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Abstract

We model genetic regulatory networks in the framework of contindtinne recurrent
networks. The network parameters are determined from gene expressbtinteyseries
data using genetic algorithms. We have applied the method to exgmedsia from the
development of rat central nervous system, where the active genes clusfeuirgroups,
within which the temporal expression patterns are similar. The dataipes to identify
approximately the interactions between these groups of genes. We fincetiettly a
single time series is of limited value in determining the interactionthe network, but
multiple time series collected in related tissues or under treatment \ifigihedit drugs can
fix their values much more precisely.
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1 Introduction

Large—scale gene expression data provide us with genorde-wiormation about the ge-
netic regulatory networks that control basic biologicalqasses such as development, disease,
and the cell cycle. Time series of such measurements allaw vsualize this dynamics di-
rectly as changing intensity patterns on gene chips. The step we would like to take is
toward understanding how these particular changing esjorestates come about, that is, to-
ward understanding and characterizing mathematicallymigkerlying dynamics of the genetic
network.

In this paper we take a first step toward such a charactemizéir a data set of intermediate
scale (on the order of 100 genes). While this is still an oadenagnitude or two smaller than
a typical complete eukaryotic genome, there are enoughsgibia¢ we will be able to infer
something about the networks governing the particulargg®ander study: the development of
neural structures, specifically spinal cord and hippocamniourats. The problem also serves to
illustrate important points relevant to applying such aalgsis to other large—scale expression
data.

The task we have is of the sort called an inverse problem,emetse engineering”. The
problem is not, given a model of the system, to find out whatlyjssamics are, but rather,
given dynamical data for it, to find a suitable model. In thegent problem, “a model” means



specifying how the protein product of each gene influencedrimscription of all the other
genes. If there ar& genes, this needs at led$t parameters, even in the simplest possible
description (a linear model), and these require at |8&smeasurements to fix them.

This simple requirement makes our reverse engineeringgroliery difficult, at least if
we want to solve it at the level of specifying the influence wérg gene on every other one.
If we have time series dff measurements fa¥V genes, we need in principle > N, and this
is never satisfied in current data. For example, in the datanaé/ze (obtained by West al.
[5D, N = 66 andT =~ 10. (And note further that measuring the expression levels afem
genes only makes the problem worse.)

Thus we have to limit our ambitions and try to describe thiagswell as we can using
a smaller number of variables (and thus fewer parametersiirmmdel). We do this here
by exploiting the findings of Weset al. [5], who succeeded in clustering the genes into five
groups, within each of which the temporal development ofesgion levels was highly similar.
Neglecting the differences within these clusters, thepr@pmately speaking, there are only
five independent degrees of freedom in the system, not 65, Witkvtime series of length 10,
we have more measurements than parameters, so we can hagiertaide a model from the
data.

That is the task we carry out in this paper. We construct a hrafdeur interacting units,
each associated with one of the clusters of Wen at al. (Gertesir fifth cluster have approx-
imately constant expression levels, so they are dynarmit@ial and are not considered in
the model.) For each unit, there are six parameters: a timstaot that specifies how rapidly
its expression level responds to changes in the expressiets|of other genes, four numbers
(each of which can be either positive or negative) desagilhiow its transcription rate is af-
fected by the expression levels in the four clusters (iriogidtself), and a number assocatied
with the intrinsic transcription rate (i.e., in the absen€eegulation). The model is almost the
simplest set of first—order differential equations one caitewor these variables; it is like a
linear model except that the sum of these influences is digbj¢o a sigmoid nonlinearity to
keep expression levels from going negative or exceedingxnmuan value.

However, even for this reduced model, it will turn out that deenot have sufficient data
to make an unambiguous fit. The different measurements meageries are not independent,
so we do not really have as many independent data points asghe maively have thought.
To deal with this difficulty, we adopt a statistical strate§ye employ a technique (a genetic
algorithm) that permits us to find many different parametds shat fit the data for a given
quality—offit criterion. By running it many times with difent random number seeds, we
obtain empirical sample distributions of the parameterhémodels. Some parameters will
vary wildly across their distributions; these are not weditermined. However, others will turn
out not to fluctuate strongly, and we can place some confidenteir values. In this way,
we will be able to make some reliable inferences about thearks governing nervous system
development in this animal. Furthermore, the analysis aldb indicate how to design future
experiments to permit us to specify the network more acely:at

The paper is organized as follows. Section 2 describes tiaevework with: how it was
obtained from the measurements of Weral. and how we preprocess it before applying the
model to it. Section 3 describes the model sketched aboveie detail. Section 4 describes
the genetic algorithm used to fit the model parameters. Itioged we try to carry out the
statistical analysis on each of the two time series (spiaad,chippocampal) separately. We
find that almost no parameters are well-determined by edfihgte time series by itself — the
data simply do not probe enough of the state space of the detvilthus, in section 6, we



apply the model to the two series taken together (with aragxd@irameter per unit to account
for possible differences in the intrinsic transcriptioteran the two tissues). Now we find that
the network parameters are much better determined, andwedenatify the chief influences on
the transcription of genes in the respective clusters. érltiscussion, we consider especially
the implications for future analysis of this kind for othgsgems.

2 Thedata

The analysis in this paper is based on the data obtained byeY#ri5] consisting of measure-
ments of gene expression levels for of order one hundredsgiuming the development of the
central nervous system of rats. Each gene was measuredftr@mti points in time (of which
the last, measured for the adult animal, was not used intilnitys The first measurement was
made 10 days before birth, and the intervals between measuis were 2 or 3 days in the
period before birth and 7 days after birth.

The data contain measurements from two different develppissues: spinal cord and
hippocampus. Neglecting the genes for which data wereablaifrom only one of the two
tissues, we were left with data from 66 genes. Following tlee@dure used by Waeati al.,, these
were clustered into four groups, each with its own charatiertemporal expression profile.
(They also identified a fifth group of genes with essentiatigstant expression levels, but we
ignore them, since they do not play any dynamical role.) Apleasized in the Introduction,
this clustering was necessary to reduce the number of degfeieeedom in the analysis to
something smaller than the number of data.

In Figs. 1 and 2 the four temporal expression patterns @allaves” by Wenet al) are
shown for hippocampal and spinal cord tissues, respegtitagich point represents the average
expression level, normalized to the ran@el], of the genes comprising the corresponding
wave. The numbering of the waves should be evident from thedsy genes in wave 1 are
active in the early stages of development, followed by gémasve 2, etc.

3 Themodd

It is important to appreciate that, even before clusterjgge expression time series represent
a coarse—grained description of the dynamical system. dP#ne coarse—graining is spatial:
the measurements are averages over the different kinddl®frcéhe tissue in question. And
part of it is temporal: a full dynamical description woulctinde concentrations of proteins
and many other molecules, since reactions involving theskecgules transduce signals that
influence transcription. However, the characteristic sirfue these reactions are orders of mag-
nitude faster than those governing transcription. Thesk tamobserved variables essentially
determine the effective interactions that can be measuneldrmer timescales between the
slow variables. Only these effective interactions can basued in long—timescale experi-
ments, and these are the parameters of the models we canstruc

It is thus evident that it would be meaningless to try to mdbelsystem microscopically.
The nature of the phenomenon we are studying, the data amdainge—graining we have been
forced to apply to it all dictate a phenomenological levedle§cription, such as the differential
equations

ds;

Tingy = ~Silt) +g (bi + Zwijsj(t)) : 1)

J
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The quantitiesS; (¢) represent the average mRNA concentrations for the clystdeled by the
index:. For the functiory(x) we take a sigmoid form to enforce the conditions that exjwass
levels can not get too large or fall below zero. We chogse = (1 + e~*)~!; this means
that.S; is the expression level normalized by its maximum value. Aletof almost this form,
with diffusion added, was used successfully at the singleedevel by Reinitz and Sharp [3],
to modelevestripe formation in drosophila.

We make no particular assumptions about the connectigniases;, or time constants
7i, SO a total ofN (IV + 2) parameters need to be determined for a network withxpression
clusters.

All cells in any given individual share the same genetic makeso in a model for the
complete network, the parameters would be the same in 4l aed tissues. Here, we are
trying to construct a reduced model in which we restrict @atardion to genes whose expression
levels vary in a small number (2) of tissues. The constantesgion levels of the remaining
genes can then be absorbed into#hdut as these levels might differ from tissue to tissue, the
b; must be allowed to be tissue—dependent.

The model (1) is not the most general one. In particular, tharaent of the sigmoid need
not be linear in thes;. One can employ a general power series expansion:

Tidd—? =-5(t)+yg <bi + Zwiij(t) + z};wz‘ijj(t)Sk(t) + - ) : 2)

J J
Terms in the second sum whet®r & is one of the genes with time—independent (but tissue—
dependent) expression levels lead, in the reduced modaddlea not explicitly describe these
genes, to effective tissue—dependent's, in the same way that we obtained tissue—dependent
b;'s in the simple model (1).

A commonly—proposed modeling strategy is to take the linfieve genes are treated as
either fully “on” (S; = 1) or fully “off” ( .S; = 0). Then the most general possible description
involves all possible Boolean functions of inputs. A model like (2), with all the nonlinear
terms up to ordefV, describes this case if we replace the sigmgid) by a sharp threshold
function and let the;; — 0. However, as pointed out by Kauffman [1], high—order combi-
natorial control (such as would be implemented by high—oteiems in the expansion of the
argument ofg( ) in Eq. (1) is difficult to implement biochemically. Thus oneynhope that
relatively few significant high—order terms will be necegda describe real genetic networks.
We are indeed forced into adopting this hope as a workingtingsts by the paucity of the data
available to us in the present work. Adding all the terms with. would addN?*parameters,
and even with the dimensionality reduction given by thetelisg, the data would be totally
inadequate to determine a model of this size. Thus we confinaralysis to the model of Eg.
(1) with tissue—dependent biadgs

For computational convenience, we do not actually work \ligh differential equations,
but rather with the discrete—time maps

Si(t+ At) = S;(t) + % {—Sz-(t) +g (Z w;jSj(t) + b; + atz-)} : 3)
¢ J

where we have parametrized the tissue—dependent biases as;, with « = +1 for spinal
cord and hippocampus, respectively. In the lilhit/7; — 0, Eq. (3) converges to Eqg. (1). In
fact, we will find values of the; > At, so the discrete—time approximation should be quite
good.



4 Thealgorithm

We have used a genetic algorithm (hereafter GA) to deterthia@arameters of the network.
Evolutionary algorithms, of which GAs are a special casgehlraceived widespread attention
in recent years. Such algorithms are especially useful wihersearch space has a complex
error landscape. Here only a short description of the GAbdllgiven. For a more complete
description, see, e.g. Mitchell [2].

In a GA, a population of\/ (the population size) candidate solutions, called indigid,
is used. Each individual has a string of digits (the chromuspassociated with it. Initially,
the values of the digits in the chromosome (the genes) aentakbe random, and the cor-
responding individuals comprise the first generation. Estdhg yields, when decoded, the
parametersu;;, b;, 7;, andt; of a network. (The weights);;, biasesh; and tissue—dependent
bias differences; are taken initially to be uniformly distributed betweemV ;2 and+Winax.)

Each network thus obtained is evaluated, by iterating Exfr¢d a suitable starting point
(see below), and the deviation between the time seriesrgatdrom the integration and the
data is recorded. Thus, the total deviation for a networlsrgby

1 (Il _ Id)Q
R B (@)

where N is the total number of points used in the comparisghare the data points ang
the values obtained from the integration. The parametisrsimply a scale factor that plays
no role in the algorithm. For convenience we assign it a v8lde corresponding to typical
experimental error bars in the data, to make it easier togidg overall quality of fit at a given
0. The fitness of the network in question is (conventionallgfirted by

1
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Thus, the smaller the deviation, the larger the fitness.

When all individuals have been evaluated and fitnesses heredssigned, the next gener-
ation is formed. In order to be able better to distinguishviddials with similar fithess values,
new quantities called "rank fithesses” are assigned thr@ugdnking process. (The original
fitness valueg are therefore sometimes referred to as “raw” fithesses.hifnptrocess, the
individual with the highest raw fitness is assigned rank §isdd, the second best individual is
assigned rank fithes® — 1, etc., down to the worst individual, whose rank fithess is@o T
parent individuals are selected with probabilities digeproportional to their rank fithesses.
Then, with probabilityp. (the crossover probability) the two chromosomes are cutraha
domly chosen point along the string, and the four parts anegbcrosswise. With probablity
1 — p. the two parents are left unchanged. Either way, the twogsrare then subjected to
mutation, in which the individual genes are changed to newlaen values with probability
Pm-

This process — selection, crossover, and mutation — is tegeantil A/ new individuals
have been formed. Th& new individuals make up the second generation, which isiatad
in the same way as the first. This process is repeated untlisiasdory network with high
(raw) fitness is obtained. The inverse problem of deterrginire network parameters given
the time series data is far from trivial and can be approachestveral different ways, and
some experimenting was required in order to find the best wayhe method chosen, first,
the equations (3) were iterated from the first point to the(asd the deviations measured at

f (5)
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those times for which data points were available), then theatons were iterated from the
second point to the last etc. until the final iteration whirted with the penultimate point
and continued to the final point. Thus the fithess measuredrduictive ability of the model
for both short and long intervals between initial and teshyso This method turned out to be
both efficient (in terms of integration times) and robust.

5 Analysisof singletime series

As afirst step in the analysis, the reverse engineeringittigpmwas applied separately to each
of the two time series. For each time series, the reverseeaigng algorithm was applied 250
times with different random starting weights, with,,., = 5. The runs with hippocampal data
were stopped af = 0.6098, corresponding to an average deviation between measutad da
points and network output 6f8c, and the runs with spinal cord data, for which it happened be
easier to obtain a good fit, were stopped at 0.6711, corresponding to an average deviation
of 0.7¢. The value ofr was 0.1. The results are shown in the two panels of Table Lirésg

3 and 4 show the results in a different way, as histogramseo¥altues of thev;; found in the
different runs.

We also show (Table 2) a simplified representation of theltseguwhich significant pa-
rameters (i.e. those with averages exceeding the corrdsgpstandard deviation) with values
in the range$0, %Wmax] and[—%WmaX,O] are denoted by plus and minus signs, respectively,
and values in the rangésWiax, Wimax] and[—Wmax, —3 Wmax] are denoted by double plus
and minus signs, respectively. For those parameters facthwftihe modulus of) the average
doesnot exceed the standard deviation, the corresponding enterds z

It is evident from all three representations of the resuitt & single time series is not
sufficient to constrain more than a few of the network paranset The fact that one time
series is not sufficient to constrain the network parametgrees with the results obtained for
artificial data by Wahde and Hertz [4].

6 Analysisof multipletime series

Repeating the runs in Table 2 but using both time series, wadradd the results shown in Fig.
5 and Table 3a. For these runs, the termination criterion fvas0.6098. We note that, with
two time series, the algorithm is able to pin down more patarse Furthermore, an important
consistency check can be made: comparing Table 3a with 2atnhe sees that the parameters
found to be well-determined by either single time seriesadge found to be well-determined
by the joint data. An exceptional caseuig,, for which the single series disagree strongly. Here
the joint series results agree with those of the hippocaswrés. We can see by examining the
single—series histograms for this parameter that the bgppal data indicate a more certainly
positive value than the spinal cord data do a negative oniaesoutcome for the joint series is
not surprising: the less equivocal data decide the question

All the above results were obtained with the maximum weidigodute valueiV .« =
5. The fact that many of the histograms are concentrated dreither+W . OF —Wiax
suggests that we should explore fits in which larger weighésaiowed. Fig. 6 shows the
weight histograms obtained for the combined time serieb Wit,,,, = 10. It is evident that
good fits can also be obtained with these large allowed weagtges. It even looks as if even
larger values would give good fits, since many of these hiatog are still concentrated near



the upper or lower ends of the allowed range (though they arasiconcentrated as those for
Whax = 5). Indeed, we find (results not shown) that such solutionsig®gpod fits.

Apparently, then, we conclude that the data do not excluligigns with very large weight
values. It is also apparent, however, comparing Figs. 5 atiadaé asiV,,,, increases, all the
weights scale up roughly together. That is, the weights aterchined (to the extent that they
are) only up to an overall scale factor.

It is easy to see why this happens. If all the weights in sonwel gmlution are multiplied
by a large factor, the functiog( ) approaches a step function. Then, at any time any unit is
approaching either 1 or 0 exponentially, and it switchesvbenh these two possibilities when
its net inputh; + >°; w;;S;(t) passes through zero. At these poirfig) has abrupt changes
in slope. Such behaviour is unrealistic in the present sbnt®it its presence or absence is
unlikely to affect the quality of fit on the data points we hawvailable. Thus, we must exclude
such very large weights priori.

Using the average network parameters obtained With,, = 10 from the combined time
series and iterating from the first data points, the expoedsivel curves shown in Figs. 7 and
8 were obtained. For the average network, the fitness wa8®.&&. slightly higher than the
value used for terminating the individual runs. These csitde not exhibit rapid changes in
slope of the kind described above, so we concludelfigt, = 10 is not artificially large.

Pruned networks

As is evident from Table 3, not all weights obtained from teeerse engineering process are
significant. When the non-significant weights are put to ,zév@ perfomance of the resulting
network is, in general, not very impressive. For examplettie caséV,,x = 10, a fithess
value of less than 0.3 is obtained, compared with more th&fod the average network. This
is perhaps not so surprising, since the parameters thatcireento zero still have signifi-
cant standard deviations. However, if the reverse engmge@rocedure is applied again, with
non-significant parameters (from the original run) clampedero and the other parameters
initialized with random values, a much better result is tgd, and the remaining parame-
ters are determined more precisely. We performed this dwoeefor bothiW,,.x = 5 and
Whnax = 10.

The significance criterion we used for determining whetbeetnove weights is somewhat
arbitrary, so we also experimented with another one: the ddithe total numbers of positive
and negative values of a given weight found across all the tuat achieved the fitness crite-
rion. FowWy,.« = 5 we found that if we required this ratio to be greater than &ss than 1/4
(i.e., at least 80% of the weight in the histogram on one sidew or the other), we obtained
the same results as in Table 3a except that two of the biasesidbs, how passed the test.
Relaxing the criterion somewhat, now only asking that 2/ghefweight in the histogram be
one one side of zero or the other, we found two more weights andwss, that also reached
significance.

These constrained fits provide a useful consistency chedondusions drawn from the
unconstrained ones. It is therefore reassuring that tleytie nearly the same assignments of
significant weights from those in Table 3.

In the light of these results, we propose the following regegngineering procedure:

1. Run the reverse engineering algorithm, without introdgamy particular constraints (ex-
cept the maximum allowed values) on the network parametdeke a sufficient number of



runs (100-250) to form histograms of the network parameters

2. Determine the averages and standard deviations of the riepaoameters using the results
from step 1.

3. Set non-significant parameters (if any) to zero. If therenar@on—significant parameters,
end the procedure.

4. Rerun the reverse engineering algorithm, with non-sigaifiaveights clamped at zero. If
the results (measured by the fitness) are as good, or almgsbds as for the previous set of
runs, form the network averages and return to step 3. Ifaalsthe results are significantly
worse than in the previous run, discontinue the procedure.

5. Repeat the entire procedure for different value®igf,.

A conservative inference strategy then dictates that omigkts which appear significant in
both pruned and unpruned models, for all value®f,, should be judged significant.

Based on the results above, we then summarize what we havedeabout the network
governing CNS development diagrammatically in Fig. 9. Osilynificant connections are
shown. From this provisional picture we can see, for exantphd

e Genes in cluster 4 (and possibly cluster 2) are responsibléodvering the expression
level of those in cluster 1 as development proceeds.

e Clusters 2 and 3 get most of their their positive input fromstér 1, so their rises and
subsequent falls in expression level are apparently dbyethe initially high expression
level of cluster 1 and its subsequent falloff. The fact thaster 3 falls off more severely
from its maximum as development proceeds is attributabtegession from cluster 4.

e The rise in expression level for cluster 4 is apparentlyadrimnostly by clusters 1 and 3,
and it is limited by repression within cluster 4 itself.

Thus, our analysis makes it possible to understand of whetesathe various rises and falls
in expression for different groups of genes as the genetitralonetwork evolves in CNS
development. These explanations are not evident from memmiaation of the data (Figs.
1 and 2). They are, of course, provisional, because futut@ méght suffice to determine
some of the parameters that are not well-determined atmiremed these could change our
explanations. However, the present story is the most we @aros the basis of the present
data.

7 Discussion

It is instructive to formulate what we have done as an exelicistatistical inference. Initially
(i.e., before we have any data), all we assume about the tgeigthe network is that they lie in
a hypercube of siz8W.,,,, on each side; tha priori probability density of the weights is uni-
form within this volume. As a result of the data, this inilyaliniform probability cloud shrinks,
so thea posterioridensity is mostly concentrated in a much smaller region cdipater space.
If we had sufficient data (and if the network were really elyadescribable by a model of the
form we use), the posterior density would get concentrateal gingle point, representing the
true network. We are far from able to achieve this uniquetsmiythe problem remains under-
determined), but we have also come a good way fagoniori total ignorance. The histograms
of Figs. 3-6 are our estimates of the marginal probabilitysitees of the individual weights



(i.e. average cross—sections of the probability densiipalthe different weight axes), and
they are evidently far from uniform. The probability clowdavidently quite compressed along
certain axes; these correspond to our well-determinedhigeig

We found that a few of our decisions about significance ofrpetars were dependent on
the significance criterion we chose, and one should execeiggon in drawing conclusions
about these parameters. On the other hand, the fact thaigthiicance of most weights is
robust against such variations in the criterion gives ugidence in the main features we have
identified in the structure of this regulatory network (at oaarse—grained level).

Of course, examination of the marginal distributions eated by our histograms or of the
standard deviations in, e.g., Table 1 gives only a part@upé of the anisotropic compression
of the parameter probability cloud implied by the data. Miofermation is provided by the
covariances of the parameters. We have examined these. Afftine weights {3, and
wy9) Were found to be strongly anticorrelated with biasiesand by, respectively). That is,
the probability density (marginalised with respect to #fley parameters) exhibits a tendency
toward an approximately diagonal ridge in thg, — b3 resp.w4o — bs-plane. This means that
the respective clusters (3 and 4) have significant expressithout input from other clusters,
or receive significant input from cluster 2, or some combamabf these, but we cannot be
certain about the relative strengths of these two contdhat— knowledge of this correlation
does not permit us to estimate any of the individual pararaet®re precisely.

Our finding of significant improvement in the compressionha probability cloud when
we used two time series instead of one carries an importaabhefor future experimental
design and analysis. It does not help much to make more glagmced measurements in
single time series, since successive points in a singlesskei along the same trajectory in the
state space of the network and are therefore not independeitiple time series, whether (as
here) in different tissues, with different drug treatmentswith different genes knocked out or
artificially overexpressed, provide dynamical informatia different parts of the state space
and therefore constrain the model more tightly. We founs dffiect earlier with artificial data
[4], and the present results confirm it. This provides sonsstfar cautious optimism about
how well we will generally be able to understand genetic ek from data that are likely to
be available, as well as some guidance for planning the measumts.

The degree of success we have achieved in determining thvenketdepends crucially on
the coarse—graining achieved by clustering the genes istoal number of groups. Such a
dimensionality reduction is necessary quite generallyafgrlarge—scale expression data likely
to be available in the near future: There are simply too mameg, and therefore too many
parameters, to hope to be able to pin them all down uniqudgsarthousands of time series of
data are employed. Perhaps we were lucky that a simple ghgt®as possible in the present
case, and it would be desirable to try other methods of difopakty reduction to test the
robustness of our results. We are presently exploring ysimgipal component analysis in an
alternative coarse—graining strategy.
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Figure 1: Waves of expression for the hippocampal data.
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Figure 2: Waves of expression for the spinal cord data.
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Figure 3: Histogramd¥,.x = 5, spinal cord data.



Figure 4: Histogramg¥,.x = 5, hippocampal data.



Figure 5: Histogramd¥/,.x = 5, both data sets.
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Figure 6: Histogramgj¥/,ax = 10, both data sets.
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Figure 7: Curves of expression levels for the hippocampta. daots: data points; Solid lines:
levels obtained from the average network.
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Figure 8: Curves of expression levels for the spinal cord.dBots: data points; Solid lines:
levels obtained from the average network.
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Figure 9: Diagrammatic representation of the final netwdstamed forW,,,x = 5. Thick
lines denote weights whose magnitude excé®gds. /2. All biases were non-significant.
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Wi Wi2 w;3 Wi4 b; Ti
2.92t173 -1.15:262  0.17:272 -3.30r1s8  0.88t228 13.8Ltaor
2.86r180 -1.34:251  0.82t263 -1.24t267 1.16t208 5.27t101
3.48t140  0.07t200 -0.73t243 -2.33t23¢ 1.34t213  4.28t108
2.4%228  0.63t285 2.09t247 -2.67r221 0.05:211 10.26Ge247

Wil Wig wi3 Wig b; Ti

-0.13t205 -2.72:182 -1.65t216 -0.11t252  2.17r160 10.8Lss0
1.87:179 -1.2%234 -0.74237  0.42t188 214200 4111101
3.50t174  0.33t270 -0.98t228 -2.95t157  1.9%t226  4.97:105

-2.32:233  2.21t172 1.971224  2.85t188 -0.01t210 15.04:203

A OWN R

A OWODN PR

Table 1: Upper panel: hippocampal data, lower panel: spio@ dataW,,,x = 5.
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Tl wit Wi wiz Wig b Ti

1| ++ 0 0 -- 0 138
2| ++ 0 0 0O 0 53
3| ++ 0 0 0O 0 43
4 + 0 0 -- 0 10.3
il wi wip wiz wig b Ti

1 0 -- 0 0 + 10.8
2 + 0 0 0O + 4.1
3| ++ 0 0 - 0 50
4 0 + 0 ++ 0 15.0

Table 2: Simplified version of Table 1.
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il win wip wiz wig b Tt

1|+ - 0 - 0 175 -
2| ++ - 0 O 0 46 +
3| ++ 0 0 -0 50 0
4| ++ + 4+ -- 0 155 ++

b)

to|wit wi wiz Wig b Ti 1

1 0 -- 0 - 0 203 --
2 + -- 0 0o + 5.1 +
3| ++ 0 - - 4+ 56 0
4 + 0 4+ - 0 166 ++

Table 3: Simplified tables from runs with both data serieB@E .« = 5 (&) andi¥ .« = 10
(b).
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