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Abstract: Using the powerful techniques of neural networks and genetic algorithms, a brake system
controller is designed. First, the problem of blending auxiliary brakes, foundation brakes and gear
for high mean speed in down hill cruising situations is investigated. An optimization problem with
constraints such as vehicle speed and disc temperature is formulated and solved, resulting in a well
performing controller even compared to experienced drivers. It is shown that the mean speed can be
improved by controlling the whole brake system. Second, the issue of distributing a required force
between auxiliary and foundation brakes in order to minimize wear cost of pad, disc, and tyres is
investigated. The neural network controllers obtained from the optimization procedure significantly
outperform the traditional strategy of using non-wear auxiliary brakes in order to minimize pad and

disc wear cost.
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1. INTRODUCTION

Cruising downhill with a heavy duty vehicle requires
several actions from the driver. First of all a proper set
speed must be decided upon. To obtain and keep this
set speed the driver has to change gear and engage both
foundation and auxiliary brakes, i.e. VEB (Molvo Engine
Brake) and CR (Compact Hydrodynamical Retarder).

A problem is that the driver is given almost no feedback
regarding vehicle mass, brake disc temperature and other
important vehicle and environment states. Accidents have
occurred where a driver has chosen an excessive speed
combined with a bad distribution of retardation force
between auxiliary and foundation brakes, resulting in
overheating of both the disc brakes (known as fading) and
the auxiliary brakes (cooling system saturation), see [2]
for an example of a fading accident.

Other more conservative drivers choose a low set speed
yielding a low utilization of the capacity of the brake sys-
tem and perhaps also low mean speed depending on the
driving cycle. The third type of driver (most common!) is
the very experienced driver with good knowledge of both
vehicle and environment. By observing engine speed,
coolant temperature etc., such a driver uses the auxiliary
brake system to keep the vehicle speed constant but never
uses the foundation brake for long periods of time in

order to avoid fading. In Fig. 4 the maximum stationary
speed is shown as a function of slope. By choosing gear
and level of the auxiliary brakes, the driver finds the max-
imum stationary speed for downhill cruising. This is of
course a difficult driver task, especially if also foundation
brakes are considered. Thus there is a need to design an
integrated retardation control system for high mean speed
(high transport effectiveness) while keeping the system
within certain boundaries (safety and law).

Another important aspect of strategies for optimal retar-
dation force distribution is how the tyre, pad, and disc
wear are affected. Foundation brakes distribute the total
retardation force demand on all vehicle axles whereas
auxiliary brakes use the drive axle only, see Fig. 1. The
standard strategy is to utilize auxiliary brakes (known as
non-wear brakes) in order to save brake pads and discs.
However, some drivers have noticed a very high drive
tyre wear causing high maintenance cost when using this
strategy. Therefore the trade-off between tyre, pad, and
disc wear cost has to be investigated and considered in a
criterion function for optimal retardation control.

This paper investigates the possibility of achieving an
integrated retardation controller for gear shifting and
blending of different retardation actuators in a heavy duty
vehicle. This is done in two different cases. Case 1 fo-
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Fig. 1. Volvo retardation system

cuses on maximum utilization (high mean speed, v) of
the brake system and case 2 focuses on minimizing the
pad, disc, and tyre wear cost in a constant speed keeping
situation. In case 1, the scenario is that the vehicle enters
a descent and the driver decides upon a maximum vehicle
speed. The controller guides the vehicle downhill without
exceeding the maximum speed and other constraints (fad-
ing, engine speed etc). Case 2 focuses on a common type
of constant speed controller requesting a retardation force
to keep the vehicle speed constant on a downhill slope.
The main question here is how the required retardation
force should be split between auxiliary and foundation
brakes in order to minimize wear cost of tyres, pads,
and discs. In both cases, the parametrization of the brake
system controller is achieved by a neural network (NN)
optimized with a genetic algorithm (GA).

2. THE RETARDATION SYSTEM

In Fig. 1, the main components of a Volvo heavy duty
vehicle retardation system are presented. The foundation
brake power is distributed on all wheels (including trailer)
whereas the auxiliary brakes work only on the drive axle.
The retarder cooling system is connected to the engine
cooling system making it a closed loop system where
the generated heat is handled in the main engine cooler
(radiator).

2.1 Vehicle model

In order to design and evaluate an integrated retardation
controller a mathematical vehicle model was built. Since
the model is used in an optimization routine requiring
many iterations, it is very important to have a well bal-
anced model that describes the main dynamics of the
system without being excessive in complexity. The main
equations are presented below.

Longitudinal motion equation:

MmO = Farive — Fair — Fron — Fgrade -
_Faux - Ffound (l)
Fyyive 1s the propulsion force, Fo;;, Fron, and Fgpqqe are

resistance forces and Fl,,, and Fyoung are auxiliary and
foundation brake forces, respectively.
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Fig. 2. The optimization loop

Foundation brake dynamics
First order dynamics is assumed and 7'y = 0.4s. T; and
T, represent the temperature dynamics of the disc brake,
discretized into two masses.
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Ffound = (Freq - Ffound) (2)

qin 15 the brake force power, ¢; and ¢, are heat conduction
constants, co(v) and c5(v) are vehicle speed dependent
convection variables, and ¢3 and cg are radiation con-
stants.

Auxiliary brake dynamics
First order dynamics is assumed with T,., = 0.3s and
T.. = 0.5s.

. 1 N, Nf

Foep = ﬂ(Freq - Fveb) ;%w (5)
. 1 N
Fcr:T_a(Freq_Fcr)R_i (6)

Fyep and F,, are the VEB and CR retardation forces, N,
is the gear ratio of the current gear position, N is the
gear ratio of the rear axle final gear, and R,, is the wheel
radius.

Cooling system

The radiator is modelled according to [1]. From mea-
surements it can be concluded that approximately 40%
of the VEB power and 100% of the CR power transfer
to the coolant, respectively. In a radiator, as for all heat
exchangers, the flow rate of the medium is used to control
the cooling capacity. In a heavy duty truck the system is
designed so that the coolant flow is directly proportional
to the engine speed (vg) and the air flow is a function
of vehicle speed, fan speed, and air temperature. The fan
speed is a function of vy and the slip in the viscous
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Fig. 3. Optimal blending for high mean speed on 3 roads.
Thick solid line: 10% constant slope, Medium solid
line: Isére 4 road, Thin solid line: 5% constant slope

coupling, used to control the fan speed relative to vg.
Here the air density variation due to temperature variation
has been omitted.

Coolant flow =cvg @)
Air flow = f(v, Fan speed) (8)
Fan speed = f(vg,slip) 9
Wear dynamics

The models used for pad and tyre wear are shown below.
As can be seen, the pad wear rate varies strongly with
the temperature of disc whereas the tyre wear rate is
only a function of the torque acting on the wheel. T¢yre
represents the torque on each wheel.

. k
Spad = ginSoe 1 ’ (10)
Siyre =v(a + bTore + CTigre +
thGyre) (11)

So, ¢, and kg are disc pad wear constants and a, b, ¢, and
d are tyre wear constants.

3. METHOD

Driving strategies are represented by two-layer feedfor-
ward neural networks, with input signals such as e.g.
vehicle mass, road slope, current gear, disc temperature,
cooling water temperature, and vehicle speed, and output
signals representing gear choice, foundation brake de-
mand, engine brake demand, and retarder demand. We
have chosen to use a genetic algorithm (GA) for the
optimization of the neural network representing driving
strategies, see Fig. 2.

Optimization of neural networks is often performed using
the backpropagation algorithm. However, in order to ap-
ply backpropagation, a set of input-output pairs must be
available, which is not the case here. In the problem con-
sidered here, the network generates a continuous stream
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Fig. 4. Maximum stationary speed for different slopes.
Thin solid line: using only auxiliary brakes. Thick
solid line: optimal blending

of output signals, and the performance of the network is
given as a single scalar value at the end of the evaluation,
e.g. the distance traveled by the vehicle during a given
period of time. In this situation, a GA is a natural choice
of optimization method. GAs have been used by several
authors in problems involving NN, see [4] for a review,
and are particularly effective in large and complex search
spaces.

A further motivation for using a GA is its ability to
optimize both the structure (e.g. the number of neurons
in the middle layer) and the parameters of the network.
While this feature has not been used in this paper, it
is important for further work since, for the problem
considered here, it is very difficult to specify an optimal
network structure in advance.

For this paper, a fairly standard GA with tournament
selection of individuals and generational replacement has
been used. The weights of the network are directly en-
coded (using real-number encoding) in the chromosomes.
New individuals are generated using crossover and muta-
tions. The crossover probability was set to a rather low
value (0.3), since crossover often has a negative effect
on neural networks. Mutations of two kinds were intro-
duced: ordinary mutations, which change the value of a
gene to a random new value (within the allowed range),
and creep mutations for which the new value of a gene
is chosen with uniform probability in a narrow interval
around the previous value.

4. CASE1

Case 1 is focused on optimal utilization of the complete
retardation system including foundation brakes, auxil-
iary brakes, cooling system, and gearbox. Three exam-
ples are shown in Fig. 3 where the objective for the
controller is to guide the vehicle down a 5% descent,
a 10% descent, and a road profile (nr 4 in Fig. 5)
with varying slope. The objective is to achieve high-
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Fig. 5. Example of measured road profiles used. French
alps, Isérel-4

est possible average speed (v) over a finite time in-
terval without violating the constraints. For this task
a 5-7-4 feedforward NN with sigmoid slope equal to
1, and with inputs {v,T1, @, Teoolant, vE} and outputs
{Rtound,eq» Shiftreq, Rauxyeq » Foplitreq } WaS trained with
a GA. Both the input signals and the output signals were
normalized to the interval [0, 1]. Fypie,., is the total retar-
dation force request, Rfound,., SPits the total retardation
force request between foundation and auxiliary brakes,
from 1 for 100% foundation brakes linearly down to 0 for
100% auxiliary brakes. Ra,y,., splits the auxiliary brake
force requested between VEB and CR, and Shift,¢, indi-
cates gear shift (up) if larger than 0.7, gear shift (down)
if smaller than 0.3, and no action between 0.3 t0 0.7.

The fitness measure was defined simply as the distance
travelled by the vehicle. Since the vehicle was only al-
lowed to drive for a limited amount of time, the op-
timization procedure will strive to attain a high mean
speed. The simulation was stopped if any of the following
conditions was satisfied: 77 > 500°C, v > 25m/s, v <
5m/fs, vy > 2300rpm, vy < 600rpm,time> 200s.
The solution shown in Fig. 3 was obtained after 1000
generations using a population of 100 individuals. To set
the structure (in this case only the number of neurons
in the middle layer) some tests where performed. Seven
neurons in the middle layer was found to be the minimum
number required.

From the figure, it can be seen that the NN works very
well with our choice of objective function. The mean
speeds of the three runs are 24.9, 14.1, and 23.8 m/s,
respectively.

The maximum mean speed that a skilled driver, driving
as explained in Sect. 1, can achieve on different slopes
is shown in Fig. 4. Also the mean speed obtained from
the NN controllers is shown. The NN controllers have
the same structure and constraints as above, expect that
the simulation stop constraint is now time > 2000 s, in
order to make possible a comparison with the results for a
skilled driver. For example, it is seen that the mean speed
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Fig. 6. Generalization measures, G and V. Thick solid
line: V, Thin solid line: G

can be improved by 44% on the 10% slope and 22% on
the 6% slope using the whole brake system optimally.

4.1 Generalization

When an NN obtained by training against a single road
profile is tested on other roads, it is often found that
performance is poor even for small changes in the road
profile. It is thus clear that the training road must reflect a
variety of obstacles in order for the NN to work in all sit-
uations found in reality. For this reason, we constructed a
training road that reflects different obstacles encountered
in a realistic driving situation. Measured road profiles
from the French alps (Isére) and the Kassel hills in Ger-
many were used for this purpose, see Fig. 5. These road
sections were then discretized and randomly put together
to make up a realistic training road. Also, sections of
constant slope were put into this training road.

The main task now is to see to what extent the GA can
find an NN that can perform well, i.e. attain a high mean
speed, on different roads. Obviously, the ability of the GA
to find such an NN depends on several things, such as e.g.
the choice of the input and output signals, the shape of the
training road, the definition of the fitness measure etc. In
this paper we focus on the definition of a training road
for generalization. To quantify how well the NN is able
to generalize we use the measure G and V', defined as

1 o d; 1 &
Nr ; Li’ ermax ;vl ( )

where d; is the distance travelled by the vehicle on road
i, L; is the length of road 7, and NV, is the number of
roads. We used 7 = 14 different realistic road sections
and the result is shown in Fig. 6. Since G increases
with the number of iterations, it is clear that the training
road reflects most of the obstacles found in the 14 test
roads. When the NN can cope with most of the roads
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in the test set (high G) it is interesting to see that also
the mean speed is improved (V is increasing). These
are two important indications that the generalization is
successful.

In Fig. 7 the first half of the training road is shown
together with the trajectories for the final NN. Clearly, the
NN performs very well on this difficult training road and
in Fig. 8 the speed trajectories for 5 other road profiles are
shown. The performance is excellent on Isére 1, 2, and 3
(4 is not shown since it is rather short) whereas on the
two flat roads the NN is somewhat conservative, as can
be seen by comparing with Fig. 4.

5. CASE 2

When distributing a required retardation force between
drive line and chassis it is interesting to look at wear char-
acteristics of tyre, pad, and disc. The usual driver strat-
egy is to keep the vehicle stationary using only auxiliary
brakes and, if necessary, lower the vehicle speed with the
foundation brakes to a level where the auxiliary brakes
can keep the vehicle stationary. However, one might ask
oneself whether this is optimal from a wear cost point of
view?

10° ¢

Cooling system boundary

Fading boundary

total wear cost, euro

08 1

100% auxiliary 100% foundation

Fig. 9. Vehicle of 60 t and 6 axles travelling at constant
speed 15 m/s down a 3000 m descent for 9 different
slopes

The economical model to calculate cost can be formu-
lated in several different ways, and one of the main ques-
tions is whether or not to include the time of maintenance
stops. In our approach we do not and the total cost (C'ot)
is formulated as in Eq. 13. The work cost (C,) and the
material cost (Cy,) are what the truck owner has to pay
for changing pads, discs, or tyres at a Volvo workshop
in Sweden. Since the disc wear is hot modelled we have
used the rule of thumb often practiced at the workshops
that every second time pads are changed, discs are also
changed. ¢ denotes the original pad (20mm) thickness
and tyre tread (20mm) thickness. When the wear (de-
noted W) of the pad is 20mm, it has to be changed.

Cw+Cn
)

In Fig. 9 it is seen how the optimal distribution for min-
imum cost varies with retardation force demand. The
vehicle is travelling with constant speed (15 m/s) on 9
different slopes of length 3000 m. Clearly, the optimal
distribution is different for different slopes. This is due
to the non-linear and time varying dynamics of Egs.
11, 10, and 4. Thus, there is a need to design and in-
vestigate controllers that minimize wear cost. The idea
is to have an NN that shifts gear and splits the force
required for constant speed keeping in such a way that
the wear cost is minimized. In reality, a Pl controller can
produce the force request, but here it is solved directly
from Eq. 1 and, for this case, the inputs to the neural
network are {Freq, T, @, Tcoolant; VE} and the outputs
are { Riound, ., » Shiftreq }. FOr simplicity only two outputs
are used, and the VEB has priority over the CR, i.e. the
auxiliary brake force demand is first requested from the
VEB, and if the VEB is unable to deliver the demanded
torque the remainder is requested from the CR.

Ctot = w (13)

Three examples where the NN guides the vehicle down
a 2% descent, a 5% descent, and the varying road profile
4 from Fig. 5 are shown in Fig. 10. The fitness function
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is here defined as et~ Tewor) /Cyo¢ if (t — Thtop) is less
than 0, and 1/C},, otherwise, where ¢ is the time when
the vehicle was stopped (either because a constraint was
violated, in which case ¢ < Tg,p, OF because the stop
time was reached). The constraints used are the same
as earlier, except that the allowed range of variation for
v is much narrower. It can be seen that the total wear
cost for cruising down the 3000 m long 5% slope is
approximately 0.38 euro in the optimal case. From Figs.
4 and 9 it can be concluded that a very experienced driver
can keep 15 m/s by only using the auxiliary brakes and
the wear cost is then 1.1 euro. Thus, the wear cost of the
NN controller is almost 65% lower.

6. DISCUSSION

In this paper, optimization of driving strategies has been
carried out using GAs only, and it has been shown that
this method yields NNs that are able to cope with general
road profiles in many cases.

A further improvement of the procedure would be to
generate a set of basic situations, and to provide both
input and output signals for these situations. In this case,
the NN could first be trained, using e.g. backpropagation,
to cope with the basic situations, and then be further
trained against a road profile, using a GA.

A setback with the GA approach is that it does not
guarantee optimality of the networks obtained. However,
finding a provably optimal solution is not crucial in this
problem. Instead, what is important is to find an NN that
outperforms even an experienced truck driver.

A common objection to the use of NN is the difficulty of
interpretation. NN are sometimes considered to represent
a black-box solution to the problem at hand. While inter-
pretability is not necessarily relevant, it would be useful
also to consider other architectures, such as for instance

fuzzy logic controllers (which can also be optimized us-
ing a GA). This is a topic for further research, and will be
addressed in a forthcoming paper.

The input signals used here are a feasible choice, since
all of the signals can be obtained in a real vehicle. The
vehicle speed, engine speed, and coolant temperature are
all signals measured in a modern heavy duty vehicle. The
road slope and the vehicle mass (which is not used as an
input signal here but can, in reality, vary significantly)
are not as easy to access, but they can be estimated,
see [3]. The disc temperature is usually not measured or
estimated today, but temperature sensors and estimation
algorithms are under development.

For some road profiles, the NN trained for generalization
is somewhat conservative (low mean speed) compared
to real drivers. This can be explained by the fact that a
real driver has road profile preview whereas the NN only
has information about the current slope. In future work,
preview will be included as well, since such a feature will
probably become available in real vehicles in the near
future (using e.g. GPS and maps).

7. CONCLUSION

Controllers have been obtained for several different road
models (with different slopes). Their performance is
shown to be much better even than that of an experienced
driver. It is shown that there is a potential to improve
mean speed in down hill cruising by optimal usage of
the whole brake system, including foundation brakes,
auxiliary brakes, gear box, and cooling system. It is also
shown that it is possible to obtain a general NN that can
handle a wide variety of different road profiles.

An additional advantage is that the resulting NN con-
trollers are, in principle, directly implementable in an
actual vehicle, as opposed to the infinite-dimensional tra-
jectories obtained by optimal control methods.

When considering wear cost of pad, disc, and tyres it is
concluded that the strategy currently used by drivers is
non-optimal. It is clear that the wear cost can be lowered
by distributing the retardation force in an optimal way
between foundation and auxiliary brakes.
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