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Abstract

We model genetic regulatory networks in the framework of continuous–time recurrent
networks. The network parameters are determined from gene expression level time series
data using genetic algorithms. We have applied the method to expression data from the
development of rat central nervous system, where the active genes cluster into four groups,
within which the temporal expression patterns are similar. The data permit us to identify
approximately the interactions between these groups of genes. We find that generally a
single time series is of limited value in determining the interactionsin the network, but
multiple time series collected in related tissues or under treatment with different drugs can
fix their values much more precisely.

Keywords: Reverse engineering

1 Introduction

Large–scale gene expression data provide us with genome–wide information about the ge-
netic regulatory networks that control basic biological processes such as development, disease,
and the cell cycle. Time series of such measurements allow usto visualize this dynamics di-
rectly as changing intensity patterns on gene chips. The next step we would like to take is
toward understanding how these particular changing expression states come about, that is, to-
ward understanding and characterizing mathematically theunderlying dynamics of the genetic
network.

In this paper we take a first step toward such a characterization for a data set of intermediate
scale (on the order of 100 genes). While this is still an orderof magnitude or two smaller than
a typical complete eukaryotic genome, there are enough genes that we will be able to infer
something about the networks governing the particular process under study: the development of
neural structures, specifically spinal cord and hippocampus, in rats. The problem also serves to
illustrate important points relevant to applying such an analysis to other large–scale expression
data.

The task we have is of the sort called an inverse problem, or “reverse engineering”. The
problem is not, given a model of the system, to find out what itsdynamics are, but rather,
given dynamical data for it, to find a suitable model. In the present problem, “a model” means
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specifying how the protein product of each gene influences the transcription of all the other
genes. If there are

�
genes, this needs at least

��
parameters, even in the simplest possible

description (a linear model), and these require at least
��

measurements to fix them.
This simple requirement makes our reverse engineering problem very difficult, at least if

we want to solve it at the level of specifying the influence of every gene on every other one.
If we have time series of� measurements for

�
genes, we need in principle� � �

, and this
is never satisfied in current data. For example, in the data weanalyze (obtained by Wenet al.
[5]),

� � ��
and� � ��. (And note further that measuring the expression levels of more

genes only makes the problem worse.)
Thus we have to limit our ambitions and try to describe thingsas well as we can using

a smaller number of variables (and thus fewer parameters in our model). We do this here
by exploiting the findings of Wenet al. [5], who succeeded in clustering the genes into five
groups, within each of which the temporal development of expression levels was highly similar.
Neglecting the differences within these clusters, then, approximately speaking, there are only
five independent degrees of freedom in the system, not 65. Now, with time series of length 10,
we have more measurements than parameters, so we can hope to determine a model from the
data.

That is the task we carry out in this paper. We construct a model of four interacting units,
each associated with one of the clusters of Wen at al. (Genes in their fifth cluster have approx-
imately constant expression levels, so they are dynamically trivial and are not considered in
the model.) For each unit, there are six parameters: a time constant that specifies how rapidly
its expression level responds to changes in the expression levels of other genes, four numbers
(each of which can be either positive or negative) describing how its transcription rate is af-
fected by the expression levels in the four clusters (including itself), and a number assocatied
with the intrinsic transcription rate (i.e., in the absenceof regulation). The model is almost the
simplest set of first–order differential equations one can write for these variables; it is like a
linear model except that the sum of these influences is subjected to a sigmoid nonlinearity to
keep expression levels from going negative or exceeding a maximum value.

However, even for this reduced model, it will turn out that wedo not have sufficient data
to make an unambiguous fit. The different measurements in a time series are not independent,
so we do not really have as many independent data points as we might naively have thought.
To deal with this difficulty, we adopt a statistical strategy. We employ a technique (a genetic
algorithm) that permits us to find many different parameter sets that fit the data for a given
quality–of–fit criterion. By running it many times with different random number seeds, we
obtain empirical sample distributions of the parameters inthe models. Some parameters will
vary wildly across their distributions; these are not well–determined. However, others will turn
out not to fluctuate strongly, and we can place some confidencein their values. In this way,
we will be able to make some reliable inferences about the networks governing nervous system
development in this animal. Furthermore, the analysis willalso indicate how to design future
experiments to permit us to specify the network more accurately.

The paper is organized as follows. Section 2 describes the data we work with: how it was
obtained from the measurements of Wenet al. and how we preprocess it before applying the
model to it. Section 3 describes the model sketched above in more detail. Section 4 describes
the genetic algorithm used to fit the model parameters. In section 5 we try to carry out the
statistical analysis on each of the two time series (spinal cord, hippocampal) separately. We
find that almost no parameters are well–determined by eithersingle time series by itself – the
data simply do not probe enough of the state space of the network. Thus, in section 6, we
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apply the model to the two series taken together (with an extra parameter per unit to account
for possible differences in the intrinsic transcription rate in the two tissues). Now we find that
the network parameters are much better determined, and we can identify the chief influences on
the transcription of genes in the respective clusters. In the Discussion, we consider especially
the implications for future analysis of this kind for other systems.

2 The data

The analysis in this paper is based on the data obtained by Wenet al. [5] consisting of measure-
ments of gene expression levels for of order one hundred genes during the development of the
central nervous system of rats. Each gene was measured at 9 different points in time (of which
the last, measured for the adult animal, was not used in this study). The first measurement was
made 10 days before birth, and the intervals between measurements were 2 or 3 days in the
period before birth and 7 days after birth.

The data contain measurements from two different developing tissues: spinal cord and
hippocampus. Neglecting the genes for which data were available from only one of the two
tissues, we were left with data from 66 genes. Following the procedure used by Wenet al., these
were clustered into four groups, each with its own characteristic temporal expression profile.
(They also identified a fifth group of genes with essentially constant expression levels, but we
ignore them, since they do not play any dynamical role.) As emphasized in the Introduction,
this clustering was necessary to reduce the number of degrees of freedom in the analysis to
something smaller than the number of data.

In Figs. 1 and 2 the four temporal expression patterns (called “waves” by Wenet al.) are
shown for hippocampal and spinal cord tissues, respectively. Each point represents the average
expression level, normalized to the range��� ��, of the genes comprising the corresponding
wave. The numbering of the waves should be evident from the figures: genes in wave 1 are
active in the early stages of development, followed by genesin wave 2, etc.

3 The model

It is important to appreciate that, even before clustering,gene expression time series represent
a coarse–grained description of the dynamical system. Partof the coarse–graining is spatial:
the measurements are averages over the different kinds of cells in the tissue in question. And
part of it is temporal: a full dynamical description would include concentrations of proteins
and many other molecules, since reactions involving these molecules transduce signals that
influence transcription. However, the characteristic times for these reactions are orders of mag-
nitude faster than those governing transcription. These fast, unobserved variables essentially
determine the effective interactions that can be measured on longer timescales between the
slow variables. Only these effective interactions can be measured in long–timescale experi-
ments, and these are the parameters of the models we construct.

It is thus evident that it would be meaningless to try to modelthe system microscopically.
The nature of the phenomenon we are studying, the data and thecoarse–graining we have been
forced to apply to it all dictate a phenomenological level ofdescription, such as the differential
equations

�� ����� � ���	�
 � � ��� ��� ��� �� 	�

�� � (1)
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The quantities��	�
 represent the average mRNA concentrations for the clusters, labeled by the
index�. For the function

�	�
we take a sigmoid form to enforce the conditions that expression
levels can not get too large or fall below zero. We choose

�	�
 � 	� � ���
��
; this means

that�� is the expression level normalized by its maximum value. A model of almost this form,
with diffusion added, was used successfully at the single–gene level by Reinitz and Sharp [3],
to modelevestripe formation in drosophila.

We make no particular assumptions about the connections��� , biases
��, or time constants��, so a total of

� 	� � �

parameters need to be determined for a network with

�
expression

clusters.
All cells in any given individual share the same genetic material, so in a model for the

complete network, the parameters would be the same in all cells and tissues. Here, we are
trying to construct a reduced model in which we restrict our attention to genes whose expression
levels vary in a small number (2) of tissues. The constant expression levels of the remaining
genes can then be absorbed into the

��, but as these levels might differ from tissue to tissue, the�� must be allowed to be tissue–dependent.
The model (1) is not the most general one. In particular, the argument of the sigmoid need

not be linear in the��. One can employ a general power series expansion:

�� ����� � ���	�
 � � ��� ��� ��� �� 	�
 ���� ������ 	�
�� 	�
 � � � �
�� � (2)

Terms in the second sum where� or 	 is one of the genes with time–independent (but tissue–
dependent) expression levels lead, in the reduced model that does not explicitly describe these
genes, to effective tissue–dependent��� 's, in the same way that we obtained tissue–dependent��'s in the simple model (1).

A commonly–proposed modeling strategy is to take the limit where genes are treated as
either fully “on” (�� � �) or fully “off” ( �� � �

). Then the most general possible description
involves all possible Boolean functions of

�
inputs. A model like (2), with all the nonlinear

terms up to order
�

, describes this case if we replace the sigmoid
�	�
 by a sharp threshold

function and let the�� 
 �
. However, as pointed out by Kauffman [1], high–order combi-

natorial control (such as would be implemented by high–order terms in the expansion of the
argument of

�	 
 in Eq. (1) is difficult to implement biochemically. Thus one may hope that
relatively few significant high–order terms will be necessary to describe real genetic networks.
We are indeed forced into adopting this hope as a working hypothesis by the paucity of the data
available to us in the present work. Adding all the terms with���� would add

��
parameters,

and even with the dimensionality reduction given by the clustering, the data would be totally
inadequate to determine a model of this size. Thus we confine our analysis to the model of Eq.
(1) with tissue–dependent biases

��.
For computational convenience, we do not actually work withthe differential equations,

but rather with the discrete–time maps

��	� ���
 � ��	�
 � ����

����	�
 � � ��� ��� �� 	�
 � �� � ������� �

(3)

where we have parametrized the tissue–dependent biases as
�� � ���, with

� � �� for spinal
cord and hippocampus, respectively. In the limit

����� 
 �
, Eq. (3) converges to Eq. (1). In

fact, we will find values of the�� � ��
, so the discrete–time approximation should be quite

good.
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4 The algorithm

We have used a genetic algorithm (hereafter GA) to determinethe parameters of the network.
Evolutionary algorithms, of which GAs are a special case, have received widespread attention
in recent years. Such algorithms are especially useful whenthe search space has a complex
error landscape. Here only a short description of the GA willbe given. For a more complete
description, see, e.g. Mitchell [2].

In a GA, a population of� (the population size) candidate solutions, called individuals,
is used. Each individual has a string of digits (the chromosome) associated with it. Initially,
the values of the digits in the chromosome (the genes) are taken to be random, and the cor-
responding individuals comprise the first generation. Eachstring yields, when decoded, the
parameters��� � �� � ��, and

�� of a network. (The weights��� , biases
�� and tissue–dependent

bias differences
�� are taken initially to be uniformly distributed between

����� and
�����.)

Each network thus obtained is evaluated, by iterating Eq. (3) from a suitable starting point
(see below), and the deviation between the time series obtained from the integration and the
data is recorded. Thus, the total deviation for a network is given by

� � �� � 	�� ���
�
��

�
(4)

where
�

is the total number of points used in the comparison,�� are the data points and��
the values obtained from the integration. The parameter� is simply a scale factor that plays
no role in the algorithm. For convenience we assign it a value0.1, corresponding to typical
experimental error bars in the data, to make it easier to judge the overall quality of fit at a given�
. The fitness of the network in question is (conventionally) defined by

� � �
�� � � (5)

Thus, the smaller the deviation, the larger the fitness.
When all individuals have been evaluated and fitnesses have been assigned, the next gener-

ation is formed. In order to be able better to distinguish individuals with similar fitness values,
new quantities called ”rank fitnesses” are assigned througha ranking process. (The original
fitness values

�
are therefore sometimes referred to as “raw” fitnesses.) In this process, the

individual with the highest raw fitness is assigned rank fitness�, the second best individual is
assigned rank fitness� � �, etc., down to the worst individual, whose rank fitness is 1. Two
parent individuals are selected with probabilities directly proportional to their rank fitnesses.
Then, with probability	
 (the crossover probability) the two chromosomes are cut at aran-
domly chosen point along the string, and the four parts are joined crosswise. With probablity
� � 	
 the two parents are left unchanged. Either way, the two strings are then subjected to
mutation, in which the individual genes are changed to new random values with probability
	�.

This process – selection, crossover, and mutation – is repeated until � new individuals
have been formed. The� new individuals make up the second generation, which is evaluated
in the same way as the first. This process is repeated until a satisfactory network with high
(raw) fitness is obtained. The inverse problem of determining the network parameters given
the time series data is far from trivial and can be approachedin several different ways, and
some experimenting was required in order to find the best way.In the method chosen, first,
the equations (3) were iterated from the first point to the last (and the deviations measured at
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those times for which data points were available), then the equations were iterated from the
second point to the last etc. until the final iteration which started with the penultimate point
and continued to the final point. Thus the fitness measured thepredictive ability of the model
for both short and long intervals between initial and test points. This method turned out to be
both efficient (in terms of integration times) and robust.

5 Analysis of single time series

As a first step in the analysis, the reverse engineering algorithm was applied separately to each
of the two time series. For each time series, the reverse engineering algorithm was applied 250
times with different random starting weights, with

���� � �
. The runs with hippocampal data

were stopped at
� � ������, corresponding to an average deviation between measured data

points and network output of
����, and the runs with spinal cord data, for which it happened be

easier to obtain a good fit, were stopped at
� � ������, corresponding to an average deviation

of
����. The value of� was 0.1. The results are shown in the two panels of Table 1. Figures

3 and 4 show the results in a different way, as histograms of the values of the��� found in the
different runs.

We also show (Table 2) a simplified representation of the results in which significant pa-
rameters (i.e. those with averages exceeding the corresponding standard deviation) with values
in the ranges��� ������� and ���

�
���� ��� are denoted by plus and minus signs, respectively,

and values in the ranges������� ������ and ������ � ��
�
����� are denoted by double plus

and minus signs, respectively. For those parameters for which (the modulus of) the average
doesnot exceed the standard deviation, the corresponding entry is zero.

It is evident from all three representations of the results that a single time series is not
sufficient to constrain more than a few of the network parameters. The fact that one time
series is not sufficient to constrain the network parametersagrees with the results obtained for
artificial data by Wahde and Hertz [4].

6 Analysis of multiple time series

Repeating the runs in Table 2 but using both time series, we obtained the results shown in Fig.
5 and Table 3a. For these runs, the termination criterion was

� � ������. We note that, with
two time series, the algorithm is able to pin down more parameters. Furthermore, an important
consistency check can be made: comparing Table 3a with Table2 one sees that the parameters
found to be well–determined by either single time series arealso found to be well–determined
by the joint data. An exceptional case is���, for which the single series disagree strongly. Here
the joint series results agree with those of the hippocampalseries. We can see by examining the
single–series histograms for this parameter that the hippocampal data indicate a more certainly
positive value than the spinal cord data do a negative one, sothe outcome for the joint series is
not surprising: the less equivocal data decide the question.

All the above results were obtained with the maximum weight absolute value
���� �

�
. The fact that many of the histograms are concentrated around either

����� or
�����

suggests that we should explore fits in which larger weights are allowed. Fig. 6 shows the
weight histograms obtained for the combined time series with

���� � ��. It is evident that
good fits can also be obtained with these large allowed weightranges. It even looks as if even
larger values would give good fits, since many of these histograms are still concentrated near

6



the upper or lower ends of the allowed range (though they are not as concentrated as those for���� � �
). Indeed, we find (results not shown) that such solutions do give good fits.

Apparently, then, we conclude that the data do not exclude solutions with very large weight
values. It is also apparent, however, comparing Figs. 5 and 6, that as

���� increases, all the
weights scale up roughly together. That is, the weights are determined (to the extent that they
are) only up to an overall scale factor.

It is easy to see why this happens. If all the weights in some good solution are multiplied
by a large factor, the function

�	 
 approaches a step function. Then, at any time any unit is
approaching either 1 or 0 exponentially, and it switches between these two possibilities when
its net input

�� ��� ����� 	�
 passes through zero. At these points,��	�
 has abrupt changes
in slope. Such behaviour is unrealistic in the present context, but its presence or absence is
unlikely to affect the quality of fit on the data points we haveavailable. Thus, we must exclude
such very large weightsa priori.

Using the average network parameters obtained with
���� � �� from the combined time

series and iterating from the first data points, the expression level curves shown in Figs. 7 and
8 were obtained. For the average network, the fitness was 0.6186, i.e. slightly higher than the
value used for terminating the individual runs. These curves do not exhibit rapid changes in
slope of the kind described above, so we conclude that

���� � �� is not artificially large.

Pruned networks

As is evident from Table 3, not all weights obtained from the reverse engineering process are
significant. When the non–significant weights are put to zero, the perfomance of the resulting
network is, in general, not very impressive. For example, for the case

���� � ��, a fitness
value of less than 0.3 is obtained, compared with more than 0.6 for the average network. This
is perhaps not so surprising, since the parameters that are not set to zero still have signifi-
cant standard deviations. However, if the reverse engineering procedure is applied again, with
non–significant parameters (from the original run) clampedat zero and the other parameters
initialized with random values, a much better result is obtained, and the remaining parame-
ters are determined more precisely. We performed this procedure for both

���� � �
and���� � ��.

The significance criterion we used for determining whether to remove weights is somewhat
arbitrary, so we also experimented with another one: the ratio of the total numbers of positive
and negative values of a given weight found across all the runs that achieved the fitness crite-
rion. Fow

���� � �
we found that if we required this ratio to be greater than 4 or less than 1/4

(i.e., at least 80% of the weight in the histogram on one side of zero or the other), we obtained
the same results as in Table 3a except that two of the biases,

�� and
��, now passed the test.

Relaxing the criterion somewhat, now only asking that 2/3 ofthe weight in the histogram be
one one side of zero or the other, we found two more weights,��� and���, that also reached
significance.

These constrained fits provide a useful consistency check onconclusions drawn from the
unconstrained ones. It is therefore reassuring that they lead to nearly the same assignments of
significant weights from those in Table 3.

In the light of these results, we propose the following reverse engineering procedure:

1. Run the reverse engineering algorithm, without introducing any particular constraints (ex-
cept the maximum allowed values) on the network parameters.Make a sufficient number of
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runs (100–250) to form histograms of the network parameters.
2. Determine the averages and standard deviations of the network parameters using the results
from step 1.
3. Set non–significant parameters (if any) to zero. If there areno non–significant parameters,
end the procedure.
4. Rerun the reverse engineering algorithm, with non–significant weights clamped at zero. If
the results (measured by the fitness) are as good, or almost asgood, as for the previous set of
runs, form the network averages and return to step 3. If instead the results are significantly
worse than in the previous run, discontinue the procedure.
5. Repeat the entire procedure for different values of

����.

A conservative inference strategy then dictates that only weights which appear significant in
both pruned and unpruned models, for all values of

����, should be judged significant.
Based on the results above, we then summarize what we have learned about the network

governing CNS development diagrammatically in Fig. 9. Onlysignificant connections are
shown. From this provisional picture we can see, for example, that

� Genes in cluster 4 (and possibly cluster 2) are responsible for lowering the expression
level of those in cluster 1 as development proceeds.

� Clusters 2 and 3 get most of their their positive input from cluster 1, so their rises and
subsequent falls in expression level are apparently drivenby the initially high expression
level of cluster 1 and its subsequent falloff. The fact that cluster 3 falls off more severely
from its maximum as development proceeds is attributable torepression from cluster 4.

� The rise in expression level for cluster 4 is apparently driven mostly by clusters 1 and 3,
and it is limited by repression within cluster 4 itself.

Thus, our analysis makes it possible to understand of what causes the various rises and falls
in expression for different groups of genes as the genetic control network evolves in CNS
development. These explanations are not evident from mere examination of the data (Figs.
1 and 2). They are, of course, provisional, because future data might suffice to determine
some of the parameters that are not well–determined at present, and these could change our
explanations. However, the present story is the most we can say on the basis of the present
data.

7 Discussion

It is instructive to formulate what we have done as an exercise in statistical inference. Initially
(i.e., before we have any data), all we assume about the weights in the network is that they lie in
a hypercube of size

����� on each side; thea priori probability density of the weights is uni-
form within this volume. As a result of the data, this initially uniform probability cloud shrinks,
so thea posterioridensity is mostly concentrated in a much smaller region of parameter space.
If we had sufficient data (and if the network were really exactly describable by a model of the
form we use), the posterior density would get concentrated to a single point, representing the
true network. We are far from able to achieve this unique solution (the problem remains under-
determined), but we have also come a good way froma priori total ignorance. The histograms
of Figs. 3-6 are our estimates of the marginal probability densities of the individual weights
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(i.e. average cross–sections of the probability density along the different weight axes), and
they are evidently far from uniform. The probability cloud is evidently quite compressed along
certain axes; these correspond to our well–determined weights.

We found that a few of our decisions about significance of parameters were dependent on
the significance criterion we chose, and one should exercisecaution in drawing conclusions
about these parameters. On the other hand, the fact that the significance of most weights is
robust against such variations in the criterion gives us confidence in the main features we have
identified in the structure of this regulatory network (at our coarse–grained level).

Of course, examination of the marginal distributions estimated by our histograms or of the
standard deviations in, e.g., Table 1 gives only a partial picture of the anisotropic compression
of the parameter probability cloud implied by the data. Moreinformation is provided by the
covariances of the parameters. We have examined these. A fewof the weights (��� and

���) were found to be strongly anticorrelated with biases (
�� and

��, respectively). That is,
the probability density (marginalised with respect to all other parameters) exhibits a tendency
toward an approximately diagonal ridge in the��� ��� resp.��� ���-plane. This means that
the respective clusters (3 and 4) have significant expression without input from other clusters,
or receive significant input from cluster 2, or some combination of these, but we cannot be
certain about the relative strengths of these two contributions – knowledge of this correlation
does not permit us to estimate any of the individual parameters more precisely.

Our finding of significant improvement in the compression of the probability cloud when
we used two time series instead of one carries an important lesson for future experimental
design and analysis. It does not help much to make more closely–spaced measurements in
single time series, since successive points in a single series lie along the same trajectory in the
state space of the network and are therefore not independent. Multiple time series, whether (as
here) in different tissues, with different drug treatments, or with different genes knocked out or
artificially overexpressed, provide dynamical information in different parts of the state space
and therefore constrain the model more tightly. We found this effect earlier with artificial data
[4], and the present results confirm it. This provides some basis for cautious optimism about
how well we will generally be able to understand genetic networks from data that are likely to
be available, as well as some guidance for planning the measurements.

The degree of success we have achieved in determining the network depends crucially on
the coarse–graining achieved by clustering the genes into asmall number of groups. Such a
dimensionality reduction is necessary quite generally forany large–scale expression data likely
to be available in the near future: There are simply too many genes, and therefore too many
parameters, to hope to be able to pin them all down uniquely unless thousands of time series of
data are employed. Perhaps we were lucky that a simple clustering was possible in the present
case, and it would be desirable to try other methods of dimensionality reduction to test the
robustness of our results. We are presently exploring usingprincipal component analysis in an
alternative coarse–graining strategy.
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Figure 1: Waves of expression for the hippocampal data.
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Figure 2: Waves of expression for the spinal cord data.
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Figure 3: Histograms,
���� � �

, spinal cord data.
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Figure 4: Histograms,
���� � �

, hippocampal data.
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Figure 5: Histograms,
���� � �

, both data sets.
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Figure 6: Histograms,
���� � ��, both data sets.
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Figure 7: Curves of expression levels for the hippocampal data. Dots: data points; Solid lines:
levels obtained from the average network.
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Figure 8: Curves of expression levels for the spinal cord data. Dots: data points; Solid lines:
levels obtained from the average network.
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1 2

3 4

Figure 9: Diagrammatic representation of the final network obtained for
���� � �

. Thick
lines denote weights whose magnitude exceeds

������. All biases were non–significant.
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� ��� ��� ��� ��� �� ��
1 2.92�1.73 -1.15�2.62 0.17�2.72 -3.30�1.58 0.88�2.28 13.81�4.97

2 2.86�1.80 -1.34�2.51 0.82�2.63 -1.24�2.67 1.16�2.08 5.27�1.91

3 3.48�1.40 0.07�2.99 -0.73�2.43 -2.33�2.34 1.34�2.13 4.28�1.08

4 2.41�2.28 0.63�2.85 2.09�2.47 -2.67�2.21 0.05�2.11 10.26�2.47

� ��� ��� ��� ��� �� ��
1 -0.13�2.05 -2.72�1.82 -1.65�2.16 -0.11�2.52 2.17�1.60 10.81�3.80

2 1.87�1.79 -1.29�2.34 -0.74�2.37 0.42�1.88 2.14�2.01 4.11�1.01

3 3.50�1.74 0.33�2.70 -0.98�2.28 -2.95�1.57 1.91�2.26 4.97�1.05

4 -2.32�2.33 2.21�1.72 1.97�2.24 2.85�1.88 -0.01�2.19 15.04�2.03

Table 1: Upper panel: hippocampal data, lower panel: spinalcord data.
���� � �

.
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� ��� ��� ��� ��� �� ��
1 ++ 0 0 -- 0 13.8
2 ++ 0 0 0 0 5.3
3 ++ 0 0 0 0 4.3
4 + 0 0 -- 0 10.3

� ��� ��� ��� ��� �� ��
1 0 -- 0 0 + 10.8
2 + 0 0 0 + 4.1
3 ++ 0 0 -- 0 5.0
4 0 + 0 ++ 0 15.0

Table 2: Simplified version of Table 1.
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a)

� ��� ��� ��� ��� �� �� ��
1 ++ -- 0 -- 0 17.5 --
2 ++ - 0 0 0 4.6 +
3 ++ 0 0 -- 0 5.0 0
4 ++ + ++ -- 0 15.5 ++

b)

� ��� ��� ��� ��� �� �� ��
1 0 -- 0 -- 0 20.3 --
2 + -- 0 0 + 5.1 +
3 ++ 0 - - + 5.6 0
4 + 0 ++ -- 0 16.6 ++

Table 3: Simplified tables from runs with both data series using
���� � �

(a) and
���� � ��

(b).
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