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Abstract— This paper describes a method for optimization The aim of this paper is twofold: (1) to describe a
of waypoint selection for potential field navigation in au-  method for waypoint placement in potential field naviga-
tonomous robots. In the method presented here, a genetic on and (2) to introduce a method for automatic generation

algorithm (GA) is used for optimizing the potential field. e e
The chromosome of each individual encodes parametrization ©f the potential field generated by the navigation goal,

for the potential field generated by waypoints, obstacles, Obstacles, and waypoints.

and goals. The waypoints themselves are obtained through

a Voronoi tessellation of the environment in which the robot Il. POTENTIAL FIELD NAVIGATION

is operating. It is demonstrated that the algorithm allows a o o ) )

robot to navigate safely and efficiently through spaces with In potential field navigation the robot is considered as a

many obstacles, even in cases where these are placed in aparticle under the influence of an artificial potential fiéld

strongly unfavorable way. _ _ _ whose local variations reflect e.g. the positions of obstacl
Furthermore, the results from simulations were imple- and of the goal that the robot is supposed to reach [8]. The

mented successfully in an actual Khepera robot. Using a e L - .

slightly simplified ngvigation procedure pin which the rob%t potential field function is defined as the sum of an attraction
comes to a standstill between successive steps in the naviga field that pulls the robot towards the goal and a repulsive
tion, the Khepera robot managed to navigate through one of field that repels it from the obstacles. The movement is

the most difficult environments used in the simulations. executed in an iterative way, in which an artificial force is
Finally, the paper briefly describes a different implemen- induced by
tation of potential field navigation, in the path planning q -
adaptation submodule of a more advanced simulated mobile F(q) =-VU(q) 1)
robot (VirBot).
that forces the robot to move to the direction that the

I. INTRODUCTION potential field decrees, wheFeis the gradient with respect
| d . h he | ) f ob to ¢ andq = («, y) represents the coordinates of the robot
n structured environments, where the locations of o StaE’osition. The complete potential field is a superposition of

cles remain constant o, at least, can be predicted, patenty,, \.ip, tions from obstacles, waypoints (if applicabg)d
field navigation is a useful method for robotic navigation, goal:

provided that the robot can obtain information about its

location, either directly via e.g. GPS or indirectly via e.g o Do

visual sensors combined with dead reckoning. Potential Ulq) = ZUJC‘)(Q) + Z Ui (q) + U%(q), ()
field navigation was introduced in 1986 by Khatib [1], and i=1 J=1

has since then been used in many different applications (s@fere n, and n,, denote the number of obstacles and
e.g. [2], [3], [4], [5], and [6]). However, a robot using the waypoints, respectively, arld? andU?* are their potential.

simplest form of potential field navigation will often get ;s s the potential generated by the goal (navigation
stuck, due to the presence of local minima in the potentighrget).

field: since the method is gradient-based, the robot will be

unable to escape from a local minimum. The problem cap. Path generation using potential fields
be solved by the introduction of waypoints, i.e. local goals
(attractive potentials) along the path of the robot. It i$ no
trivial, however, to select the location of waypoints ane th

In general, the force defined in Eqg. (1) is not applied
directly to dictate the motion of the robot, since the mag-
nitude of the force (and hence the resulting acceleration)

exact shape of waypoint pote_ntlals. L may vary strongly depending on the location of the robot.
In [7] the authors used series of waypoints in order tqnstead the force equation is normalized as

reach the designated goal in a path planning application.
However, between each waypoint the path was constrained . ﬁ(q)
to be a straight line and the genetic algorithm was used (¢) = o’
solely for the optimization of the number of waypoints and 1)l
their locations; no potential fields were used in conjunctio and thus only used for generating the desidigbction
with these waypoints. (heading) of the robot. In the simulations reported below,
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the equations of motion of the simulated robot are taken
as

Mo+ av=A(m, + ), 4)

and
I$+ Bp = B(—1L + Tr), )

wherer, and g denote the torques on the left and right
wheel, respectivelyy is the speed of the robot and its
direction of motion.M is the mass of the robot anf
its moment of inertiac, A, 3, and B e}re constants. The Fig. 1. An illustration of a potential generating a lockinggmomenon.
parameters were set so that the simulated robots wesesimulated robot released in the upper left corner would teacied
similar to a Khepera robot, which has a diameter of 5%owards the goal position in the lower right corner of the ffgglonly to
mm and weighs around 80 grams. find itself stuck inside the wedge-like obstacle configorati

The potential field provides a desired directign..
Furthermore, a reference speed; should be specified.
The motion control is performed by means of a simple
proportional control law. Using the notatia) = 71, + Tr
andr, = —7, + 7r, the control law is defined by the two
positive parameter€' and D in the equations

QUref

A

- C (’U - vref) 5 (6)

Ty =

and

To =—D (¢ — Pref) - (7)
) ) ) ) ) Fig. 2. A Voronoi diagram. The black dots represent the eenté
In the simulations described in Sect. IV, iS kept at a obstacles, and the rings at the vertices of the resultingndirdiagram

single, low valuev!, throughout the motion, except near represent the locations of waypoints.
obstacles where an even smaller valufg;, is used.

In implementations in actual robots rather than simulated
ones, exact positions may be more difficult to obtain. In
prepared environments, the robot may be given its locations In potentials field navigation, it is a common occur-
using e.g. triangulation. Direct position information viarence that a robot gets stuck in a local minimum of
GPS can also be used (in principle), but the requirementle potential field, a situation that will be referred to as
on accuracy may be too severe in most environments: ime locking phenomenoriocal minima may appear, for
many cases, the robot must pass within centimeters froexample, due to an unfortunate placement of obstacles.
obstacles. One such situation is described in Fig. 1, in which a

However, in other environments, which have not beemobot is attracted towards a goal position in the lower right
specifically prepared for robotic navigation, the robot mayorner of the figure, but ends up stuck in a wedge-shaped
have to rely on dead reckoning (occasionally re-calibratedbstacle from which it cannot escape. In order to avoid
at certain pre-specified locations). In such cases, it isuch situations, the potential field can be augmented with
imperative that the robot move in such a way that it canwaypoints represented by shallow attractive potentibkst, t
perform dead reckoning as accurately as possible. Thiwlp steer the robot towards the goal position. However, if

. Navigation waypoints and their placement

topic will be discussed further in Sect. V-A below. waypoints are to be used, the problemvdiereto place
them must be solved. Voronoi diagrams are a possible
B. Specific potentials solution to this problem, and the method of choice in

. . ~ this paper. The method for generating such diagrams is
Potentials of goals and waypoints should be attractivgjescribed in [9], and can be summarized briefly as follows:
whereas potentials of obstacles should be repulsive. lfe obstacles are considered as point-like objects, and are

general, the equation taken as central points (Voronoi generators) for the spatia
(4-ap)? tessellation. Next, polygons are shaped by drawing lines
Ul@)=ae  # , (8) perpendicular to the lines connecting Voronoi generators,

and the corners of the resulting polygons are taken as
is used, whereg, is the position of the object (goal, the waypoint locations. The procedure is illustrated in
waypoint, or obstacle)y is a positive constant, and is  Fig. 2. When the waypoints have been placed (and their
a negative constant in the case of attractive potentiats, apotentials determined, see Sect. IV), navigation procasds
a positive constant in the case of repulsive potentials. in standard potential field navigation, with the directidn o



Fig. 3. Four snapshots showing a successful simulated rabwing from its starting position in the upper left cornertbé environment to the goal
position, marked with an X, in the lower right corner. Thegkablack circles represent obstacles, and the small blatskrdpresent waypoints. Note
that the waypoints are successively removed as the simdutateot passes in their vicinity.

motion provided by the potential field, the only difference The chromosome consists of 10 values in the range
being that waypoints are successively removed as the rob@t 1], which, during the decoding procedure, are rescaled
passes in their vincinity to prevent it from being attractedo appropriate ranges (see Sect. IV).

back towards waypoints that have already been passed.

In this paper, the obstacles are all circular and thus well Hl. SIMULATOR

represented by the potential shown in Eq. (8). However, the A simulator was written, using the Delphi 5 (Object-
waypoint placement procedure can be extended to largeériented Pascal) language, for the purpose of investigatin
non-circular obstacles as well. Such obstacles would beptimization of potential field navigation. The simulator
divided into several smaller pieces, each of which coul@enerates environments containing circular obstacles

be represented by the potential given in Eq. (8). of width w,* and one goal position. The simulated robots
o S are evaluated itV different environments. Each simulated
D. Potential field optimization robot is associated with a chromosome, and the evaluation

Once the location of obstacles in a given environmenegins with a decoding procedure, during which the param-
is known, the location of waypoints is generated detereters in the chromosome are rescaled to appropriate values.
ministically through the procedure just described. Whalext, for each simulated environment, the robot is allowed
remains to be determined is the depth (or height, in tht&o move under the influence of the potential field (whose
case of obstacles) of the potentials, denotgda,, and exact shape is determined by the parameters obtained from
ay, for the goal, obstacles, and waypoints, respectivelyhe chromosome), until one of three things occurs, namely
as well as the width of the potentials, denotgdb,, and (1) the goal is reached, (2) the simulated robot hits an
by. Furthermore, the values of the set speefis(general obstacle, or (3) a maximum timé,,. is reached. Next,
navigation) and?, (near obstacles) must be determined a¢he fitness of the simulated robot for the environment in
well as the distancé, from the closest obstacle at which question is calculated as
a simulated robot lowers its set speed frafy; to v°. Tons
Finally, the distancd,, (between a waypoint and the robot) fi= =7, 9)

atwhich the waypoint is removed must also be determme.(\j/\'/hereT is the time at which the evaluation was terminated,

Thus, in all, a total of 10 parameters must be set and, i . .
the implementation used here, their values are optimize% is the distance between the robot and the goal at the

using _a stapdard ggnetlc algorithm (GA) W'_th tournament 1ngte that theactualwidth of an obstacle, and the width of its potential,
selection, single-point crossover, and mutation. determined by the parametess andb,, may be very different.



TABLE |

termination point, and is the initial distance between the
SIMULATION SETUP FOR EIGHT REPRESENTATIVE RUNSw, IS THE

robot and the goal. If the robot physically hits an obstacle,
the evaluation is terminated immediately aifdis set to
Tmax. With this fitness measure, the robot is rewarded for
moving quickly, and without collisions, towards the goal.

PHYSICAL OBSTACLE DIAMETER, Feross IS THE CROSSOVER
PROBABILITY AND Pyt THE MUTATION RATE, USED BY THE GA.
THE POPULATION SIZE WAS EQUAL TO200IN ALL RUNS.

When the simulated robot has been evaluated invall RUN# wo [M] Poross Pmut  fitness measure
environments, the fitness valugs, i = 1,...,N, are 1 0.05  0.80 0.100 fo
weighed together in one of two ways, either 2 007 070 0.080 s

3 0.05 0.80  0.100 FO
1 X 4 0.07 0.80  0.100 Fo
fO = — Zfi’ (10) 5 0.05 0.50 0.100 @
Ne = 6 005 075 0.100 @
7 0.07 0.50 0.075 f@
or 8 010  0.80 0.050 fic)
f® = min ;. (11)
1
TABLE i

IV. RESULTS FROM SIMULATIONS
RESULTS FORRUNS 1-8. THE SECOND COLUMN SHOWS THE NUMBER

Several simulation were performed, using both fitneS$r enviRONMENTS(OUT OF A MAXIMUM OF 20) IN WHICH THE BEST
measures defined above (see Eqgs. (10) and (11)). All runSenT in THE CORRESPONDING RUN MANAGED TO REACH THE GOAL
lasted for1 500 generations, and the population consisted posiTioN IN TIME Tinax OR LESS AND THE THIRD COLUMN SHOWS
of 200 individuals. Each simulated robot was evaluatedHe riTnESS VALUES NOTE THAT THE FITNESS VALUES OFRUNS 1-4
againstN, = 20 randomly generated (but fixed, throughout ARE NOT DIRECTLY COMPARABLE TO THOSE OFRUNS 5-8.
all runs) environments, wittv, (the number of obstacles)

in the range[7, 12]. The size of each environment was Run # # goals reached  maximum fitness fitn(ejs measure
meter byl.5 meters, i.e of order 15-20 times the diameter ; ig 8'82?2 i(l)
of the Khepera robotl},.x was set to 200 s, even though 3 14 0.1492 [0
the evolved robots usually managed to traverse the arena 4 19 0.1173 F
much faster (see Fig. 3). 5 20 0.0722 fi)
In the decoding procedure, during which the 10 param- 6 20 0.1274 £
; 7 20 0.0962 I3
eters of the chromosome are obtained, the set speed values g 20 0.0466 )

vk, and v%, were rescaled to the interva0.02,0.10]
m/s, and the parametet, was rescaled to the interval
[0,0.20] m. No rescaling was applied to the parameter
d, which therefore took values in the full range 1]. best individual managed to reach its goal position in all
The six first parameters in the chromosome, determiningnvironments. The parameter configurations obtained in
the exact shape of the potential field, were not rescale#iose runs allow the robot to navigate safely in a large
(except thata, and a,, were negated), since all that is variety of environments containing obstacles of a given
relevant is the direction (not the magnitude) of the forceize. Thus, it would not be necessary to rerun the the
obtained from Eq. (1). Experiments were performed usingptimization procedures if the positions of the obstacles
different (physical) obstacle diameters. In order to sifgpl Were altered.

the search performed by the GA, in some runs four of The waypoints turned out to play a pivotal role. Even
the 10 parameters (namelby,, do, Ul}ef, and U?el") in  though their influence was strongly localized to their imme-
the chromosome were given pre-specificed values, thuHate vicinity, they helped guide the simulated robot safel
reducing the number of GA-optimized parameters to six iiowards its goal. If the waypoint potentials were turned off
those runs. The setup for eight representative runs is givéhe robot usually failed to reach the goal position.

in Table I, and the results of the runs are shown in Tables
II'and Ill. As is evident from the tables, the procedure
of generating potentials through Voronoi diagrams and\. Khepera robots
parameter optimization by means of GAs was successful in
all cases where fitness meastifé’ was used, whereas runs
using fitness measurg!) reached less satisfactory results
This is understandable, as the fitness meagiite only
measures average performance. Thus, with that fitness m

V. IMPLEMENTATIONS IN ACTUAL ROBOTS

It is of essential importance to verify, in actual robots,
the results obtained in simulations [10]. Thus, a prelimina
‘test of the simulation results has been performed, using
a Khepera robdtin standard configuration (i.e. without
- . . . “ded sensors or means of communication). These robots
sure, it is possible for the simulated robot to fail comgiete are equipped with incremental encoders, on the motor axis

in environments and still ach2|()ave a rather high averagey o, wheel, that can be used for determining the distance
By contrast, fitness measurg® focuses completely on %raveled by the robot. It was soon realized, however

the worst performance of the robot, and tends to generate
much more robust results. In fact, @l runs with this  2the knepera is a small, differentially steered two-whedotp man-
fithness measure, the simulated robot corresponding to theactured by K-team (www.k-team.com).



TABLE Ill
PARAMETERS OBTAINED FOR THE BEST INDIVIDUALS INRUNS 1-8. THE VALUES FOR THE FIRST SIX PARAMETERS ARE IN ARBITRARY UNITS
AND THE LAST FOUR PARAMETERS ARE GIVEN INS|I UNITS. PARAMETERS INtalics WERE KEPT CONSTANTI.E. THE VALUES OBTAINED FROM
THE CHROMOSOME WERE NOT USEDIN CASES WITHd, = 0, THE PARAMETER’U?ef IS IRRELEVANT (AND THUS NOT GIVEN), SINCE IT WILL
NEVER BE ACTIVATED.

Run # ag be o bo Cy by dy vl vl d,
1 0.746 0.352 0.644 0.045 0.018 0.190 0.198 0.040 — 0.000
2 0.975 0.637 0.130 0.084 0.009 0.341 0.188 0.040 — 0.000
3 0.586 0.344 0.169 0.060 0.002 1.295 0.123 0.043 0.099 0.594
4 0.885 0.631 0.492 0.057 0.002 1.064 0.079 0.100 0.041 0.082
5 0.836 0.390 0.611 0.045 0.010 0.494 0.155 0.040 — 0.000
6 0.886 0.434 0.425 0.045 0.016 0.200 0.086 0.099 0.039 0.115
7 0.777 0.397 0.565 0.057 0.016 0.539 0.006 0.099 0.044 0.085
8 0.569 0.463 0.263 0.057 0.346 0.063 0.167 0.098 0.029 0.128

that the navigation accuracy obtained by performing dead
reckoning using the incremental encoders on the Khepera
was not sufficient for dynamic motion according to Egs. (6)
and (7). Instead, a simplified scheme was implemented, in
which the robot navigates in discrete steps. In each step the
robot starts from a standstill, determines (via the poténti
field U(q)) its desired direction of heading, rotates to face
this direction, moves a distanéein this direction, so that
the position changes according to

—

di+1=¢; +9f(q), (12)

and then stops again to compute a new desired dire€ig. 4. Astnapshc?t_ oft t:he _Khelpsra rO(bcht Fn_avig)atigﬁ tm ohtlh_e
tion etc. Provided thaf is chosen sufficiently small, i.e. €nVIronments used in the simurations (cl. Fg. 3). 1he goal IS
smaller than the typical length scale of variations in ther;}atrhk: ?ig\ﬂﬁzla cross, and the Khepera robot is located clotietoniddle
potential field, this navigation procedure representsa-slo

motion version of that used in the simulations. Using this

procedure, and after some calibration of the incrementgd \jirBot

encoders as well as the acceleration and deceleration i ) ) ) )
phases of each movement, the Khepera rather successfulle)/-rh_e VirBot system [12], illustrated in Fig. 5, is a
(but slowly) navigated through one of the most difficult® nsiderably more advanced robotic system than Khepera.

environments used in the simulations, namely that shown i hile VirBot also is a simulated robot, the VirBot structure
Fig. 3. A snapshot of the navigating robot is shown in Fig.” ustrated in Fig. 5 has been implemented in an actual No-
d type robot. Potential field navigation using waypoint

4. On some occasions, however, the Khepera was unable” " JF= has b ol din th h planni
to reach the goal. The failure could be attributed partly (@PUMmization has been implemented in the path planning

the limited accuracy provided by the incremental encoder§UPmodule of the VirBot system. While the implementation
which caused a continuously increasing deviation betweegrares certain basic features with the simulated systeths an

the actual and estimated position of the robot. Furthermor e Khepera implementation described above, the VirBot

there was a small problem with the motors in the Khepergnpler_ne_ntation is .d_ifferent in th? sense that it atte_mpts
robot, when running on batteries: for a few steps of thé? OPtimize thepositionsof waypoints rather than having

motion, one of the motors would temporarily cease t&hem generated automatically using the Voronoi tessefiati

function, probably because of a malfunctioning batteryproced“r_e' A S|mul_ator for the VirBot system has a]so
since the problem could be eliminated when using all?een written, and it has been tested successfully in a

external power source. Finally, in narrow passages betweé(lff”etyI of ﬁnvllronr_nents. ; Howevgr, becsuie of tge need
obstacles, the robot sometimes displayed an oscillatol§) €vOIve the locations of waypoints (which may be very

behavior. This is a well-known phenomenon [11] in poten! me-consuming) for each new environment, this method is

tial fields navigation, and was indeed noticed also in th@€'haps less suitable in realistic applications.
simulations (see the two bottom panels in Fig. 3). While
the oscillations are harmless in the simulations, they tend
to further deteriorate the accuracy of the dead reckoning The exact potentials that evolved for the waypoints
in the Khepera robot experiments. varied quite strongly, as evidenced by the results shown

VI. DISCUSSION AND CONCLUSION
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Khepera robot, the conclusion is that it is indeed possible,
in this case, to transfer the simulation results more or less
directly to an actual robot. However, not surprisingly, the
results obtained with the Khepera are not very robust, due
to the limited accuracy of the incremental encoders, and
the occasional problems with the batteries reported above.
More tests are underway, in which attempts are made
to find the optimal distancé between successive readings
of the potential field. In addition, adding a camera to the
Khepera robot, attempts will be made to supplement the
dead reckoning with landmark recognition, allowing the
robot to navigate in a similar fashion to e.g. desert ants
[13], by taking and storing snapshots of useful features
in the environment. Interesting issues in this respect are

the

‘ Mohile Robot ‘ ‘ Wirtual Robot |

Fig. 5. The VirBot system.

problems of determiningghento take snapshots of

landmarks, as well as determininghenand how to use
them.
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in others (e.g. Run 8), the waypoint potentials were deep
but narrow. It is interesting to note that the GA was able
to find both these types of waypoints, and the results
indicate that, while the use of waypoints is crucial to avoid [1]
locking phenomena, their exact shape can be chosen in
many different ways. 2]

Another indication that the GA may choose to use
the available parameters in a way that differs from the
intentions of the experimenter is given by Run 3, in which (3
the speed near obstacled () was actually set to higher
value than the nominal navigation speed. However, in this
run, the parameted, was also set to a very high value, 4
so that the simulated robot considered itself to be near
obstacles almost all the time. In this case, the simulated
robot moved quite fast, and obtained a high fitness valugs,
in those environments for which it managed to reach the
goal, but at the cost of many complete failures. Indeed, the
goal was only reached in 14 out of 20 environments, asg)
shown in Table II.

The behavior of simulated robots evolved with fithess
measuref(?) was more robust, and their navigation more
careful than that of simulated robots evolved with fitness
measuref ). (8]

The main conclusion of this investigation is that it is g
indeed feasible to evolve potential fields, containing way-
points, for efficient and robust robotic navigation, predd
that the fitness measure used by the GA is chosen carefuli)llp]
Even though the runs lastdd00 generations, satisfactory
results were often obtained after a few hundred generatior$!

As is often the case when GAs are used, the performance
of the algorithm depended quite strongly on the choice
of fitness measure, and the general conclusion is that[¥!
more challenging fitness measure, if properly chosen, will
generate more robust results. [13]

As for the preliminary tests that were performed using a

(7]
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