables, of course, do
not. Even though the variables are given values in CreateBrain, those val-
ues are typically modified in the first state (initialization) of the behavior; see

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 5. APPROACHES TO MACHINE INTELLIGENCE 61

Code listing 5.1: The CreateBrain function for the wandering example.
1 function b = CreateBrain;
2

3 %% Variables
4 leftMotorSignal = 0;
5 rightMotorSignal = 0;
6 currentState = 0;
7

8 %% Parameters:
9 forwardMotorSignal = 0.5;

10 turnMotorSignal = 0.7;
11 turnProbability = 0.01;
12 stopTurnProbability = 0.03;
13 leftTurnProbability = 0.50;
14

15

16 b = struct(’LeftMotorSignal’,leftMotorSignal,...
17 ’RightMotorSignal’,rightMotorSignal,...
18 ’CurrentState’,currentState,...
19 ’ForwardMotorSignal’,forwardMotorSignal,...
20 ’TurnMotorSignal’,turnMotorSignal,...
21 ’TurnProbability’,turnProbability,...
22 ’StopTurnProbability’,stopTurnProbability,...
23 ’LeftTurnProbability’,leftTurnProbability);

code listing 5.2. Note the capitalization used when defining a Matlab struct.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

62 CHAPTER 5. APPROACHES TO MACHINE INTELLIGENCE

Code listing 5.2: The BrainStep function for the wandering example.
1 function b = BrainStep(robot, time);
2

3 b = robot.Brain;
4

5 %%%%%%%%%%%%%%%% FSM: %%%%%%%%%%%%%%%%%%%%
6 if (b.CurrentState == 0) % Forward motion
7 b.LeftMotorSignal = b.ForwardMotorSignal;
8 b.RightMotorSignal = b.ForwardMotorSignal;
9 b.CurrentState = 1;

10 elseif (b.CurrentState == 1) % Time to turn?
11 r = rand;
12 if (r < b.TurnProbability)
13 s = rand;
14 if (s < b.LeftTurnProbability)
15 b.LeftMotorSignal = b.TurnMotorSignal;
16 b.RightMotorSignal = -b.TurnMotorSignal;
17 else
18 b.LeftMotorSignal = -b.TurnMotorSignal;
19 b.RightMotorSignal = b.TurnMotorSignal;
20 end
21 b.CurrentState = 2;
22 end
23 elseif (b.CurrentState == 2) % Time to stop turning?
24 r = rand;
25 if (r < b.StopTurnProbability)
26 b.CurrentState = 0;
27 end
28 end

In this case, the BrainStep function is implemented as an FSM with three
states. In the first state (State 0), the motor signals are set to equal values,
making the robot move forward in an (almost) straight line, depending on
the level of actuator noise. The FSM then jumps to State 1. In this state, the
FSM checks whether it should begin turning. If yes, it decides (randomly) on a
turning direction, and then jumps to State 2. If no, the FSM will remain in State
1. Note that the BrainStep function is executed 100 times per second (with
the default time step of 0.01 s). In State 2, the FSM checks whether it should
stop turning. If yes, it returns to State 0.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 5. APPROACHES TO MACHINE INTELLIGENCE 63

Code listing 5.3: The CreateBrain function for the navigation example.
1 function b = CreateBrain;
2

3 %% Variables:
4

5 leftMotorSignal = 0;
6 rightMotorSignal = 0;
7 currentState = 0;
8 initialPositionX = 0; % Arbitrary value here - set in state 0.
9 initialPositionY = 0; % Arbitrary value here - set in state 0.

10

11 %% Parameters:
12 desiredMovementDistance = 1;
13 motorSignalConstant = 0.90;
14 atDestinationThreshold = 0.02;
15

16

17 b = struct(’LeftMotorSignal’,leftMotorSignal,...
18 ’RightMotorSignal’,rightMotorSignal,...
19 ’CurrentState’,currentState,...
20 ’InitialPositionX’,initialPositionX,...
21 ’InitialPositionY’,initialPositionY,...
22 ’DesiredMovementDistance’,desiredMovementDistance,...
23 ’MotorSignalConstant’,motorSignalConstant,...
24 ’AtDestinationThreshold’,atDestinationThreshold);

5.4 Navigation

Purposeful navigation normally requires estimates of position and heading. In
ARSim, the robot can be equipped with wheel encoders, from which odomet-
ric estimates of position and heading can be obtained. Note that the odometer
is calibrated upon initialization, i.e. the estimate is set equal to the true pose.
However, when the robot is moving, the odometric estimate will soon devi-
ate from the true pose. In ARSim, the odometric estimate (referred to as the
odometric ghost) can be seen by setting the variable ShowOdometricGhost to
true.

A simple example of navigation, in which a robot is required to move 1
m in its initial direction of heading, is given in code listings 5.3 and 5.4. As
in the previous example, the variables and parameters are introduced in the
CreateBrain function. The BrainStep function is again represented as an
FSM. In State 0, the initial position and heading are stored and the FSM then
jumps to State 1, in which the motor signal s (range [−1, 1]) is set as

s = a
D − d
D

, (5.1)

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

64 CHAPTER 5. APPROACHES TO MACHINE INTELLIGENCE

where a is a constant, D is the desired movement distnace (in this case, 1 m)
and d is the actual distance moved.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 5. APPROACHES TO MACHINE INTELLIGENCE 65

Code listing 5.4: The BrainStep function for the navigation example.
1 function b = BrainStep(robot, time);
2

3 b = robot.Brain;
4

5 if (b.CurrentState ˜= 0)
6 deltaX = robot.Odometer.EstimatedPosition(1) - b.InitialPositionX;
7 deltaY = robot.Odometer.EstimatedPosition(2) - b.InitialPositionY;
8 distanceTravelled = sqrt(deltaX*deltaX + deltaY*deltaY);
9 end

10

11 %%%%%%%%%%%%%%% FSM: %%%%%%%%%%%%%%%%%%%%
12 if (b.CurrentState == 0) % Initialization
13 b.InitialPositionX = robot.Odometer.EstimatedPosition(1);
14 b.InitialPositionY = robot.Odometer.EstimatedPosition(2);
15 b.CurrentState = 1;
16 elseif (b.CurrentState == 1) % Adaptive motion
17 motorSignal = b.MotorSignalConstant*(b.DesiredMovementDistance-...
18 distanceTravelled)/b.DesiredMovementDistance;
19 b.LeftMotorSignal = motorSignal;
20 b.RightMotorSignal = motorSignal;
21 if (abs(b.DesiredMovementDistance - distanceTravelled) < ...
22 b.AtDestinationThreshold*b.DesiredMovementDistance)
23 b.CurrentState = 2;
24 % ’At destination’ % Output for debugging
25 end
26 elseif (b.CurrentState == 2) % At destination
27 b.LeftMotorSignal = 0;
28 b.RightMotorSignal = 0;
29 end

The motor signal s is then applied to both wheels of the differentially steered
robot. As can be seen, the motor signals will gradually drop from a to (almost)
zero. However, when |D − d| drops below bD, where b � 1 is a constant, the
FSM jumps to State 2, in which the robot stops.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

66 CHAPTER 5. APPROACHES TO MACHINE INTELLIGENCE

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

Chapter 6
Exploration, navigation, and
localization

In the previous chapter, the concept of robotic behaviors was introduced and
exemplified by means of some basic motor behaviors. Albeit very simple, such
behaviors can be tailored to solve a variety of tasks such as, for example, wan-
dering, wall following and various forms of obstacle avoidance. However,
there are also clear limitations. In this chapter, some more advanced motor
behaviors will be studied. First, behaviors for exploration and navigation will
be considered. Both of these two types of behavior require accurate pose esti-
mates for the robot. It is assumed that the robot is equipped with a (cognitive)
Odometry brain process, providing continuous pose (and velocity) estimates.
As mentioned earlier, such estimates are subject to odometric drift, and there-
fore an independent method for localization (i.e. odometric recalibration) is
always required in realistic applications. Such a method will be studied in
the final section of this chapter. However, exploration and navigation are im-
portant problems in their own right and, in order to first concentrate on those
problems, it will thus (unrealistically) be assumed, in the first two sections
of the chapter, that the robot obtains perfect, noise-free pose estimates using
odometry only.

6.1 Exploration

Purposeful navigation requires some form of map of the robot’s environment.
In many cases, however, no map is available a priori. Instead, it is the robot’s
task to acquire the map, in a process known as simultaneous localization and
mapping (SLAM). In (autonomous) SLAM, a robot is released in an unknown
arena, and it is then supposed to move in such a way that, during its motion,
its long-range sensors (typically an LRF) covers every part of the arena, so that

67

68 CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION

the sensor readings can be used for generating a map. This is a rather diffi-
cult task since, during exploration and mapping, the robot must keep track
of its position using, for odometric recalibration, the (incomplete, but grow-
ing) map that it is currently generating. SLAM is an active research topic, for
which many different methods have been suggested. A currently popular ap-
proach is probabilistic robotics, in which the robot maintains a probability
density function from which its position is inferred. However, SLAM is be-
yond the scope of this text. Instead, the simpler, but still challenging, topic of
exploration given perfect positioning (as mentioned in the introduction to this
chapter) will be considered.

Exploration can be carried out for different reasons. In some applications,
such as lawn mowing, vacuum cleaning, clearing mine fields etc., the robot
must physically cover as much as possible of the floor or ground in its envi-
ronment. Thus, the robot must carry out area coverage. In some applications,
e.g. vacuum cleaning, it is often sufficient that the robot carries out a more or
less aimless wandering that, eventually, will make it cover the entire floor. In
other applications, such as mapping, it is unnecessary for the robot to physi-
cally visit every spot in the arena. Instead, what matters is that its long-range
sensor, typically an LRF (or a camera), is able to sense every place in the arena
at some point during the robot’s motion. The problem of exploring an arena
such that the long-range sensor(s) reach all points in the arena will here be
referred to as sensory area coverage.

Exploring an arena, without any prior knowledge regarding its structure,
is far from trivial. However, a motor behavior (in the GPRBS framework) for
sensory area coverage has recently (2009) been implemented1. This Exploration
behavior has been used both in the simulator GPRSim and in a real robot (as
a part of SLAM). In both cases, the robot is assumed to be equipped with an
LRF. The algorithm operates as follows: A node is placed at the current (esti-
mated) position of the robot. Next, the robot generates a set of nodes at a given
distance (D) from its current position (estimated using the Odometry process).
Before any nodes are placed, the robot used the LRF (with an opening (sweep)
angle α) to find feasible angular intervals for node placement, i.e. angular in-
tervals in which the distance to the nearest obstacle exceeds D + ∆, where ∆
is a parameter measuring the margin between a node and the nearest obsta-
cle behind the node. The exact details of the node placement procedure will
not be given here. Suffice it to say that, in order to be feasible, an angular in-
terval must have a width γ exceeding a lower limit γmin in order for a node
to be placed (at the center of the angular interval). Furthermore, if the width
of a feasible angular interval is sufficiently large, more than one node may be
placed in the interval. An illustration of feasible angular intervals and node

1See Wahde, M. and Sandberg, D. An algorithm for sensory area coverage by mobile robots oper-
ating in complex arenas, Proc. of AMiRE 2009, pp. 179-186, 2009.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 69

Figure 6.1: An illustration of the node placement method in the Exploration behavior. The
left panel shows the distances obtained over the 180 degree opening angle of the LRF (note that
individual rays are not shown). The inner semi-circle has a radius of D (the node placement
distance) whereas the radius of the outer semi-circle is D + ∆. The right panel shows the re-
sulting distribution of nodes. Note that one of the two feasible angular intervals is sufficiently
wide to allow two nodes to be placed.

placement is given in Fig. 6.1.
At this point, the reader may ask why nodes are placed at a distance D

from the current node, rather than as far away as possible (minus the margin
∆). The reason is that, in practical use, one cannot (as is done here) assume that
the odometry provides perfect pose estimates. Since the Exploration behavior
is normally used in connection with SLAM, for which accurate positioning is
crucial when building the map (a process involving alignment of consecutive
laser scans), one cannot move a very large distance between consecutive laser
snapshots. Thus, even though the typical range R of an LRF is around 4-10 m
or more, the distance D is typically only around 1 m.

An additional constraint on node placement regards the separation (con-
cerning distances, not angles) between nodes. A minimum distance of d (typ-
ically set to 0.75 m or so) is enforced. The requirement that nodes should be
separated by a distance of at least d makes the algorithm finite: At some point,
it will no longer be possible to place new nodes without violating this con-
straint. Thus, when all nodes have been processed (i.e. either having been vis-
ited or deemed unreachable, see below), and no further nodes can be added,
the exploration of the arena is complete.

Returning to the algorithm, note that the initial node, from which the robot
starts its exploration, is given the status completed (implying that this node has
been reached) and is referred to as the active node. All newly generated nodes
are given the status pending. The robot also generates paths to the pending

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

70 CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION

2

3

4

5

6

7

1

2

3

2

3

2

3

Figure 6.2: The early stages of a run using the exploration algorithm, showing a robot ex-
ploring a single rectangular room without a door. The arena contains a single, low obstacle,
which cannot be detected using the LRF (since it is mounted above the highest point of the
obstacle). In each panel, the target node is shown with two thick circles, pending nodes are
shown as a single thick circle, completed nodes as a filled disc, and unreachable nodes as a filled
square. Upper left panel: The robot, whose size is indicated by a thin open circle, starts at
node 1, generating three new pending nodes (2, 3, and 4). Upper right panel: Having reached
node 4, the robot sets the status of that node to completed, and then generates new pending
nodes. Lower left panel: Here, the robot has concluded (based on IR proximity readings) that
node 6 is unreachable, and it therefore selects the nearest pending node (5, in this case) based
on path distance, as the new target node. Lower right panel: Having reached node 5, due to
the minimum distance requirement (between nodes) the robot can only generate one new node
(7). It rotates to face that node, and then moves towards it etc.

nodes. For example, if the robot is located at node 1 and generates three pend-
ing nodes (2,3 and 4), the paths will be (1, 2), (1, 3) and (1, 4). The robot next
selects the nearest node, based on the path length as the target node. In many
cases (e.g. when more than one node can be placed), several nodes are at the
same (estimated) distance from the robot. In such cases, the robot (arbitrarily)

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 71

selects one of those nodes as the target node. For the paths just described, the
path length equals the cartesian distance between the nodes. If a path con-
tains more than two elements, however, the path length will differ from the
cartesian distance, unless all the nodes in the path lie along a straight line. The
path length is more relevant since, when executing the exploration algorithm
described here, the robot will generally follow the path, even though direct
movement between the active node and a target node is also possible under
certain circumstances; see below.

Next, the robot rotates to face the target node, and then proceeds towards
it; see the upper left panel of Fig. 6.2. During the motion, one of two things
can happen: Either (i) the robot reaches the target node or, (ii) using the output
from a Proximity detection brain process (assumed available), it concludes that
the target node cannot be reached along the current path. Note that, in order
for the Proximity detection brain process to be useful, the sensors it uses should
be mounted at a different (smaller) height compared to the LRF.

In case (i), illustrated in the upper right panel of Fig. 6.2, once the target
node has been reached, it is given the status completed and is then set as the
new active node. At this point, the paths to the remaining pending nodes are
updated. Continuing with the example above, if the robot moves to node 4,
the paths to the other pending nodes (2 and 3) will be updated to (4, 1, 2) and
(4, 1, 3). Furthermore, having reached node 4, the robot generates new pend-
ing nodes. Note that the robot need not be located exactly on node 4; instead,
a node is considered to be reached when the robot passes within a distance a
from it. The new nodes are added as described above. The minimum distance
requirement between added nodes (see above) is also enforced. Proceeding
with the example, the robot might, at this stage, add nodes 5 and 6, with the
paths (4, 5) and (4 ,6). Again, the robot selects the nearest node based on the
path length, rotates to face that node, and then starts moving towards it etc.
Note that the robot can (and will) visit completed nodes more than once. How-
ever, by the construction described above, only pending nodes can be target
nodes.

In case (ii), i.e. when the target node cannot be reached, the node is assigned
the status unreachable, and the robot instead selects another target node and
proceeds towards it, along the appropriate path. This situation is illustrated in
the lower left panel of Fig. 6.2: Here, using its Proximity detection brain process,
the robot concludes that it cannot reach node 6. It therefore marks this node
unreachable, sets it as the active node, and then sets the nearest pending node
as the new target, in this case node 5. One may wonder why case (ii) can oc-
cur, since the robot uses the LRF before assigning new nodes. The reason, of
course, is that the LRF (which is assumed to be two-dimensional) only scans
the arena at a given height, thus effectively only considering a horizontal slice
of the arena. A low obstacle may therefore be missed, until the robot comes
sufficiently close to it, so that the Proximity detection brain process can detect it.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

72 CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION

Figure 6.3: An illustration of a problem that might occur during exploration. Moving in one
particular direction (left panel) the robot is able to place and follow the nodes shown. However,
upon returning (right panel), the robot may conclude that it will be unable to pass the node
near the corner, due to the proximity detection triggered as the robot approaches the node, with
the wall right in front of it.

Note that unreachable nodes are exempt from the minimum distance require-
ment. This is so, since a given node may be unreachable from one direction but
perhaps reachable from some other direction. Thus, the exploration algorithm
is allowed to place new pending nodes arbitrarily close to unreachable nodes.

One should note that robust exploration of any arena is more difficult than
it might seem. An example of a problem that might occur is shown in Fig. 6.3.
Here, the robot passes quite near a corner on its outbound journey (left panel),
but no proximity detection is triggered. By contrast, upon returning (right
panel) a proximity detection is triggered which, in turn, may force the robot to
abandon its current path. In fact, the Exploration behavior contains a method
(which will not be described here) for avoiding such deadlocks. In the (very
rare) cases in which even the deadlock avoidance method fails, the robot sim-
ply stops, and reports its failure.

Because of the path following strategy described above, the robot may
sometimes take an unnecessarily long path from the active node to the tar-
get node. However, this does not happen so often since, in most cases, the
robot will proceed directly to a newly added node, for which the path length
is the same as the cartesian distance. However, when the robot cannot place
any more nodes (something that occurs, for example, when it reaches a cor-
ner), a distant node may become the target node. Therefore, in cases where the
path to the target node differs from the direct path, the robot rotates to face the
target node (provided that it is located within a distance L, where L should be
smaller than or equal to the range R of the LRF). Next, if the robot concludes
(based on its LRF readings) that it can reach the target node, it then proceeds
directly towards it, rather than following the path. However, also in this case,

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 73

Figure 6.4: Left panel: The robot in its initial position in an unexplored arena. Right panel:
The final result obtained after executing the Exploration behavior. The completed (visited)
nodes are shown as green dots, whereas the (single) unreachable node is shown as a red dot.
The final target node (the last node visited) is shown as a blue dot. In this case, the robot
achieved better than 99.5% sensory area coverage of the arena.

it is possible that a (low) obstacle prevents the robot from reaching its target,
in which case the robot instead switches to following the path as described
above.

The robot continues this cycle of node placement and movement between
nodes, until all nodes have been processed (i.e. either having been visited or
deemed unreachable), at which point the exploration of the arena is complete.
The Exploration behavior consists of an FSM with 17 states, which will not be

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

74 CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION

Figure 6.5: Three examples of grids that can be used in connection with grid-based naviga-
tion methods. In the left panel, the nodes are not equidistant, unlike the middle panel which
shows a regular lattice with equidistant nodes. The regular lattice can also be represented as
grid cells, as shown in the right panel. Note that the right and middle panels show equivalent
grids.

described in detail here. A performance example is shown in Fig. 6.4. The
left panel shows the robot at its starting point in a typical office arena. The
right panel shows the final result, i.e. the path generated by the robot. The
completed (visited) exploration nodes are shown as green dots, whereas the
unreachable nodes (only one in this case) are shown as red dots. The final
target node is shown as a blue dot. Note that the robot achieved a sensory area
coverage (at the height of its LRF) of more than 99.5% during exploration.

6.2 Navigation

In this section, it will again be assumed that the robot has access to accurate
estimates of its pose (from the Odometry brain process), and the question that
will be considered is: Given that the robot knows its pose and velocity, how
can it navigate between two arbitrary points in an arena? In the robotics liter-
ature, many methods for navigation have been presented, three of which will
be studied in detail in this section.

6.2.1 Grid-based navigation methods

In grid-based navigation methods, the robot’s environment must be covered
with an (artificial) grid, consisting of nodes (vertices) and edges connecting
the nodes. The grid may have any shape, as illustrated in the left panel of
Fig. 6.5, i.e. it need not be a rectangular lattice of the kind shown in the middle
panel. However, if the grid happens to be a rectangular lattice, it is often rep-
resented as shown in the right panel of the figure, where the nodes have been
replaced by cells, and the edges are not shown2. Furthermore, the edges must
be associated with a (non-negative) cost, which, in many cases is simply taken

2Note that in the cell representation in the right panel, the sides of each cell are not edges:
The edges connect the centers of the grid cells to each other, as shown in the middle panel.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 75

Figure 6.6: Left panel: An example of automatic grid generation. The walls of the arena are
shown as green thin lines. The black regions represent the forbidden parts of the arena, either
unreachable locations or positions near walls and other obstacles. The grid cell boundaries
are shown as thick yellow lines. Right panel: An example of a path between two points in
the arena. The basic path (connecting grid cells) was generated using Dijkstra’s algorithm
(see below). The final path, shown in the figure, was adjusted to include changes of directions
within grid cells, thus minimizing the length of the path. Note that all cells are convex, so that
the path segments within a cell can safely be generated as straight lines between consecutive
waypoints.

as the euclidean distance between the nodes. Thus, for example, in the grids
shown in the middle and right panels of Fig. 6.5, the cost of moving between
adjacent nodes would be equal to 1 (length unit), whereas, in the grid shown
in the left panel the cost would vary depending on which nodes are involved.

An interesting issue is the generation of a navigation grid, given a two-
dimensional map of an arena. This problem is far from trivial, especially in
complex arenas with many walls and other objects. Furthermore, the grid gen-
eration should take the robot’s size (with an additional margin) into account,
in order to avoid situations where the robot must pass very close to a wall or
some other object. The grid-based navigation methods described below gener-
ate paths between grid cells. On a regular grid with small, quadratic cells (as in
the examples below) it is sometimes sufficient to let the robot move on straight
lines between the cell centers. However, the generated path may then become
somewhat ragged. Furthermore, in more complex grids, where the cells are of
different size, following a straight line between cell centers may result in an
unnecessarily long path. Thus, in such cases, the robot must normally modify
its heading within a cell, in order to find the shortest path.

When generating a grid, one normally requires the grid cells to be convex,

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

76 CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION

1. Place the robot at the start node, which then becomes the current node.
Assign the status unvisited to all nodes.

2. Go through each of the cells ai that are (i) unvisited and (ii) directly reach-
able (via an edge) from the current node c. Such nodes are referred to as
neighbors of the current node. Compute the cost of going from ai to the
target node t, using the heuristic f(ai).

3. Select the node amin associated with the lowest cost, based on the cost
values computed in Step 2.

4. Set the status of the current node c as visited, and move to amin which then
becomes the current node.

5. Return to Step 2.

Figure 6.7: The best-first search algorithm.

so that all points on a straight line between any two points in the cell also are
part of the cell. One way of doing so is to generate a grid consisting of trian-
gular cells, which will all be convex. However, such grids may not be optimal:
The pointiness of the grid cells may force the robot to make many unnecessary
(and sharp) turns. An algorithm for constructing, from a map, a general grid
consisting of convex cells with four or more sides (i.e. non-triangular) exists
as well3. Fig. 6.6 shows an example of a grid generated with this algorithm.
Because of its complexity, the algorithm will not be considered in detail here.
Instead, in the examples below, we shall consider grids consisting of small
quadratic cells, and we will neglect changes of direction within grid cells.

Best-first search algorithm

In best-first search (BFS) algorithm the robot moves greedily towards the tar-
get, as described in Fig. 6.7. As can be seen, the BFS method chooses the next
node based on the (estimated) cost of going from that node n to the goal, which
is estimated using a heuristic function f(n). f(n) can be chosen in different
ways, the simplest being to use the euclidean distance between the node un-
der consideration and the target. However, in that case, the BFS method may,
in fact, get stuck. A more sophisticated heuristic function may, for example,
add a penalty for each obstacle encountered on a straight-line path from the
node under consideration to the target node.

The path can be generated by simply storing the list of visited nodes during

3See Wahde, M., Sandberg, D., and Wolff, K. Reliable long-term navigation in indoor environ-
ments, In: Topalov, A.V. (Ed.), Recent advances in Mobile Robots, InTech, 2011, pp. 261–286.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 77

Figure 6.8: Two examples of paths generated using the BFS algorithm. The cells (nodes)
that were checked during path generation are shown in light green, whereas the actual path is
shown in dark green and with a solid line. The yellow cell is the start node and the white cell
is the target node.

path generation. The BFS method is very efficient in the absence of obstacles
or when the obstacles are few, small, and far apart. An example of such a
path generated with BFS is shown in the left panel of Fig. 6.8. As can be seen,
the robot quickly moves from the start node to the target node. However,
if there are extended obstacles between the robot’s current position and the
target node, the BFS algorithm will not find the shortest path, as shown in the
right panel of Fig. 6.8. Because of its greedy approach to the target, the robot
will find itself in front of the obstacle, and must then make a rather long detour
to arrive at the target node.

Dijkstra’s algorithm

Like BFS, Dijkstra’s algorithm also relies on a grid in which the edges are as-
sociated with non-negative costs. Here, the cost will simply be taken as the
euclidean distance between nodes. Instead of focusing on the (estimated) cost
of going from a given node to the target note, Dijkstra’s algorithm considers
the distance between the start node and the node under consideration, as de-
scribed in Fig. 6.9. In Step 2, the distance from the start node s to any node ai is
computed using the (known) distance from the initial node to the current node
c and simply adding the distance between c and ai. This algorithm will check a
large number of nodes, in an expanding pattern from the start node, as shown
in Fig. 6.10. In order to determine the actual path to follow, whenever a new
node a is checked, a note is made regarding the predecessor node p, i.e. the

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

78 CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION

1. Place the robot at the start node s, which then becomes the current node.
Assign the distance value 0 to the start node, and infinity to all other
nodes (in practice, use a very large, finite value). Set the status of all
nodes to unvisited.

2. Go through all the unvisited, accessible (i.e. empty) neighbors ai of the
current node c, and compute their distance d from the start node s. If d is
smaller than the previously stored distance di (initially infinite, see Step
1), then (i) update the stored distance, i.e. set di = d and (ii) assign the
current node as the predecessor node of ai.

3. After checking all the neighbors of the current node, set its status to vis-
ited.

4. Select the node (among all the unvisited, accessible nodes in the grid)
with the smallest distance from the start node, and set it as the new cur-
rent node.

5. Return to Step 2, unless the target has been reached.

6. When the target has been reached, use the predecessor nodes to trace a
path from the target node to the start node. Finally, reverse the order of
the nodes to find the path from the start node to the target node.

Figure 6.9: Dijkstra’s algorithm.

node that was the current node when checking node a. When the target has
been found, the path connecting it to the initial node can be obtained by going
through the predecessor nodes backwards, from the target node to the initial
node.

Unlike the BFS algorithm, Dijkstra’s algorithm is guaranteed to find the
shortest path4 from the start node to the target node. However, a drawback
with Dijkstra’s algorithm is that it typically searches many nodes that, in the
end, turn out to be quite irrelevant. Looking at the search patterns in Figs. 6.8
and 6.10, one may hypothesize that a combination of the two algorithms would
be useful. Indeed, there is an algorithm, known as A* that combines the BFS
and Dijkstra algorithms. Like Dijkstra’s algorithm, A* is guaranteed to find the
shortest path. Moreover, it does so more efficiently than Dijkstra’s algorithm.
However, A* is beyond the scope of this text.

4There may be more than one such path: Dijkstra’s algorithm will select one of them.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 79

Figure 6.10: Two examples of paths generated using Dijkstra’s algorithm. The cells (nodes)
that were checked during path generation are shown in light green, whereas the actual path is
shown in dark green and with a solid line. The yellow cell is the start node and the white cell
is the target node.

6.2.2 Potential field navigation

Unlike the algorithms described above, the potential field method does not
require a grid. In the potential field method, a robot obtains its desired direc-
tion of motion as the negative gradient of an artificial potential field, generated
by potentials assigned to the navigation target and to objects in the arena.

Potential fields

As shown in Fig. 6.11, a potential field can be interpreted as a landscape with
hills and valleys, and the motion of a robot can be compared to that of a ball
rolling through this landscape. The navigation target is assigned a potential
corresponding to a gentle downhill slope, whereas obstacles should generate
potentials corresponding to steep hills.

In principle, a variety of different equations could be used for defining dif-
ferent kinds of potentials. An example, namely a potential with ellipsoidal
equipotential surfaces, and exponential variation with (ellipsoidal) distance
from the center of the potential, takes the mathematical form

φ(x, y;xp, yp, α, β, γ) = αe−(x−xpβ)
2
−(y−ypγ)

2

, (6.1)

where (x, y) is the current (estimated) position at which the potential is calcu-
lated, (xp, yp) is the position of the object generating the potential, and α, β and
γ are constants (not to be confused with the constants defined in connection

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

80 CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION

Obstacle

Goal

Figure 6.11: A potential field containing a single obstacle and a navigation goal.

with the equations of motion in Chapter 2 and the sensor equations in Chapter
3). Now, looking at the mathematical form of the potentials, one can see that
an attractive potential (a valley) is formed if α is negative, whereas a positive
value of α will generate a repulsive potential (a hill).

Normally, the complete potential field contains many potentials of the form
given in Eq. (6.1), so that the total potential becomes

Φ(x, y) =
k∑

i=1

φi(x, y;xpi, ypi, αi, βi, γi), (6.2)

where k is the number of potentials. An example of a potential field, for a
simple arena with four central pillars, is shown in Fig. 6.12.

Navigating in a potential field

Once the potential field has been defined, the desired direction of motion r̂ of
the robot can be computed as the negative of the normalized gradient of the
field

r̂ = − ∇Φ

|∇Φ|
≡ −

(∂Φ
∂x
, ∂Φ
∂y

)√(
∂Φ
∂x

)2
+
(
∂Φ
∂y

)2
(6.3)

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 81

-4 -2 0 2 4

-4

-2

0

2

4

-4
-2
0

2
4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

Figure 6.12: An illustration of potential field navigation in GPRSim. Upper left panel: A
simple arena, with a robot following a potential field toward a target position in the upper left
corner of the arena. Upper right panel: The corresponding potential field, generated by a total
of nine potentials (one for the target, one for each of the walls, and one for each pillar). Lower
left panel: A contour plot of the potential field, in which the target position can be seen in the
upper left corner. Lower right panel: The trajectory followed by the robot. Note that, in this
simulation, the odometric readings were (unrealistically) noise-free.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

82 CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION

In order to integrate the equations of motion of the robot, it is not sufficient
only to know the desired direction: The magnitude of the force acting on the
robot must also be known. In principle, the negative gradient of the potential
field could be taken (without normalization) as the force acting on the robot,
providing both magnitude and direction. However, in that case, the magni-
tude of the force would vary quite strongly with the position of the robot,
making the robot a dangerous moving object (if it is large). Thus, the poten-
tial field is only used for providing the direction, as in Eq. (6.3). The robot’s
speed v (i.e. the magnitude of its velocity vector v) can be assigned in various
ways. For example, one may use proportional control to try to keep the speed
constant5.

An example of a trajectory generated during potential field navigation is
shown in the lower right panel of Fig. 6.12. In the experiment in which this
figure was generated, the noise in the odometric readings was (unrealistically)
set to zero, since the aim here is simply to illustrate potential field navigation.
However, in a realistic application, one would have to take into account the
fact that the robot’s estimate of its pose will never be error-free. Thus, when
setting up a potential field, it is prudent to make the potentials slightly larger6

than the physical objects that they represent. At the same time, in narrow
corridors, one must be careful not to make the potentials (for walls on opposite
sides of the corridor, say) so wide that the robot will be unable to pass.

In fact, the definition of a potential field for a given arena is something of
an art. In addition to the problem of determining the effective extension of
the potentials, one also has to decide whether a given object should be repre-
sented by one or several potentials (for instance of the form given in Eq. (6.1)).
For example, an extended object (for example, a long wall) can be represented
as a single potential (typically with very different values of the parameters β
and γ), but it can also be represented as a sequence of potentials. In complex
environments, one may resort to stochastic optimization of the potential field,
as well as the details of the robot’s motion in the field7.

Aspects of potential field navigation

A gradient-following method, such as the potential field method, always suf-
fers the risk of encountering local minima in the field. Of course, in potential

5The procedure for assigning the robot’s speed in potential field navigation will be de-
scribed below.

6Of course, since the exponential potentials defined in Eq. (6.1) have infinite extension,
the corresponding force never drops exactly to zero, but beyond a distance of a few d, where
d = max(β, γ), the force is negligible.

7For an example of such an approach, see Savage et al., Optimization of waypoint-guided
potential field navigation using evolutionary algorithms, Proceedings of the 2004 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS 2004), 3463-3468, 2004.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 83

0

0.5

1

1.5

2

-0.5

0

0.5

-1.5
-1

-0.5
0

0.5
1

0

0.5

1

1.5

2

Figure 6.13: The locking phenomenon. Following the gradient of the potential field the
robot, whose trajectory is shown as a sequence of black dots, moves along the x-axis toward the
goal, located at (2, 0). However, because of the local minimum in the potential field, the robot
eventually gets stuck.

field navigation, the goal is to reach the local minimum represented by the
navigation target. However, depending on the shape of the arena (and there-
fore the potential field), there may also appear one or several unwanted local
minima in the field, at which the robot may become trapped.

This is called the locking phenomenon and it is illustrated in Fig. 6.13.
Here, a robot encounters a wedge-shaped obstacle represented by three poten-
tials. At a large distance from the obstacle, the robot will be directed toward
the goal potential, which is located behind the obstacle as seen from the start-
ing position of the robot. However, as the robot approaches the obstacles their
repulsive potentials will begin to be noticeable. Attracted by the goal, the robot
will thus eventually find itself stuck inside the wedge, at a local minimum of
the potential.

In order to avoid locking phenomena, the path between the robot and the
goal can be supplied with waypoints, represented by attractive potentials (for
example, of the form given in Eq. (6.1)) with rather small extension. Of course,
the introduction of waypoints leads to the problem of determining where to

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

84 CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION

put them. An analysis of such methods will not be given here8. Suffice it to
say that the problem of waypoint placement can be solved in various ways to
aid the robot in its navigation. A waypoint should be removed once the robot
has passed within a distance L from it, to avoid situations in which the robot
finds itself stuck at a waypoint.

The potential field method also has several advantages, one of them being
that the direction of motion is obtained simply by computing the gradient of
the potential field at the current position, without the need to generate an en-
tire path from the current position to the navigation target. Furthermore, the
potential field is defined for all points in the arena. Thus, if the robot tem-
porarily must suspend its navigation (for example, in order to avoid a moving
obstacle), it can easily resume the navigation from wherever it happens to be
located when the Obstacle avoidance behavior is deactivated.

In the discussion above, only stationary obstacles were considered. Of
course, moving obstacles can be included as well. In fact, the potential field
method is commonly used in conjunction with, say, a grid-based navigation
method, such that the latter generates the nominal path of the robot, whereas
the potential field method is used for adjusting the path to avoid moving ob-
stacles. However, methods for reliably detecting moving obstacles are beyond
the scope of this text.

Using the potential field method

As mentioned above, the potential field only provides the current desired di-
rection of motion. In order to specify a potential field navigation behavior com-
pletely, one must also provide a method for setting the speed of the robot. This
can be done as follows: Given the robot’s estimated (from odometry) angle of
heading ϕest and the desired (reference) direction ϕref (obtained from the po-
tential field), one can form the quantity ∆ϕ as

∆ϕ = ϕref − ϕest. (6.4)

The desired speed differential ∆V (the difference between the right and left
wheel speeds) can then be set according to

∆V = KpVnav∆ϕ, (6.5)

where Kp is a regulatory constant (P-regulation is used) and Vnav is the (de-
sired) speed of the robot during normal navigation. Once ∆V has been com-
puted, reference speeds are sent to the (velocity-regulated) motors according
to

vL = Vnav −
∆V

2
, (6.6)

8See, however, the paper by Savage et al. mentioned in Footnote 6.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 85

vR = Vnav +
∆V

2
, (6.7)

where vR and vL are the reference speeds of the left and right wheels, respec-
tively. Note that one can of course only set the desired (reference) speed values;
the actual speed values obtained depend on the detailed dynamics of the robot
and its motors.

If the reference angle differs strongly from the estimated heading (which
can happen, for example, in situations where the robot comes sufficiently close
to an obstacle whose potential generates a steep hill), the robot may have to
suspend its normal navigation and instead carry out a pure rotation, setting
vL = −Vrot, vR = Vrot for a left (counterclockwise) rotation, where Vrot is the ro-
tation velocity, defined along with Vnav (and the other constants) during setup.
In case the robot should carry out a clockwise rotation, the signs are reversed.
The direction of rotation is, of course, determined by the sign of the differ-
ence between the reference angle and the (estimated) heading. In this case, the
robot should turn until the difference between the reference angle and the esti-
mated heading drops below a user-specified threshold, at which point normal
navigation can resume.

6.3 Localization

In Sects. 6.1 and 6.2, it was (unrealistically) assumed that the robot’s odome-
try would provide perfect estimates of the pose. In reality, this will never be
the case, and therefore the problem of recalibrating the odometric readings,
from time to time, is a fundamental problem in robotics. Doing so requires a
method for localization independent from odometry, and such methods usu-
ally involve LRFs (even though cameras are also sometimes used), sensors that
are difficult to simulate in ARSim (because of the large number of rays which
would slow down the simulation considerably). Therefore, in this section, lo-
calization will be described as it is implemented in the simulator GPRSim and
in GPRBS, where LRFs are used.

Robot localization requires two brain processes: The cognitive Odometry
process and an independent process for odometric recalibration, which both
in GPRSim and in GPRBS goes under the name Laser localization, since the
behavior for odometric recalibration uses the readings of an LRF, together with
a map, to infer its current location using scan matching, as described below.

In fact, the problem of localization can be approached in many different
ways. For outdoor applications, a robot may be equipped with GPS, which
in many cases will give sufficiently accurate position estimates. However, in
indoor applications (standard) GPS cannot be used, since the signal is too weak
to penetrate the walls of a building. Of course, it is possible to set up a local
GPS system, for example by projecting IR beacons on the ceiling, using which

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

86 CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION

Figure 6.14: An illustration of the need for localization in mobile robot navigation. In the
left panel, the robot navigates using odometry only. As a result, the odometric trajectory
(red) deviates quite significantly from the actual (green) trajectory. In the right panel, Laser
localization was activated periodically, leading to much improved odometric estimates.

the robot can deduce its position by means of triangulation9. However, such a
system requires that the arena should be adapted to the robot, something that
might not always be desirable or even possible.

The localization method (combining odometry and laser scan matching)
that will be described here is normally used together with some navigation
behavior. Thus, the robotic brain will consist of at least two motor behav-
iors, in which case decision-making also becomes important. This topic will
be studied in a later chapter: For now, the Laser localization behavior will be
considered separately.

6.3.1 Laser localization

The behavior is intended for localization in arenas for which a map has been
provided to the robot (in the form of a sequence of lines). The map can ei-
ther be obtained using a robot (executing a Mapping behavior) or, for example,
from the floor plan of a building. The behavior relies on scans of the arena
using a two-dimensional LRF and, like many methods for localization in auto-
nomous robots, it assumes that all scans are carried out in a horizontal plane,
thus limiting the behavior to planar (i.e. mostly indoor) environments. In fact,
the name Laser localization is something of a misnomer: The behavior does
not actually carry out (continuous) localization. Instead, when activated, the
behavior takes as input the current pose estimate and tries to improve it. If

9This is the method used in the Northstar® system, developed by Evolution Robotics, inc.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 87

Figure 6.15: An enlargement of the most significant correction in odometric readings (in the
right panel of Fig. 6.14) resulting from the Laser localization behavior.

successful, the odometric pose is reset to the position suggested by the Laser
localization behavior.

The left panel of Fig. 6.14 illustrates the need for localization: The nav-
igation task shown in Fig. 6.12 was considered again (with the same start-
ing point, but a different initial direction of motion), this time with realistic
(i.e. non-zero) levels of noise in the wheel encoders and, therefore, also in the
odometry. As can be seen in the figure, the odometric drift causes a rather
large discrepancy between the actual trajectory (green) and the odometric es-
timate (red). In the right panel, the robotic brain contained two behaviors (in
addition to the cognitive Odometry process), namely Potential field navigation
and Laser localization. The Laser localization behavior was activated periodically
(thus deactivating the Potential field navigation behavior), each time recalibrat-
ing (if necessary) the odometric readings. As can be seen in the right panel
of Fig. 6.14, with laser localization in place, the discrepancy between the odo-
metric and actual trajectories is reduced significantly. At one point, the Laser
localization behavior was required to make a rather large correction of the odo-
metric readings. That particular event is shown enlarged in Fig. 6.15. As can
be seen, the odometric readings undergo a discrete step at the moment of lo-
calization.

When activated, the localization behavior10 considered here first stops the

10See Sandberg, D., Wolff, K., and Wahde, M. A robot localization method based on laser scan

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

88 CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION

Figure 6.16: Two examples of scan matching. The leftmost panel in each row shows a few
rays (solid lines) from an actual LRF reading (plotted in the map used by the virtual LRF), and
the middle panels show the virtual LRF readings (dotted lines) in a case in which the estimated
pose differs quite strongly from the correct one (upper row), and one in which the difference
is small (bottom row). The direction of heading is illustrated with arrows. The right panel in
each row shows both the actual LRF rays and the virtual ones. The figure also illustrates the
map, which consists of a sequence of lines.

robot, and then takes a reading of the LRF. Next, it tries to match this reading
to a virtual reading taken by placing a virtual LRF (hereafter: vLRF) at various
positions in the map. Two examples of scan matching are shown in Fig. 6.16.
The three panels in the upper row show a situation in which the odometry
has drifted significantly. The upper left panel shows the readings (i.e. laser ray
distances) from an actual LRF mounted on top of the robot (not shown). Note
that, for clarity, the figure only shows a few of the many (typically hundreds)
laser ray directions. The upper middle panel shows the readings of the vLRF,
placed at the initial position and heading obtained from odometry. As can be
seen in the upper right panel, the two scans match rather badly. By contrast,
the three panels of the bottom row show a situation in which the pose error
is small. The purpose of the search algorithm described below is to be able to
correct the odometry, i.e. to reach a situation similar to the one shown in the
bottom row of Fig. 6.16. Fig. 6.17 shows another example of a good (left panel)
and a bad (right panel) scan match. In the case shown in the left panel, the

matching, Proc. of AMiRE 2009, pp. 171-178, 2009.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 89

Figure 6.17: Matching of LRF rays (in a different arena than the one used in the examples
above). The readings of the actual LRF are shown in green, and those of the virtual LRF are
shown in red. Left panel: An almost exact match. Right panel: In this case, the odometry has
drifted enough to cause a large discrepancy between the actual and virtual LRF rays.

odometric pose estimate is quite good, so that the rays from the actual LRF
(green) match those of the vLRF quite well, at the current pose estimate. By
constrast, in the situation shown in the right panel, the odometry has drifted
significantly.

Scan matching algorithm

Let p = (x, y, ϕ) denote a pose (in the map) of the vLRF. The distances between
the vLRF and an obstacle, along ray i, are obtained using the map11 and are de-
noted δi. Similarly, the distances obtained for the real LRF (at its current pose,
which normally differs from p when the localization behavior is activated) are
denoted di.

The matching error ε between two scans can be defined in various ways.
For rays that do not intersect an obstacle, the corresponding reading (di or δi)
is (arbitrarily) set to -1. Such rays should be excluded when computing the
error. Thus, the matching error is taken as

ε =

√√√√1

ν

n∑
i=1

χi

(
1− δi

di

)2

, (6.8)

where n is the number of LRF rays used12. The parameter χi is equal to one
11In practice, the ray reading δi of the vLRF is obtained by checking for intersection between

the lines in the map and a line of length R (the range of the LRF) pointing in the direction of
the ray, and then choosing the shortest distance thus obtained (corresponding to the nearest
obstacle along the ray). If no intersection is found, the corresponding reading is set to -1.

12For example, in the case of a Hokuyo URG-04LX LRF, a maximum of 682 rays are available.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

90 CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION

for those indices i for which both the real LRF and the vLRF detect an obstacle
(i.e. obtain a reading different from -1) whereas χi is equal to zero for indices i
such that either the real LRF or the vLRF (or both) do not detect any obstacle
(out to the range R of the LRF). ν denotes the number of rays actually used in
forming the error measure, i.e. the number of rays for which χi is equal to one.
As can be seen, ε is a measure of the (normalized) average relative deviation
in detected distances between the real LRF and the vLRF.

Since di are given and δi depend on the pose of the vLRF, one may write
ε = ε(p). Now, if the odometric pose estimate happens to be exact, the virtual
and actual LRF scans will be (almost) identical (depending on the accuracy of
the map and the noise level in the real LRF), resulting in a very small matching
error, in which case the localization behavior can be deactivated and the robot
may continue its navigation. However, if the error exceeds a user-defined
threshold T , the robot can conclude that its odometric estimates are not suf-
ficiently accurate, and it must therefore try to minimize the matching error by
trying various poses in the map, i.e. by carrying out a number of virtual scans,
in order to determine the actual pose of the robot. The scan matching problem
can thus be formulated as the optimization problem of finding the pose p = pv

that minimizes ε = ε(p). Once this pose has been found, the new odometric
pose pnew is set equal to pv.

Note that it is assumed that the robot is standing still during localization.
This restriction (which, in principle, can be removed) is introduced in order
to (i) avoid having to correct for the motion occuring during the laser sweep,
which typically lasts between 0.01 and 0.1 s and (ii) avoid having to correct for
the motion that would otherwise take place during scan matching procedure,
which normally takes a (non-negligible) fraction of a second. Thus, only one
scan needs to be carried out using the real LRF mounted on the robot. The re-
maining work consists of generating virtual scans in the map, at a sequence of
poses, and to match these to the actual LRF readings. Unlike some other scan
matching methods, the method used here does not attempt to fit lines to the
LRF readings. Instead, the LRF rays (actual and virtual, as described above)
are used directly during scan matching. The sequence of poses for the vLRF
is generated as follows: First the actual LRF scan is carried out, generating
the distances di. Next, a virtual scan is carried out (in the map) at the current
estimated position p0. If the error ε0 = ε(p0) is below the threshold T , local-
ization is complete. If not, the algorithm picks a random pose pj (where j = 1
in the first iteration) in a rectangular box of size Lx × Ly × Lϕ, centered on p0

in pose space, and computes the matching error εj = ε(pj). The constants Lx

and Ly are typically set to around 0.1 m and the constant Lϕ is set to around
0.1 radians.

The process is repeated until, for some j = j1, an error εj1 < ε0 is found. At
this point, the rectangular box is re-centered to pj1 , and the search continues,
now picking a random pose in the rectangular box centered on pj1 . Once a po-

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 91

0

6

18

38

59

0.50 0.55 0.60 0.65 0.70 0.75

-2.25

-2.20

-2.15

-2.10

-2.05

0

7

12

17

24

34

43

0.40 0.45 0.50 0.55 0.60 0.65

-2.25

-2.20

-2.15

-2.10

-2.05

Figure 6.18: An illustration of the sequence of poses generated during two executions of the
search algorithm (with arrows indicating the direction of heading). In each panel, the actual
position (measured in meters) of the robot is indicated with a filled square. The initial estimated
position (i.e. from odometry, before correction) is shown as a filled disc, and the final estimated
position is visualized as an open square. The intermediate points generated during the search
are represented as open discs and are shown together with the corresponding iteration number.
Note that, for clarity, only some of the intermediate points are shown.

sition pj2 is found for which εj2 < εj1 , the rectangular box is again re-centered
etc. The procedure is repeated for a given number (N) of iterations13.

Even though the algorithm is designed to improve both the position and
the heading simultaneously, in practice, the result of running the algorithm is
usually to correct the heading first (which is easiest, since an error in heading
typically has a larger effect on the scan match than a position error), as can be
seen clearly in the right panel of Fig. 6.18. At this stage, the estimated pose
can make a rather large excursion in position space. However, once a fairly
correct heading has been found, the estimated position normally converges
quite rapidly to the correct position.

13Note that this algorithm resembles an evolutionary algorithm with a population size of 1.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

92 CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

Chapter 7
Utility and rational decision-making

The ability to make appropriate decisions in any given situation is clearly a
necessary prerequisite for the survival of any animal and, indeed, even simple
animals are generally able to take the correct action even in difficult situa-
tions, provided that they are operating in their natural environment. While
the concept of rational decision-making has been studied in ethology (and,
more recently, in robotics), the theory of rational decision-making was formal-
ized within the framework of economics, particularly in the important work
by von Neumann and Morgenstern1. Their work also remains one of the cor-
nerstones of game theory.

The choices facing a decision-maker within the framework of economics
can often be illustrated by means of lotteries, at least in cases where the num-
ber of consequences (or outcomes) is finite. Intuitively, one may think that the
expected payoff, i.e. the amount of money that is likely to be gained by partic-
ipating in the lottery, may determine a person’s inclination to do so. However,
things are a bit more complicated than that. As a first example, consider a
lottery in which, with probability p1 = 0.5 one would gain $3 (i.e. with the
consequence c1 = +$3), say, and, with probability p2 = 1−p1, one would have
to pay $2. (outcome c2 =-$2). Thus, the expected payoff from this bet would
be

P = p1c1 + p2c2 = 0.5× 3− 0.5× 2 = 0.5. (7.1)

Thus, it is likely that most people would accept this bet since the expected pay-
off is larger than zero. However, consider now a lottery with the same proba-
bilities p1 and p2, but with the consequences c1 =$300,000 and c2 =-$200,000.
In this case, the expected payoff would be $50,000, a considerable amount of
money, yet most people would be disinclined to accept the bet, given the risk
of losing $200,000.

1See von Neumann, J. and Morgenstern, O., Theory of games and economic behavior, Princeton
University Press, 1944.

93

94 CHAPTER 7. UTILITY AND RATIONAL DECISION-MAKING

As a second example, consider a situation where a person must carry out
a potentially lethal task in order to gain $10,000. If the person’s total wealth is
$0 it is possible that he would accept the task, regardless of the risk. On the
other hand, if the person’s total wealth is $1,000,000, it would hardly be worth
taking any risk for a measly additional $10,000. Thus, clearly, the amount that
can be gained is not the sole determinant, or even the most important one,
when contemplating what action to take in the situations just described.

7.1 Utility

In order to underline further the fact that the expected payoff alone is not
what determines one’s inclination to accept a bet, consider a repeated lottery
in which a fair coin (equal probability for heads and tails) is tossed repeat-
edly, and where the player receives 2k dollars if the first head, say, occurs after
k tosses of the coin. The probability pk of this event occurring equals (1/2)k.
Thus, the expected payoff from playing this lottery (taking into account the
cost r of entering the lottery) would be

P = −r +
∞∑
k=1

pkck = −r +
∑(

1

2

)k

2k = −r +
∞∑
k=1

1 (7.2)

which is infinite! Thus, if the expected payoff P was all that mattered, a player
should be willing to pay any finite sum of money, however large, in order to
participate in this lottery, since the expected payoff would be larger. This is,
of course, absurd; few people would be willing to bet their entire savings on a
lottery. The situation just described is called the St. Petersburg paradox, and it
was formulated by Bernoulli, who proposed a way of resolving the paradox,
by postulating that, rather than the expected payoff itself, it is a player’s per-
ception of the amount of money gained that determines her actions. Bernoulli
postulated that the subjective value of N currency units (e.g. dollars) varies
essentially as the logarithm of N . Let W denote a person’s wealth before par-
ticipating in the lottery, and r the cost of entering the lottery. Using Bernoulli’s
postulate, the subjective value Ps of the expected payoff can then be written as
the change in wealth for different outcomes, multiplied by the probability of
the outcome in question, i.e.

Ps =
∞∑
k=1

(ln(W − r + 2k)− lnW)2−k, (7.3)

which is finite. A person should, at most, be willing to pay an amount r that
will make Ps positive, in order to participate in the lottery. For example, with
W = 1, 000, the maximum value of r would be around 10.95 currency units.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 7. UTILITY AND RATIONAL DECISION-MAKING 95

The subjective value of a certain amount of money, set arbitrarily to the log-
arithm of the amount by Bernoulli, is a special case of the concept of utility,
which can be used for weighing different situations against each other and,
thus, to decide which action to take.

In fact, it has been proven (rigorously) by von Neumann and Morgenstern2

that, given certain assumptions that will be listed below, there exists a utility
function which maps members ci of the set of outcomes to a numerical value
u(ci), called the utility of ci, which has the following properties:

1. u(c1) > u(c2) if and only if the person prefers3 c1 to c2,

2. u is affine, i.e.

u (pc1 + (1− p)c2) = pu(c1) + (1− p)u(c2), (7.4)

for any value of p1 ∈ [0, 1].

Furthermore, as shown by von Neumann and Morgenstern, u is unique up to
a positive linear transformation, i.e. if a function v also describes a person’s
preferences, then v = α1u+ α2, where α1 > 0.

Clearly, there is no unique set of preferences, valid for all persons: one per-
son may prefer a consequence c1 to another consequence c2, whereas another
person’s preferences may be exactly the opposite. Thus, utility tells us noth-
ing about a person’s preferences. However, it does tell us that, given that the
preferences can be stated in a consistent way (see below), there exists a func-
tion u which can serve as a common currency in decision-making, i.e. when
weighing different options against each other. As previously mentioned, the
existence of a utility function with the properties listed above depends on cer-
tain axioms, namely

Axiom 1 (Ordering) Given two outcomes c1 and c2 an individual can decide,
and remain consistent, concerning his preferences, i.e. whether he prefers c1 to
c2 (denoted c1 > c2), c2 to c1, or is indifferent (denoted c1 ∼ c2).

Axiom 2 (Transitivity) If c1 ≥ c2 and c2 ≥ c3 then c1 ≥ c3.

Axiom 3 (The Archimedean axiom) If c1 > c2 > c3, there exists a p ∈ [0, 1]
such that pc1 + (1− p)c3 > c2 and a q ∈ [0, 1] such that c2 > qc1 + (1− q)c3.

2See von Neumann, J. and Morgenstern, O., Theory of games and economic behavior, Princeton
University Press, 1944.

3If (and only if) the person is indifferent between c1 and c2, then u(c1) = u(c2).

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

96 CHAPTER 7. UTILITY AND RATIONAL DECISION-MAKING

Axiom 4 (Independence) For all outcomes c1, c2, and c3, c1 ≥ c2 if and only if
pc1 + (1− p)c3 ≥ pc2 + (1− p)c3 for all p ∈ [0, 1].

If these four axioms hold4 it is possible to prove the existence of a utility func-
tion with the properties listed above (the proof will not be given here). How-
ever, most decision-making situations involve uncertainty, i.e. many different
outcomes are possible. Such situations can also be handled, since it follows
(not completely trivially, though, at least not for the most general case) from
the utility function properties listed above that the expected utility U(c) of a
mixed consequence c = p1c1 + p2c2 + . . . pncn, where pk is the probability for
consequence ck, is given by

U(c) =
∑

pku(ck), (7.5)

so that a consequence cI =
∑
pkck is preferred to another consequence cII =∑

qkck, if and only if U(cI) > U(cII).
Returning to the axioms above, it should be noted that none of them is

trivial, and they have all been challenged in the literature. For example, the
ordering and transitivity axioms may be violated in cases where a person has
very vague preferences among a certain set of outcomes, or (more importantly)
where the outcomes differ considerably in their implications, making it hard
to express clear preferences.

The Archimedean axiom also leads to problems when some of the out-
comes are extremely negative. For example if c1 consists of winning $2, c2

consists of winning $1, and c3 means that the person is killed, it is quite evi-
dent that c1 > c2 > c3. Thus, by axiom 3, there must be a value of p such that
pc1 +(1−p)c3 > c2, or, in other words, that the individual faced with the conse-
quences c1, c2, and c3 would prefer the possibility (however small) of death to
the prospect of winning $1 with certainty, if only the probability of winning $2
is sufficiently close to 1. Given the small amounts of money involved it seems,
perhaps, unlikely that one would accept even the slightest risk of being killed
in order to gain a measly $2. On the other hand, people do accept risking their
lives on a daily basis, for example by driving a car, in order to gain time (or
money).

If the four axioms are accepted, however, the resulting utility function can
be used as a powerful tool in decision-making. In order to do so, one must first
be able to construct the utility function, a procedure that will now be described
by means of an example. Consider a case in which a person (A) sees a close
friend (B) on the other side of a street, and contemplates whether or not to rush
across the street to catch the friend. He envisions two possible consequences:
Either c1, in which he manages to cross the street safely, or c2 in which he is

4Note that von Neumann and Morgenstern used slightly different axioms, which, however,
amounted to essentially the same assumptions as those underlying axioms 1-4 listed here.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 7. UTILITY AND RATIONAL DECISION-MAKING 97

hit by a car and ends up in hospital. Clearly, c1 is preferable to c2, and let us
suppose that A has assigned utilities5 such that u(c1) = 5 and u(c2) = −10. By
the affinity property of the utility function, the expected utility of the mixed
consequence cm where, say, the probability p of c1 is 0.2 and the probability
q = 1 − p of c2 is 0.8 (it is assumed that no other potential consequences exist,
once the decision to cross the street has been made) equals

U(cm) = U(pc1 + qc2) = pu(c1) + qu(c2) = 0.2× 5 + 0.8× (−10) = −7. (7.6)

Using the same procedure, utility values can be derived for any mixed conse-
quence (i.e. for any value of p ∈ [0, 1]).

Next, consider the consequence c of not trying to cross the street at all, and
therefore not meeting B (who, let us say, owes A a considerable amount of
money, which A expects to be able to collect upon meeting B). In that case, c1

is preferred to c and (unless A is absolutely desperate to collect the debt) c is
preferred to c2. Thus

u(c1) > U(c) > u(c2), (7.7)

but how should U(c) be determined? Given some time to think, and by con-
sidering the two outcomes (c1 and c2) with known utility values, A will come
up with a value of p at which he is indifferent between the mixed consequence
pc1 + (1 − p)c2 and c. Because of the affinity property of the utility function,
one then obtains

U(c) = U(pu(c1) + (1− p)u(c2)) = pu(c1) + (1− p)u(c2). (7.8)

Let us say that A has a rather high tolerance for risk, so that the point of indif-
ference occurs at p = 0.1. Then

U(c) = 0.1× 5 + 0.9× (−10) = −8.5. (7.9)

Thus, the expected utility for the consequence c has now been determined, and
the expected utility of any other consequence preferred to c2 but not to c1 can
be computed in a similar way. Note that there is no right answer – the exact
shape of the utility function depends on A’s preferences. For example, if he
were more cautious, he would perhaps conclude that the point of indifference
occurs at p = 0.5 rather than p = 0.1, in which case U(c) = −2.5.

As a more formal example, consider a lottery in which a person (C) is in-
different between the consequence c30 of a certain gain of $30 and a the mixed
consequence of gaining $100 with probability p = 0.5 and gaining nothing
with probability p = 0.5. Assume further that C has assigned utility u(c0) = 0
and u(c100) = 1 to the consequences of gaining $0 and $100, respectively. Sim-
plifying the notation somewhat by writing u(x) for u(cx) one then finds

U(30) = 0.5× u(0) + 0.5× u(100) = 0.5. (7.10)

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

98 CHAPTER 7. UTILITY AND RATIONAL DECISION-MAKING

20 40 60 80 100
Amount

0.2

0.4

0.6

0.8

1
U
t
i
l
i
t
y

Figure 7.1: A typical utility function, showing diminishing (sub-linear) utility values for
larger amounts.

In other words, the certainty equivalent for the mixed consequence in Eq. (7.10)
is equal to $30. Proceeding in a similar way, using certainty equivalents, the
expected utility for any amount $x in the range [0, 100] can be determined, and
the utility function can be plotted. A common shape of the resulting curve is
shown in Fig. 7.1. The curve shows the utility function for a person who is
risk-averse, i.e. who would prefer a sure payoff of x $ to a lottery resulting in
the same expected payoff. If a person is risk-neutral the utility function will be
be a straight line through the origin and, similarly, for a risk-prone person, the
utility function would bend upwards. Put differently, risk-aversion implies
that the second derivative U ′′(x) of the utility function is negative.

7.2 Rational decision-making

Once the utility functions for a given individual have been determined, the
expected utility values can be used to guide behavior as follows: Given two
possible actions a1 and a2, leading to the consequences c1 and c2, respecively,
a rational agent will choose the action for which the corresponding expected
utility is larger. Thus, if U(c1) > U(c2), the agent would choose a1, otherwise
a2 would be chosen. This behavior, in fact, defines a rational agent.

5The exact numerical values do not matter, as long as u(c1) > u(c2).

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 7. UTILITY AND RATIONAL DECISION-MAKING 99

At this point, it should be noted that, even if all the axioms necessary for
the existence of a utility function holds true, it is not always so that utilities can
be computed in a simple way. In the examples considered above, the state of
nature was known, i.e. the various consequences and their probabilities could
be listed, and all that remained was the uncertainty due to randomness. How-
ever, in many situations, the state of nature is not known, and it is therefore
much more difficult to assign appropriate utility values to guide behavior. The
general theory of decision-making under uncertainty is, however, beyond the
scope of this text.

7.2.1 Decision-making in animals

Animals (including humans) generally face the problem of scarce resources,
making the ability to choose between different activities completely central to
survival. For example, a common problem is to allocate time to various es-
sential activities in such a way as to keep physiological variables (e.g. hunger,
thirst, temperature) within acceptable limits.

Clearly, even simple animals are capable of rational behavior. It should be
noted however, that rational behavior does not require rational thought. There
are many examples (one of which will be described below) of rational behavior
in animals that simply lack the brain power to contemplate their sensory input
in any detail (let alone maintain complex internal states). In such cases, ratio-
nal decision-making occurs as a result of (evolutionary) design of the animal.
Note that rational behavior does not automatically imply intelligent behavior.
An agent is rational if it strives to maximize utility, but intelligent behavior will
follow only if the animal’s utility functions have been shaped (by evolution or
as a result of learning) in an appropriate way.

As was discussed above, rational behavior amounts to the maximization
of a quantity called utility that functions as a common currency for the com-
parison of different behaviors in any given situation. Put in a different way,
a rational animal should switch between activities when (and only when) the
switch leads to an increase in (marginal) utility. In ethology, it is customary
to work with cost rather than utility. Thus, in ethology, the goals of the ani-
mal are commonly expressed in terms of the minimization of cost (e.g. energy
expenditure). However, the term benefit (negative cost) which is also used in
ethology, corresponds to utility in economics.

The physiological state of an animal can be represented by a point in a
multi-dimensional physiological space, exemplified in the left panel of Fig. 7.2,
in which limits for each variable (e.g. the level of some nutrient in the body)
can be introduced. Similarly, the motivational state of the animal, which is
generated by the combination of the physiological and perceptual states, can
be represented as a point in a multi-dimensional space. In this space, isoclines

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

100 CHAPTER 7. UTILITY AND RATIONAL DECISION-MAKING

Thirst

W
at

er
 a

v
ai

la
b
il

it
y

Water level

N
u
tr

ie
n
t

le
v
el

Lethal boundary

Motivational isocline

Figure 7.2: Left panel: A physiological space. The curved arrows show typical trajectories
followed as the animal comes sufficiently close to the lethal boundary. Right panel: A mo-
tivational space. The isocline joins points at which the tendency to perform the behavior in
question (drinking, in this case) takes a given constant value.

determining a given strength of the tendency to display a given behavior, can
be introduced. A simplified, two-dimensional case, involving a single behav-
ior, is shown in the right panel of Fig. 7.2. As the animal displays a given
behavior, its location in the motivational space will change, as a result of, for
example, a change in the perceived stimuli or its physiological state (e.g. sati-
ation as a result of eating).

At the points in the (multi-dimensional) motivational space where two
such isoclines cross each other, a switch in behavior (e.g. from eating to drink-
ing) can be observed. An animal’s motivations will generally be such as to
keep it away from the lethal boundaries of the physiological space.

The problem of decision-making is made more complicated by the fact that
the consequence of a given choice may be hard to assess (cognitively, or by
design) accurately in an unstructured environment. Furthermore, the switch
between two activities may involve a cost of changing, further complicating
the decision-making process.

Decision-making in Stentor

Stentor is a simple, single-celled animal (see Fig. 7.3), that attaches itself to
e.g. a rock, and uses its hair-like cilia to sweep nutrients into its trumpet-
shaped mouth. Obviously, this animal has no nervous system, but is nev-
ertheless capable of quite complicated self-preserving behaviors: Besides the
feeding behavior (B1), Stentor is equipped with four different avoidance be-
haviors (in response, for example, to the presence of a noxious substance). In
increasing order of energy expenditure, the avoidance behaviors are (a) turn-

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 7. UTILITY AND RATIONAL DECISION-MAKING 101

Figure 7.3: A Stentor. Reproduced with kind permission of Dr. Ralf Wagner.

ing away (B2), (b) reversing the cilia, which interrupts the feeding activity (B3),
(c) contraction, followed by waiting (B4), and (d) detachment, that is, breaking
away from the object to which the animal is attached (B5). Despite its sim-
ple architecture, Stentor is able to execute the various avoidance behaviors in
a rational sequence, i.e. starting with B2 and, if this behavor is insufficient to
escape the noxious substance, proceeding with B3 etc. However, the sequence
of activation of the different avoidance behaviors is not fixed: Sometimes, B2

is followed by B4 instead of B3 etc. How can such a simple animal be capa-
ble of such complex behavior, given its utter inability to reason about which
activity to perform? It turns out, as described in detail by Staddon6 that Sten-
tor’s behavior can be accounted for by a very simple model, involving several
leaky integrator elements. A two-parameter leaky integrator is described by
the equation

dU

dt
+ aU(t) = bX(t), (7.11)

where a and b are constants and X is the external stimulus. Now, let Ui denote
the utility associated with executing Bi, and set U1 = C = constant. For the

6See Staddon, J.E.R. Adaptive dynamics, MIT Press, 2001.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

102 CHAPTER 7. UTILITY AND RATIONAL DECISION-MAKING

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 7.4: Left panel: The variation of the utility functions for the 5 behaviors. Solid curve:
B1, large-dotted curve: B2, small-dotted curve: B3, dot-dashed curve: B4, plus-sign curve:
B5. Right panel: The variation X(t) of the concentration of the noxious substance.

avoidance behaviors, let the utility functions be given by

dUi

dt
+ aiUi(t) = biX(t), i = 2, 3, 4, 5 (7.12)

Now, given initial values of the utilities U2, U3, U4, and U5 (here all set, arbitrar-
ily, to zero), and the variation of X with time, the utility for each behavior can
be computed at all times. Using a utility-maximizing (rational!) procedure for
behavior selection (i.e decision-making), where the behavior Bisel correspond-
ing to maximum current utility is selected, i.e.

isel = argmax(Ui), (7.13)

the behavior of Stentor, including the variable activation sequence of the avoid-
ance behaviors, can be modelled quite accurately, by selecting appropriate val-
ues for the constants ai and bi. An example is shown in Fig. 7.4. Here, it was
assumed that the variation X(t) of the noxious substance can be modelled as

dX

dt
+ k1X = X1, (7.14)

if B1 is active, and
dX

dt
+ k2X = X2, (7.15)

if any other behavior is active. k1, k2, X1, and X2 are non-negative constants,
satisfying X1 > X2 (i.e. the amount of noxious substance tends towards higher
values if no evasive action is taken). The left panel of the figure shows the
variation of Ui for i = 1, . . . 5. As can be seen in the figure, when X becomes
sufficiently large, B2 is activated for a short while. Next B3, B4, and B5 are

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 7. UTILITY AND RATIONAL DECISION-MAKING 103

activated, in order. With the parameter values used in the example, the fall in
X is quite slow. Thus, in subsequent activations of the avoidance behaviors,
B2 −B4 are skipped, and the Stentor immediately activates B5.

7.2.2 Decision-making in robots

The decision-making problems faced by autonomous robots are very similar
to those faced by animals: an autonomous robot must complete certain tasks
(e.g. delivery of objects in a factory), while avoiding collisions and while main-
taining a sufficient level of energy in its batteries.

Guided by ethological results, using the principles of utility maximization
(or cost minimization), McFarland7 and McFarland and Bösser8 have modelled
elementary decision-making in robots, using quadratic cost functions. Further-
more, a general-purpose decision-making method based on utility functions
has been developed at the Adaptive systems research group at Chalmers9. In
this method (called the utility function method), which forms an integral part
of the GPRBS framework, a utility function is assigned to each behavior, and
the principle of utility maximization is then used for the activation of (motor)
behaviors. This method will be studied in the next chapter.

7See McFarland, D. Animal behaviour, Addison-Wesley, 1999.
8See McFarland, D. and Bösser, T. Intelligent behavior in animals and robots, MIT Press, 1993.
9See Wahde, M. A method for behavioural organization for autonomous robots based on evolution-

ary optimization of utility functions, J. Systems and Control Engineering, 217, pp. 249-258, 2003,
and Wahde, M. A general-purpose method for decision-making in autonomous robots, Lecture notes
in Artificial Intelligence, 5579, pp. 1-10, 2009.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

104 CHAPTER 7. UTILITY AND RATIONAL DECISION-MAKING

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

Chapter 8
Decision-making

8.1 Introduction and motivation

In Chapters 5 and 6, the topic of generating individual brain processes was
studied. In complex robotic brains, however, there is more than one brain pro-
cess available: The brains of such robots contain a brain process repertoire
(also known, in BBR, as the behavioral repertoire) from which behaviors are
dynamically chosen for activation. In GPRBS, the term brain process is used
instead of behavior, and brain processes are, in turn, divided into motor be-
haviors (that make use of the robot’s motor(s)) and cognitive processes (that
do not make use of any motors).

A central issue in BBR, and in GPRBS, is decision-making1, i.e. the pro-
cess of determining which brain process(es) to activate at any given time. In
this chapter, a brief introduction to the (vast) topic of decision-making will be
given, with emphasis on a particular decision-making method based on utility
functions.

8.1.1 Taxonomy for decision-making methods

A researcher aiming to generate a method for decision-making has a consid-
erable amount of freedom and, not surprisingly, a very large number of such
methods have appeared in the literature, such as e.g. the pioneering subsump-
tion method which was developed by Rodney Brooks2 and marked the start-
ing point for research in behavior-based robotics. The purpose of any method
for decision-making in BBR is to determine when different behaviors should be

1In BBR, decision-making is also known as behavior selection, behavioral organization or
behavior arbitration. However, because of the distinction between cognitive brain processes
and (motor) behaviors in GPRBS, the term decision-making will be preferred here.

2See, for example, Brooks, R. A robust layered control system for a mobile robot, IEEE Journal
of Robotics and Automation, RA-2, pp. 14-23, 1986.

105

106 CHAPTER 8. DECISION-MAKING

activated, and it is therefore natural to categorize methods of decision-making
based on the procedure they use for selecting behaviors. There are two main
categories, namely arbitration methods and cooperative methods3. In arbi-
tration methods, exactly one (motor) behavior is active, and the selection of
which behavior to activate is generally a function both of present sensor read-
ings and the internal state of the robot. In cooperative methods, the action
taken by the robot is a weighted combination of the actions suggested by sev-
eral behaviors. The potential field navigation method, described in Chapter
6, can, in fact, be seen as a cooperative decision-making method, in which the
direction of motion is obtained as an average of suggestions provided by the
various potentials representing obstacles and the navigation goal.

However, here we shall only consider a single decision-making method,
namely the utility function (UF) method that, in turn, is an integral part of
the GPRBS framework. It should be noted that the choice of method (for this
course) to a great extent reflects the author’s preferences: There are many other
methods for decision-making available, but they will not be considered here.
Note also that, in the UF method, exactly one (motor) behavior is active, along
with any number of cognitive processes. Thus, this method does not fall neatly
into any of the two categories (defined above) for decision-making methods in
BBR.

8.2 The utility function method

The utility function method is a biologically inspired decision-making method,
intended mainly for motor tasks (such as, for example, navigation, delivery,
map-building etc.) rather than tasks involving higher cognitive functions (e.g. in-
teraction with people using speech synthesis and speech recognition). As its
name implies, in this method, the selection of brain processes is based on the
concept of utility described in Chapter 7. In the UF method, utility functions
are used as a common currency for guiding the activation and de-activation of
brain processes.

As an example, consider a floor-sweeping robot, which is given a fitness in-
crement (i.e. an increase in its performance score) for each square meter of floor
it sweeps. The robot should try to sweep as much floor as possible, in order
to maximize its performance score. However, if the robot runs out of battery
energy, it will no longer be able to move. Thus, the utility of a (motor) behav-
ior that temporarily forces the robot to suspend its floor-sweeping activities to
charge its batteries should rise as the energy in the battery decreases, allowing
the robot to activate (based on the principle of utility maximization) the battery
charging behavior before the battery energy drops to zero. Thus, even though

3Cooperative methods are sometimes also called command fusion methods.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 8. DECISION-MAKING 107

the battery charging behavior does not lead to any direct increase in perfor-
mance, it should nevertheless be activated, so that the robot can continue car-
rying out its floor-sweeping task when the batteries have been charged. Hence,
in order to receive the highest possible performance score over a long period
of time, the robot must, in fact, maximize utility.

Utility also provides a means of allocating limited resources in an optimal
way. The life of any animal (or robot) inevitably involves many trade-offs,
where less relevant behaviors must be sacrificed or at least postponed in or-
der to carry out the most relevant behaviors, i.e. those associated with largest
utility value. Next, a brief description of the UF method will be given, starting
with the important concept of state variables.

8.2.1 State variables

Robots obtain information about the surroundings using their sensors or other
input devices such as, for example, touch screens, keyboards, or microphones.
Some sensors, for example infrared (IR) sensors, provide a scalar reading that
can be used, for instance, in proximity detection. Other sensors generate vector-
valued readings (e.g. laser range finders) or matrix-valued readings (e.g. dig-
ital cameras). In principle, all readings obtained from a robot’s sensors could
be used when specifying the state of the robot. For example, the rays (often
several hundred) of a laser range finder (LRF) could, in principle, be used as
state variables. However setting the parameters of a decision-making system
involving hundreds of variables would be extremely difficult and, more im-
portantly, highly undesirable: Even if such a decision-making system could be
generated, it would be almost impossible to interpret and understand. Thus,
in case the system fails (in certain situations), modifying it would be a very
challenging task.

The human brain is capable of filtering out irrelevant information, in such
a way that one is only consciously aware of information that is likely to be
relevant for assessing the current situation. A similar approach can be used in
robotics. Thus, rather than making decisions based on the massive raw data
flow from all available sensors, in the UF method, a sensory preprocessing
system (SPS) is introduced, which maps the raw data obtained through all the
sensors (or a subset thereof) to a manageable number of state variables. A
schematic illustration of an SPS is given in Fig. 8.1. Many different sensory
preprocessing methods can be employed. As an example, a state variable4 z
may be defined as a weighted average of the readings obtained from a few
IR sensors. Such a state variable can be used by the robot to avoid frontal
collisions: A high value of z would indicate an imminent collision. Letting Σi

4The use of state variables will be described in connection with the description of utility
functions below.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

108 CHAPTER 8. DECISION-MAKING

SPS

Sensor readings

State variables
z1

z2

z3

Figure 8.1: A schematic representation of an SPS. In general, an SPS takes raw sensory
readings as input and generates state variables as output.

denote the reading of IR sensor i, a state variable can thus be formed as

z =
j∑

i=1

νiΣi, (8.1)

where j denotes the number of IR sensors (or a subset thereof) and νi, i =
1, . . . , j is the weight for sensor i. Note that some weights may be set to zero5.
For example, one may wish to define a state variable measuring proximity to
obstacles on the side of the robot, in which case one should use some sen-
sors on the left and right sides of the robot, while skipping sensors that point
roughly in the robot’s direction of heading.

Of course, the definition of state variables need not be limited to weighted
averages. Another possible mapping is to use the minimum reading of a set or
sensors

z = min
i∈[1,j]

Σi, (8.2)

or the maximum
z = max

i∈[1,j]
Σi, (8.3)

An even more general mapping can be defined by using a neural network,
taking sensor readings as input, and generating a single scalar value as output.

An SPS normally contains several mappings, each of which produces a
scalar output zk. The state variables are then collected in a vector (denoted
z) which is used as input to the utility functions (see below).

5Setting weights to zero is, of course, equivalent to not including the corresponding IR
sensor at all. This is allowed: The sum in Eq. (8.1) does not have to include all IR sensors.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 8. DECISION-MAKING 109

0 2 4 6 8 10
time

0.2

0.4

0.6

0.8

1

z

0 2 4 6 8 10
time

0.2

0.4

0.6

0.8

1

u
t
i
l
i
t
y

Figure 8.2: An illustration of the noise tolerance resulting from the differential form of the
utility functions. The left panel shows an example of signal loss in a state variable z, in turn
caused by signal loss in the sensor(s) whose readings are used when forming the state variable:
At around t = 5 s, the state variable suddenly dropped to zero for 0.15 s. Right panel: The
corresponding change in a utility function, defined by τ u̇ + u = σ(b + wz), where τ = 0.3,
b = 1.0 and w = 0.5. The sigmoid parameter c was set to 1.0.

8.2.2 Utility functions

In the UF method, each brain process is associated with a utility function that
is intended to determine the relative merit of the brain process in any given
situation. Utility values are constrained to the interval [−1, 1]. A high util-
ity value ui (i.e. around 1) of a brain process i indicates that the process is
likely to be useful in the current situation, whereas a strongly negative value
(i.e. around −1) indicates that the process should not be active. The utility ui
of brain process i is obtained by solving the differential equation

τiu̇i + ui = σi

(
m∑
k=1

wikzk + bi + Γi

)
i = 1, . . . , n. (8.4)

Here, n denotes the number of brain processes, τi is a time constant determin-
ing the reaction time of the robot (typically set to around 0.1 s),m is the number
of state variables6, wik and bi are tunable parameters, and σi(x) is taken as

σi(x) = tanh(cix), (8.5)

where ci is a positive constant. The squashing functions σi serve to keep utility
values in the range [−1, 1] provided, of course, that the values are initialized
in this range (which they should be).

6In practice, Eq. (8.4) is discretized and integrated using a time step (typically around 0.01
s) much smaller than the smallest time constant. The most recent values of the state variables
are used as inputs to the utility functions. Some state variables may change very frequently,
whereas others (e.g. those based on LRF readings) are updated less frequently (typically with
a frequency of around 10-30 Hz, in the case of LRFs).

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

110 CHAPTER 8. DECISION-MAKING

Now, from the form of the utility functions given in Eq. (8.4) it is clear that
the utility values will depend on the state variables zk (k = 1, . . . ,m). Ideally,
the state variables should provide the robot with all the information needed to
make an informed decision regarding which brain processes to keep active in
any situation encountered. However, in some cases, one may wish to directly
activate or de-activate some brain process. For that reason, the Γi (i = 1, . . . , n)
parameters, henceforth simply referred to as gamma parameters, have been
introduced (see Eq. (8.4)). The values of the gamma parameters are not ob-
tained from the state variables, but are instead set directly by the brain pro-
cesses. For example, a brain process j may, under certain circumstances, set
the parameter Γi of some brain process i either to a large positive value (in
order to raise the utility ui, so as to activate brain process i) or a large nega-
tive value (to achieve the opposite effect, i.e. de-activation of brain process i).
However, once the intended result has been achieved, Γi should return to its
default value of zero. This is achieved by letting Γi vary (at all times) as

τΓ
i Γ̇i = −Γi (8.6)

where τΓ
i is a time constant7, determining the decay rate of Γi. Thus, in the

normal situation Γi is equal to zero, whereas if some brain process abruptly
sets Γi to a value different from zero, it subsequently falls off exponentially.

The differential form of Eq. (8.4) has the important effect of filtering out the
noise which is always present in sensor readings and therefore also in the state
variables. Thus, for example, if a given sensor fails to give readings for a brief
interval of time (a few ms, say), the corresponding state variable will drop to
zero. However, because of the time constant (usually of order 0.1 - 0.3 s) in the
utility functions, a brief interruption in the sensor readings will only cause a
small fluctuation in the corresponding utility value, as illustrated in Fig. 8.2.

8.2.3 Activation of brain processes

As is evident from Eq. (8.4), the utility values will depend on the values of the
parameterswik, bi, τi and ci, as well as any non-zero values of the Γi parameters
(set by the brain processes) and their subsequent decay, as specified by the
τΓ
i parameters. Furthermore, the precise mappings used in the SPS (e.g. the

weights νi) will affect the state variable values zk and therefore also the utility
functions.

The construction of a decision-making system in the UF method consists of
(i) setting the parameters of the utility functions, as well as specifying (ii) the
mappings constituting the SPS and (iii) the use (if any) of the Γi parameters,
so as to reach the desired overall result. In many cases, this is in fact easier

7The superscript (which is not an exponent!) is introduced in order to distinguish this time
constant from τi defined in Eq. (8.4).

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

CHAPTER 8. DECISION-MAKING 111

10 20 30 40 50
time

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

u
t
i
l
i
t
y

Figure 8.3: An example of utility function dynamics, showing the variation (with time) of
three utility functions u1 (red), u2 (green) and u3 (blue).

than it may seem. However, in complex applications, it may be difficult to
set appropriate parameter values by hand. One may then apply optimization
using, for example, stochastic optimization algorithms such as particle swarm
optimization (PSO) or genetic algorithms (GAs).

In any case, assuming that one has been able to find appropriate values
for the parameters (either by hand or using some optimization method), the
form of the state variables and the utility functions is thus determined. The
decision-making is then quite straightforward in the UF method: Among the
cognitive processes, any such process with positive utility is active. Further-
more, the (motor) behavior with highest utility is active, and all other (motor)
behaviors are inactive. Of course, this does not imply that the robot will con-
stantly be moving: A motor behavior may also set the desired motor torques
(or set speeds) to zero, allowing the robot to stand still. It should be noted that
the utility functions of all brain processes are updated continuously, so that an
inactive (motor) behavior can be activated, should its utility value exceed the
utility of the currently active (motor) behavior. Similarly, an inactive cognitive
process can become active if its utility reaches a value above zero.

An illustration of the typical dynamics of utility functions is shown in
Fig. 8.3. The figure shows the variation (over time) of three utility functions
associated with motor behaviors. At any given time, the behavior with high-

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

112 CHAPTER 8. DECISION-MAKING

est utility is active. In the particular case shown in the figure the utility (u1) for
one of the behaviors (B1) was essentially constant. Since it is only the relative
utility values that matter, it is common to let one such process have (asymptot-
ically) constant utility values, by setting all the corresponding weights wik to
zero. However, for the other two behaviors, B2 and B3, whose utility functions
u2 and u3 are shown as green and blue curves, respectively, some weights wik

were non-zero. In the particular case shown here, B1 was active most of the
time, the only interruptions occurring around t = 21 s and t = 27 s, at which
points B3 was activated instead, the first time for around 2.5 s and the second
time for less than 1 s. In the time interval covered by the figure, B2 was never
activated.

As mentioned above the UF method is mainly intended for motor tasks,
and it has been successfully applied in several tasks of that kind, both in sim-
ulated and real robots8

8A specific example can be found in: Wahde, M. A general-purpose method for decision-making
in autonomous robots, LNCS, 5579, 1-10, 2009.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

Appendix A:
Matlab functions in ARSim

The following is an alphabetical list of all the Matlab functions associated with
ARSim. For each function, the library to which the function belongs is given,
along with the interface of the function and a brief description. For further
information, see the actual source code for the function in question.

AddMotionResults

Library: ResultFunctions
Interface:
motionresults = AddMotionResults(oldMotionResults, time, robot)
Description: This function updates the motion results by adding the current
position, velocity, heading, and sensor readings of the robot.

BrainStep

Library: –
Interface: b = BrainStep(robot, time);
Description: The BrainStep implements the decision-making system (i.e.
the brain) of the robot. The detailed form of this function will vary from ex-
periment to experiment.

CalibrateOdometer

Library: RobotFunctions
Interface: o = CalibrateOdometer(robot)
Description: In simulations in which an odometer is used, a call to CalibrateOdometer
is made just before the start of the simulation, in order to set the correct posi-
tion and heading of the robot.
See also: CreateOdometer

113

114 Appendix A: Matlab functions in ARSim

CheckForCollisions

Library: RobotFunctions
Interface: coll = CheckForCollisions(arena, robot);
Description: This function carries out a collision check, by running through all
arena objects (polygons) line by line, and checking for intersections between
the current line and the spherical body of the robot.

CreateArena

Library: ArenaFunctions
Interface: arena = CreateArena(name,size,objectArray)
Description: This function generates an arena, given an array of arena objects.
See also: CreateArenaObject

CreateArenaObject

Library: ArenaFunctions
Interface: arenaobject = CreateArenaObject(name,vertexArray)
Description: This function generates an arena object, given an array of coor-
dinates for vertices.

CreateBrain

Library: –
Interface: b = CreateBrain;
Description: This function generates the brain of a robot. Its exact form will
vary from experiment to experiment.

CreateCompass

Library: RobotFunctions
Interface: c = CreateCompass(name,sigma);
Description: This function generates a compass which can be used for esti-
mating the heading of the robot. The parameter sigma determines the noise
level.

CreateIRSensor

Library: RobotFunctions
Interface: s = CreateIRSensor(name,relativeAngle,size,numberOfRays,

openingAngle,range,c1,c2,sigma);

© 2012, 2015 Mattias Wahde, mattias.wahde@chalmers.se

Appendix A: Matlab functions in ARSim 115

Description: CreateIRSensor creates an IR sensor that uses the ray trac-
ing procedure described above to obtain its readings. The parameter sigma is
defined as in Eq. (3.1).

CreateMotor

Library: RobotFunctions
Interface: m = CreateMotor(name);
Description: CreateMotor generates a DC motor, using settings suitable for
a robot with a mass of a few kg.

CreateOdometer

Library: RobotFunctions
Interface: o = CreateOdometer(name, sigma);
Description: This function generates an odometer, which, in turn, provides
estimates for the position and heading of the robot. The parameter sigma
determines the noise level.

CreateRobot

Library: RobotFunctions
Interface: robot = CreateRobot(name,mass,momentOfInertia,radius,

wheelRadius,rayBasedSensorArray,
motorArray,compass,odometer,brain)

Description: CreateRobot sets up a robot, and computes the dynamical pa-
rameters typical of a robot with a mass of a few kg.

GetCompassReading

Library: RobotFunctions
Interface: c = GetCompassReading(robot, dt);
Description: This function updates the compass readings of a robot.

GetDistanceToLineAlongRay

Library: RobotFunctions
Interface: l = GetDistanceToLineAlongRay(beta,p1,p2,x1,y1);
Description: This function, which is used by the IR sensors, computes the
distance from a given point (x1, y1) to a line segment.
See also: GetIRSensorReading, GetDistanceToNearestObject.

© 2012, 2015 Mattias Wahde, mattias.wahde@chalmers.se

116 Appendix A: Matlab functions in ARSim

GetDistanceToNearestObject

Library: RobotFunctions
Interface: d = GetDistanceToNearestObject(beta, x, y, arena);
Description: This function, which is used by the IR sensors, determines the
distance between an IR sensor and the nearest object along a given ray.
See also: GetIRSensorReading.

GetIRSensorReading

Library: RobotFunctions
Interface: s = GetIRSensorReading(sensor,arena);
Description: GetIRSensorReading determines the reading of an IR sensor.

GetMinMaxAngle

Library: RobotFunctions
Interface: [aMin,aMax] = GetMinMaxAngle(v1,v2);
Description: This function determines the direction angles of the vectors con-
necting the origin of the coordinate system to the tips of a line segment.
See also: GetDistanceToNearestObject.

GetMotorSignalsFromBrain

Library: RobotFunctions
Interface: s = GetMotorSignalsFromBrain(brain);
Description: This function extracts the motor signals (one for each motor)
from the brain of the robot.
See also: MoveRobot.

GetOdometerReading

Library: RobotFunctions
Interface: o = GetOdometerReading(robot, dt);
Description: This function updates the odometer readings of a robot.

GetRayBasedSensorReadings

Library: RobotFunctions
Interface: s = GetRayBasedSensorReadings(robot, arena)
Description: This function obtains the reading of all (IR) sensors of the robot.
See also: GetIRSensorReading.

© 2012, 2015 Mattias Wahde, mattias.wahde@chalmers.se

Appendix A: Matlab functions in ARSim 117

GetTorque

Library: RobotFunctions
Interface: m = GetTorque(motor, voltage);
Description: This function determines the torque delivered by a DC motor,
given a value of the applied voltage.

InitializeMotionResults

Library: ResultFunctions
Interface: motionResults = InitializeMotionResults(robot)
Description: This function initializes a Matlab structure used for storing the
results of the simulation, i.e. the position, velocity, heading, and sensor read-
ings of the robot.

InitPlot

Library: PlotFunctions
Interface: plotHandle = InitializePlot(robot, arena)
Description: This function generates the plot of the robot and the arena.
See also: CreateArena, CreateRobot.

MoveRobot

Library: RobotFunctions
Interface: r = MoveRobot(robot,dt);
Description: MoveRobot moves the robot according to the equations of mo-
tion for a differentially steered two-wheeled robot.

ScaleMotorSignals

Library: RobotFunctions
Interface: v = ScaleMotorSignals(robot,s);
Description: This function scales the motor signals (s) to the appropriate
range, as set by the voltage requirements of the robot’s DC motors.

SetPositionAndVelocity

Library: RobotFunctions
Interface: r = SetPosition(robot,position,heading,

velocity,angularSpeed);
Description: This function places the robot at a given location, and also sets is
direction of motion, velocity, and angular velocity.

© 2012, 2015 Mattias Wahde, mattias.wahde@chalmers.se

118 Appendix A: Matlab functions in ARSim

ShowRobot

Library: PlotFunctions
Interface: ShowRobot(plot,robot)
Description: ShowRobot updates the plot of the robot using Matlab’s handle
graphics: Each part of the plot of the robot can be accessed and its position can
be be updated. ShowRobot also supports the plotting of an odometric ghost,
i.e. a plot showing the robot at the location determined by its odometer.
See also: MoveRobot.

UpdateMotorAxisAngularSpeed

Library: RobotFunctions
Interface: r = UpdateMotorAxisAngularSpeed(robot)
Description: This function determines the angular speed of each motor axis,
using the wheel speed and wheel radius.

UpdateSensorPositions

Library: RobotFunctions
Interface: s = UpdateSensorPositions(robot);
Description: This function updates the positions (and directions) of the sen-
sors as the robot is moved.

© 2012, 2015 Mattias Wahde, mattias.wahde@chalmers.se

